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The reuse of HEP analyses performed at large experiments like ATLAS or
CMS might help to exclude new particle physics models, even if the analyses
are not tailored for them. This allows for the exclusion of models at an early
stage and to accelerate the development of phenomenologically interesting
ones. emphAtom is the name of a tool currently under development which
aims to provide a framework to apply HEP analyses to new models on particle
level in order to find exclusion limits. In the course of the DESY summer
school various features were implemented into Atom. This report serves as
documentation of the enhancements and changes that have been made to the
code.
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1 Introduction

1 Introduction

Since the LHC has started operation in 2009, no convincing hints for Supersymmetry or
other BSM physics were found. Instead, the results indicate that the Standard Model
of Particle Physics is the correct description up to energies that can be reached by the
LHC.

However, there is strong evidence that the Standard Model can not be the final answer
in the search for a theory of everything. Consequently, many models have been, and still
are being developed to overcome the problems of the Standard Model while containing
it as a low energy effective theory.

At the LHC experiments, much effort is put into constraining the parameter space of new
models like Supersymmetry or additions to the Standard Model like Axions. However,
usually the analyses are only realised for a specific model and thus it is hard to draw
conclusions for other models. Meanwhile, new models are developed which pend to be
tested against real data.

It is obvious that untested models might be sensitive to analyses that already have
been realised, and hence reusing old data might offer the possibility to the restrict the
parameter space without having to implement a fully-fledged analysis.

This report discusses the work on Atom, a framework that is designed to check new
models against existing analyses. I have decided to turn this report into a small docu-
mentation on the changes that have been done to the Atom code, and I hope that the
reader excuses (or acknowledges) the fact that this report is rather technical.

1.1 Description of Atom

Atom [1] (“A Test Of Models”, name preliminary) is a framework build upon Rivet[2]
which allows for an estimate answer to the question whether a physics model will prob-
ably be excluded by experiments. As the base version of Rivet, Atom works on the
particle-level taking events in the .hepmc format [3] as the definition of a model. Al-
though this is a disadvantage in terms of precision, it allows for a fast execution of
analyses and still leads to an acceptable accuracy. Figure 1.1 shows a comparision be-
tween ATLAS, PGS and Atom data.

Rivet, which is usually used for monte carlo validation, provides methods for a fast
processing of analyses. This allows for a uncommon ansatz for testing models. Different
to the “classical” approach of selecting some analyses which are sensitive to the model to
be tested and implementing them, Atom can run all available analyses. Certainly, there
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2 Changes to the Atom Code

Figure 1: The left plot features a validation of a kinematic plot for Atom. It shows the
missing energy significance in the ATLAS 6-8 jets plus missing energy search,
for the MSUGRA benchmark point with m0 = 1220 GeV and m1/2 = 180 GeV,
tan β = 10, and A0 = 0 GeV. The right plot is an exclusion limit validation
plot for Atom. It shows the CMS limit for the Same-Sign dilepton search by
CMS, and superimposed the PGS (green) and Atom (brown) curves. (taken
from [1])

will be analyses which do not give good results due to signal leakage in the background
region. When working with Atom this has to be kept into mind.

Atom provides methods to track the signal efficiencies at any stage of the analysis for
single subprocesses and the total events. It also calculates the logarithmic derivative of
the signal efficiency with respect to the cut position. This information can be used to
warn the user if one encounters large uncertainties in the final efficiencies, e.g. if cuts
are applied on steeply falling signal distributions.

Furthermore, Atom extends the set of Rivet final states and provides many definitions of
objects used in CMS and ATLAS analyses like isolated particles. This makes it especially
easy to implement CMS and ATLAS analyses in Atom.

2 Changes to the Atom Code

During the course of this project, different changes were made to the the Atom code
which I will outline in this section. In the process of development the following design
principles were used for guidance (in arbitrary order)

• Readability
In case it was neccesseay to make a compromise between performance and clarity
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of the code, clarity was preferred. This is partly owed to the fact that the code
lacks a proper documentation, so reading the code should be as easy as possible.
Further, clearly structured code is easier to debug.

• Independence from Rivet
A strong entanglement between Atom and Rivet makes Atom very sensitive to
changes in Rivet, which is developed independently. Hence, changes to the Rivet
code may couse issues in Atom. To prevent this, it has been avoided to make
changes to the Rivet code.

• Few Dependences
When is comes to releasing Atom, it is important that the installation is as easy as
possible. One aspect of making the installation easier is to reduce the dependencies
of Atom on third person libraries and packages. Therefore no new libraries were
used but the ones already used by Rivet.

• Modularity
In order to allow for changes inside Atom without having to rewrite large parts
of the code, interfaces were heavily used. This reduces the mutual dependence of
different units of the Atom code.

2.1 Data Processing

The data processed and generated by Atom can be roughly grouped into the following
four categories.

1. Event Data

2. Process Data

3. Analysis Data

4. Statistical Data

This distinction is implemented in Atom using the classes Atom::EventMetadata, Atom::
ProcessMetadata, Atom::AnalysisMetadata and Atom::StatisticalMetadata, respectively,
all located in /include/Atom/EventMetadata.hh.
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Atom::EventMetadata contains everything associated with an event specified in the
input .hepmc file. For storing multiple instances of EventMetadata a new type is de-
fined

typedef <int, Atom::EventMetadata> AtomEvents

The key of this map is set to the event id.

