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Abstract

Method of X-ray standing waves was realized to investigate the structure of
short period multilayer systems. The experiment data was obtained at the E2
bending magnet beamline of DORISII synchrotron radiation source. Fluorescence
yield fit was conducted to verify the initial model that was derived from the
multilayer growth procedure. The results showed that the original model is not
correct and the best consistency between theory and experiment can be received
for a model with slight variations of the multilayer periodicity



1.Introduction

X-ray optics - an indispensable tool for the study of various objects. To work
with a wavelength (1A) used natural crystals with interplanar distance
comparable to those wavelengths. X-ray optics is an indispensable tool for the
study of various objects. In the case where it is needed a tool for working with
a wavelength tens of angstroms of the ultraviolet spectrum - natural crystals are
not suitable. In this case layered synthetic microstructures are useful —
multilayer with a certain period comparable to the wavelength of interest. [1]

2.Method

2.1 Standing waves

As a fundamental wave phenomenon, the superposition of two coherently
coupled X-ray plane-waves localizes the X-ray intensity into interference fringes
of an X-ray standing wave (XSW) field (Figure 1). This effect, which is produced
by an x-ray reflection, makes it possible to attain a periodic structural probe with a
length-scale equivalent to the XSW period [2]:

D=(A/2sin0)=24Q (1)

where A is the X-ray wavelength, 26 is the scattering angle between the two
coherently coupled wave vectors K, and K, and Q is the scattering vector defined
as:

Q= Kr-Ko, (2)

Q can also be referred to as the standing wave vector, since it points perpendicular
to the equal-intensity planes of the XSW and has a magnitude that is the reciprocal
of D.



e
‘o%{’%{'%'%{'{’{’5{':':’:’o’o’a’i’&'&’i’i’i’i’i’i':‘:':’:';’;'}o‘t’o’o’o'aWo’o’»’o‘0'o';’;';’;';';’;’;’;';’;’;’o’;’o'o'o’a’o'o’o’o’o’o’o’o’o’o‘o’;’;’:’;’};’}o’o‘?o’o’o’o'c’c’o'o’om}'}m}'}'}'}'}'}'}%\i}'\o‘}'o'
-

ML
e

KR
@i}g
Ky

—————

Figure 1. Top: A standing wave field formed from the superposition of two

traveling plane waves of wavelength A4 and intersection angle (scattering angle) 26
The standing wave period is D as defined in Eg. 1. Middle: The two traveling

planes waves are represented in reciprocal space by wave vectors Ky and K. K|

=Kp = 2r/ \. The standing wave is defined by standing-wave vector Q defined in
Eq. 2.

2.2 X-Ray standing waves generated by single crystal
dynamical Bragg diffraction.

The most commonly used means for generating an X-ray standing wave is
the use of strong Bragg diffraction from a single-crystal. In 1964, using Bragg
diffraction from a Ge crystal, Batterman (1964) made the first observation of the
XSW effect-an angularly modulated Ge fluorescence yield across the reflection.
Later, Golovchenko and coworkers realized that the XSW field generated inside
the crystal extended above the crystal surface and used the XSW to determine the
crystallographic registration of adsorbate atoms with respect to the underlying
substrate lattice (Cowan et al. 1980; Golovchenko et al. 1982).

Method of XSW is well developed for single crystals. The creation of a
standing wave is due Periodicity of atomic planes of the crystal. This method is
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also suitable for the study of multilayer where layers of materials with different
densities play the role of atomic planes. Then, the theory of standing waves for
single crystals is similar to multilayer.

An X-ray standing wave generated by single crystal Bragg diffraction can be
used to determine the 3D lattice location of bulk impurity atoms and surface
adsorbents. Dynamical diffraction theory, which solves Maxwell’s equations in a
periodic dielectric with appropriate boundary conditions, is used to describe the
fields inside and outside of the crystal.
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Figure 2. X-ray standing wave field formed in a crystal and above its surface by
the interference of incident and Bragg-diffracted X-ray plane waves. The XSW
period is equal to the d spacing “d”. Aligning a XSW nodal (or antinodal) plane
with an atomic plane will minimize (or maximize) the characteristic fluorescence
yield from that atomic plane.



2.3 Theory

Consider the two-beam Bragg diffraction condition, described in Figure 2 ,
where the incident and the Bragg-diffracted X-ray plane waves are expressed as:

E,(r.t)=E_ exp[-i(K, r—wt)]
E, (r.t)=E exp[-i(K, r-wi)]

(3)

Here Eyand E, are the complex amplitudes associated with the incident and
diffracted X-ray plane-waves, K, and K,are the respective complex wave vectors
inside the crystal, and o is the X-ray frequency. The two wave vectors are coupled
according to the Laue condition:

H=K, - K, 4)

where H =ha *+kb* +Ic * is a reciprocal lattice vector. The scalar equivalent of the
Laue condition reduces to Bragg's law,

A=2d,sinf,

where dH =27/|H| is the lattice spacing of the H=hkl crystal diffraction planes and
0B is the geometrical Bragg angle. The interference between the incident and
diffracted plane waves results in a standing-wave field. The normalized intensity of
the total E-field that gives rise to the XSW field is

1(6.r) = |£‘;—f| 5)

above the surface

. at depth z below surface,

= [l +R(6)+ 2\,% cos(v(0)-H ?’)] X {1()_,1{_ (6)z ;

where the reflectivity R is related to the E-field amplitude ratio as:



R=1% (6)

and the XSW phase, v, is identical to the relative phase between the two E-field
amplitudes,
(7)

'EH

'ECI
From Equations (1) and (5), one can conclude that for Bragg diffraction the XSW
periodicity is equal to the lattice d-spacing of the H = hkl diffraction planes; that is,
D = dH. In the following discussion, we will assume the most common case of o -
polarized symmetrical Bragg diffraction from a semi-infinite crystal with 1° < 6 B
< 89°. Figure 2 shows the case of o -polarization with the vector directions of the
two E-fields pointing perpendicular to the scattering plane defined by the two wave
vectors. The incident and exit angles of the two wave vectors with respect to the
surface are equivalent for a symmetric reflection.

From dynamical diffraction theory (Batterman and Cole 1964), the E-field
amplitude ratio is defined as [3]

—Zlexp(iv)
o0

—

EH 'FH' 2 4
A L (YO | 8
£, Fn('” V' -1 (8)

Where F, and Fg are the H and —H structure factors, which describe the
superposition of the coherent x-ray scattering from the N atoms within the unit cell
as:

u ‘ ‘exp("()ﬁ”)
S[/200+ A7)+ 8] 5.0 D, ()

©9)

Where s, (H)=exp(iH*r,) is the geometrical phase factor for the nt"* atom located
at n, relative to the unit cell origin. D, (H)-exp(—M,,) is the Debye-Waller
temperature factor for the nt® atom. Af, and Af,)’ are the real and imaginary
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wavelength dependent anomalous dispersion corrections to the atomic form factor
£ (H). n is the normalized angle parameter defined as:

—-ABsin(26,)+ T'F,
TR F (10)
\VFul'm

In this equation, A6=6-6; is the relative incident angle. T=(r, A*)/(r V) is a scaling
factor, 7,=2.818 x 107> A is the classical electron radius and V, is the volume of
the unit cell. (To separate the real and the imaginary parts of a complex quantity A,
the notation A=A'+iA" is used, where A" and A" [Jare real quantities.) From Eq. (6-
10) it can be shown that the reflectivity approaches unity over a very small arc-
second angular width w, defined as:

20 Fy by + F*-FF.
sin26, (11)

w=A60 _ -AO =
n'= n'=

This is the “Darwin width” of the reflectivity curve or “rocking curve”.
Using the above dynamical diffraction theory equations (Eg. 7-10), one can show
that the relative phase, v, of the standing wave field decreases by = radians as the
incident angle is scanned from the low-angle side to the high-angle side of the
rocking curve. According to Eq. (5), this causes the standing-wave antinodal

planes to move by a distance of ldH in the -H direction. Also from Eq. (5), if
2

Af,'=0, then R=1, and the intensity at the antinode is four-times the incident
intensity, |Eo|? and there is zero intensity at the node. The case of | = 4 at the
antinode assumes that the field is being examined above the surface or at a shallow
depth where exp(-u, z) ~1. The Darwin width, w, is dependent on both the
structure factors and the wavelength of the incident X-ray beam. For a typical low-
index strong Bragg reflection from a inorganic single crystal w is within the range
of 5 to 100 micro radians (urad) for X-rays within the range of A= 0.5 to 2 A4.

The exponential damping factor in Eqg. (5) accounts for attenuation effects
within the crystal, in which case the effective absorption coefficient is defined as:



FLlE.
H H
N _[ (12)

FJ\E,
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sinfy, F; E,,

Where uoz%”FF(',' IS the linear absorption coefficient. The second and third terms in

Eq. (12) account for the extinction effect that strongly limits the X-ray penetration
depth 1/ p, for a strong Bragg reflection. For example, the penetration depth for
15-keV X-rays at the GaAs (111) Bragg reflection goes from 2.62 um at off-Bragg
conditions to 0.290 um at the center (n’ = 0) of the Bragg rocking curve. The
general expression for this minimum penetration depth or extinction length is:

A ext Vr [4{34‘1’ }::! ( }TDI + %'Illm)] N

(13)

2.4 Secondary processes in case of X-ray standing
wave.

The XSW field established inside the crystal and above the crystal surface
induces different secondary processes. The excited ions, in turn, emit characteristic
fluorescence X-rays and Auger electrons. For the discussion that follows, we will
assume the dipole approximation, in which case the normalized X-ray fluorescence
yield is defined as:

Y(0)=[1(8,r) p(r) exp[-u, (a)z]dr (14)

where p(r ) is the normalized fluorescent atom distribution, and wus(a) is the
effective absorption coefficient for the emitted fluorescent x-rays which is

dependent on their takeoff angle, o. Upon integration, the normalized XSW vyield
IS given as:

Y(0)=[1+R(O)+2/R(©O)f, cos(v(B)-2aP,)] Z(B) (15



where the parameters f, and Py are the coherent fraction and coherent position,
respectively. In more general terms, fy is the amplitude and Py is the phase of the
H®" order Fourier coefficient of the normalized distribution function:

F,=[pr)exp(iH r)dr=f,exp2aiP,) (16)

Z(0) is the effective-thickness factor, which will be discussed below. Z(6) = 1 for
atoms above the surface of the crystal and at a depth much less than the extinction
length, Z(6) ~1.

2.5 X-Ray standing waves from layered synthetic
periodic multilayers.

For Bragg diffraction purposes, a layered-synthetic microstructure (LSM) is
fabricated (typically by sputter deposition) to have a depth-periodic layered
structure consisting of 10 to 200 layer pairs of alternating high- and low-electron
density materials, such as Mo and Si. Sufficient uniformity in layer thickness is
obtainable in the range between 10 and 150 A (d-spacing of fundamental
diffraction planes from 20 A to 300 A). Because of the rather low number of layer
pairs that affect Bragg diffraction, these optical elements (when compared to single
crystals) have a significantly wider energy band pass and angular reflection width.
The required quality of a LSM is that experimental reflection curves compare well
with dynamical diffraction theory, and peak reflectivity’s are as high as 80%.
Therefore, a well-defined XSW can be generated and used to probe structures
deposited on an LSM surface with a periodic scale equivalent to the rather large d-
spacing. To a good approximation, the first-order Bragg diffraction planes coincide
with the centers of the high-density layers of the LSM. Above the surface of the
LSM, the XSW period is again defined by Eq. (1). The reflectivity can be
calculated by using Parratt’s recursion formulation. This same optical theory can
be extended to allow the calculation of the E-field intensity at any position within
any of the slabs over an extended angular range that includes TER.

Equal

Y(0) = ‘jf{&z) p(z)dz 7)
=0



Is used to calculate the fluorescence yield. The LSM-XSW method is primarily
used to determine atom (or ion) distributions in deposited organic films or at
electrified liquid/solid interfaces.

2.6 Modeling

At first the distribution of the electromagnetic field was calculated by using
a model of this structure which was described at figure 1. For creating the model of
electromagnetic field the webs interface TER_SL [5]. The results of modeling are
shown in figure 4 a). This graph shows the distribution of the field as a function of
depth and angle. Using this distribution it is possible to model the intensity of the
fluorescence yield for a given crystal thickness. Depending on the depth at which
the layer of La — curve of fluorescence will be different — it is possible to see a
phase changes. Figure 4 b) shows this.
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Figure 4. a) The distribution of the field in depth and in angle. b) Fluorescence yield
from different depths.

3 Experiment

3.1 Object

We have investigated the multilayer structure Mo/B -grown on the Si
substrate. Multilayer was deposited on super polished silicon substrates with a
modified DC magnetron sputtering system, using the setup described in ref. [4].
Magnetron sputtering deposition is a process where plasma of ions is attracted to
the target containing the material that is to be sputtered. The material will vaporize,
when these energetic ions hit the target. As a sputter gas Ar was used. Ar pressure
was about 10-4mbar. Layer thickness was controlled by fixing the time of layer
deposition. Quartz crystals are used to measure the amount of deposited material.
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The sample holder is rotated during sample fabrication to average any non-
uniformity in the vapor flux. The multilayer stack consists of 50 layer pair of Mo
and B with thickness of 14A and 20A, correspondently. On the top of multilayers
wear formed lanthanum thin film 3 A, surrounded by 20A carbon layers.
Schematic drawing of sample cross section are shown on the figures below.

B(20A)

La(3A)
B(20A)

Mo(14A)

B (20A)

_— %..

Mo(14A)

50 layer pair

B (20A)
Si

Sample

Figure. 1 Schematic drawing of the sample with thickness of La 3 A.

3.2 Measurements

X-ray reflectivity curves were measured on the PANAnalitical Expert Pro
diffractometer, which was equipped with 2 kWt X-ray tube. CuK x-ray radiation
was prepared using an asymmetrical cut 4 crystal monochromator 4xGe(220). The
direct beam intensity was 3.5.106 c.p.s. with an angular divergence of around
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0.01°. The sample was scanned in the 6-20 mode with an angular step of 0.005°
with an exposure time of two seconds at each point. Such an experimental setup
allowed for the measurement of six orders of diffraction peaks with a deflection of
less than nine degrees. From these peaks it was possible to resolve the thickness
oscillations.

The measurement of the X-ray standing waves was performed at the E2
beamline of DORISII synchrotron radiation source. Synchrotron radiation selection
and monochromatization was carried out using a double crystal monochromator of
Si (111). Such an experimental scheme provides the energy resolution AA/A = 5.10-
4. X-ray radiation with an energy of 8 keV - above L-absorption edge of La - was
used in the experiments. X-ray reflectivity curves were measured in the area of the
Bragg peak in 6-scan mode with a point detector — pin-diode. After standing waves
of X rays were formed at the Bragg angle in the crystal, secondary fluorescence
from the La L, g, lines were observed using the energy dispersive detector Ketek-
SDD.

The reflectivity curves from the layers contain a series of diffraction peaks
and the interference oscillations between them. Figures 6 show the fluorescence
yield distribution (green) and the Bragg peak. For the visualization of the
fluorescence measurements two curves are s - the fluorescence yield curve and
the peak of Bragg reflection.
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Figure 6. Experimental fluorescence yield ( +, blue curve) and the peak of Bragg
reflection (0, green curve)

14



4 Analysis and results

To obtain the information about the structure, the standard procedure of
fitting theoretical curves to the experimental data was used. The procedure was
repeated using a range of different model parameters. Each repeating unit of the
crystal structure is comprised of two layers one Mo and one B. Each layer has a
characteristic thickness, complex refractive index and roughness of the border.
Providing the multilayer crystal is of high quality, every unit repeating unit of the
multilayer structure can be assumed to be equivalent. The advantage of this
assumption is that it reduces the number of free parameters. The degree of
convergence of the experimental data with the theoretical model is evaluated using
the parameter y* (goodness of fit). This parameter allows for a combination of the
statistical errors at each point, bias. The y?value is given by the following
equation:

1 n (Ifxp _ I]_caZC)Z

Where n is the number of data points, N, is the number of unknown
parameters, lex, and lcyc are the measured and calculated theoretical intensity and s;
is the statistical error.

After processing the reflectivity data, the chi squared was 9.7 which is a very
good criterion of agreement between theory and experiment. Figure 8 shows that
the angular position of all reflexes is correct, as there is no divergence in intensity.
Based on these parameters (position and intensity of the Bragg’s peaks) it is
possible to estimate the average value of the period of the structure and the
electron density profile. These results imply that our model and assumptions are
correct.

15



T

Experiment_;

—— Calculation 3

0 ]
< 2 3
o - ]
> X =9.7
> 3
= ]
= 3
o E
(&) ]
b ]
= E
[¢b) 3
o .
1 4
8 9

0, deg.
Figure 8. Fit of the reflectivity curve from sample 1.

There is a table below. This table shows the parameters of the model have
been derived from the fit.

Thickness Roughness/2 | Density Amount of | Amount of
(A) (A) (g/cmg) B La
Bo/La/Bo | 48.70691850 | 4.59210745 | 3.78403954 | 8.04172286 | 1.27409809
Mo 17.55525864 | 2.29001364 | 7.98096333
B 15.67402502 | 3.94205624 | 2.73193217
Si

Electromagnetic field in the sample was calculated using the model of the
specimen obtained during the fit. The theoretical curve of the fluorescence yield is
calculated from the field pattern, and then the procedure is to fit a theoretical
model of experimental data of the fluorescence yield. Results are shown in Figure
9.
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Figure 9. Fit of the fluorescence yield from sample.

It can be seen that the curve calculated theoretically describe oscillations in
the tails are not very good. In this case, the convergence of theory and experiment
Is not satisfactory. This fact indicates that the calculated model is not correct.

On the curve of reflectometry this defect may affect the oscillations of the
thickness, which are situated between the Bragg peaks. Indeed, if you look at the
details of reflectometry curve fit, you can see the discrepancy between theory and
experiment in the area of the curve. Figure 10.
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Figure 10. Fit of the reflectivity curve from sample 1 in range of first Bragg’s peak.

Therefore it possible to conclude that the assumption of the identity of the
layers was not valid and should be considered each layer independently. Below are
the results of the second fit with the possible differences of each layer of multilayer
structure. Now the parameter y?was even less evidence that agreement between
theory and experiment is much better. Figure 11. a), b).
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Figure 11. Fit of the reflectivity curve, Bragg’s peak.
a) Whole data b) in range of first.
This table shows the parameters of the model have been derived from the fit.
Mean Mean Mean density | Amount | Amount
3
thickness (A) | roughness (A) | (@/cm’) of B of La
Bo/La/Bo | 48.4454 4.6295 3.7283 8.0417 | 1.2740
Mo 17.5314+ 2.2203+0.2393 | 7.8856+0.3403
0.2293
B 15.7200+ 3.7739+0.2683 | 2.7189+0.4220
0.2614
Si
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Fluorescence yield, counts
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Figure 12. Fit of the fluorescence yield.
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5. Conclusions

1) X-ray standing wave method has been implemented for the analysis of
multilayer.

2) The model structure proposed by deposition team has been in checked.

3) The model of the investigated multilayer structure which correctly
describes the investigated multilayer structure was created. This model is based on
the analysis of the measured data.

4) It is shown that the method of X-ray standing waves can be successfully
used for analysis of multilayer structure.

5) In this work X-ray standing waves method was realized for the object
with subsidiary thin layer of La.

6) Investigation of applying this method for other object, also with thick
subsidiary layers is continuous.
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