The class Atom::ProcessMetadata stores information about hard processes, which is
part of an hepmc event. These are in particular subprocesses and the corresponding
particle ids. The difference between the event and process data is that the process
is only defined by its Feynman diagram, whereas the event contains information on
kinematics, decay chains, hadronisation, etc. Furthermore, the partial cross sections are
stored for each process. For handling of multiple processes

typedef <int, Atom::ProcessMetadata> AtomProcesses

is defined, where the process id is used as the map key, uniquely identifying the hard
process. Conventionally, the process id “0” is used to store information of all processes.

Atom::AnalysisMetadata contains data which is generated by the used analyses. This
includes the efficiencies and cuts (also including cut efficiencies), information on the
final states, and information on whether an event passed the analysis or not. For easier
processing, methods were added which allow access to the metadata stored in the .info
file of the analysis.

typedef <std::string, Atom::AnalysisMetadata> AtomMetadata

The key is equal to the unique name of the analysis.

Statistical data is intended to include everything generated by statistic modules. It
is stored in Atom::StatisticsMetadata. Subcontainers for the number of signal events,
CLb, CLs+b and CLs are already implemented.

typedef <std::string, Atom::StatisticsMetadata> AtomStatistics

Again, the key is name name of the analysis.

Each of these container classes has provides a bitflag to check which information it
contains. This is design to be used by later versions which also include a method to load
data from a file (c.f. section 3.1).

Atom now provides the interface Atom::AtomData which gives access to the data collect-
ed/generated by Atom. This interface was introduced to separate the internal structure
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of Atom from the Python plugin systems. Atom::AtomData provides methods to access
the container classes specified above, and hence the Python plugins only have to know
the interface instead of any specific class internal to Atom.

None of the classes supports buffered processing and hence the way the information is
stored relies heavily on the assumpetion that the generated data does not get too lange.
It has to be checked whether this assumption is appropriate.

2.2 Output

Rivet itself saves rarely any data except histograms, generated by the analysis. In the
current version of Rivet, Aida[? ] is used to save the histogrammed data in an XML-like
format. As Aida is not particularly well suited to save large amounts of information
or non-histogram information and secondly will be removed from Rivet version 2.0 in
favour of YODA[? ], the Root library[4] had been used to store the information. While
the Root-libraries are well suited for saving large amounts of information, using them
obviously introduces a Root dependence into Atom.

This, however, is a disadvantage for two reasons. First, the user does not only have to
install Rivet but also Root, and second this makes the Atom install unneccessary large
and unappealing to people who do not use Root.

Therefore, a plugin based output system has been developed. Atom only provides an
interface to Python, which allows to access the data provided by Atom. Having the
possibility to write classes handling the output in Python is very powerful, as Python
provides many modules which make it easy to process the data. Furthermore, it allows to
add new functionality to Atom without having to recompile the code. This is especially
useful for users which need a specific output format and/or do not need all data generated
by Atom.

In order to have a standartised output if neccessary, Atom provides tags which can be
accessed in C++ ( #include ”/include/Atom/AtomTags.hh” ) and Python ( from
atom tags import ∗ ).

2.2.1 Python Plugin System

For the implementation of the interface the SWIG [5] framework was choosen. The
benefit is that at least in principle SWIG is not needed to build Atom.1 Furthermore,
SWIG does not only allow for an interface to Python, but many more programming and
scripting languages.

1It in fact is neccessary as the Rivet built depends on it, although this dependence could be removed.
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All output modules (whether C++ or Python) have to inherit from Atom::AnalysisWriter
(atom.analysisWriter, respectively), which provides the abstract method void writeData
(AtomData∗ data). This method has to be overridden in any derived class. It is called
after all analyses have been processed and should contain code which displays data from
the Atom::AtomData interface.

Listing 1 shows how a simple writer can be implemented

Listing 1: Python
1 from atom import Analys i sWriter
2
3 def crop ( s ) :
4 return s [ : s . f i n d ( ”\x00” ) ]
5
6 class ExampleWriter ( Analys i sWriter ) :
7 # o v e r r i d e t h i s f unc t i on to d i s p l a y the data
8 def writeData ( s e l f , data ) :
9 print ”−−−−−−−−−−−−−−−−−−−−−−−\n”

10 print ” Example Writer output \n”
11 print ”−−−−−−−−−−−−−−−−−−−−−−−\n\n”
12 for k , v in data . getAnalys isMetadata ( ) . i t e r i t e m s ( ) :
13 print ” Ana lys i s ” + s t r ( k ) + ”\n”
14 for cut in v . getCutInfo ( ) . i t e r i t e m s ( ) :
15 print s t r ( crop ( cut . name) ) + ” has e f f i c i e n c y ” + s t r ( cut . c u t e f f ) +

”\n”

The loading and execution of selected writers is done by a C++ implementation of
Atom::AnalysisWriter called Atom::PythonPluginWriter. It handles the initalisation
of Python and the Python calls from C++. Recently, the class Atom::PythonWrapper
has been added (together with the statistics plugin system), which provides easier

methods for handling Python. Atom::PythonPluginWriter should inherit from Atom::
PythonWrapper to have the dependence of Atom on Python in the class Atom::PythonWrapper
.

A small caveat about the use of Python in Atom should be mentioned. As the executable
file which starts Atom is a Python script, Python is already initialised when the C++
code is called. In order to leave the Rivet code as it is, the writers are called via
std :: atexit. However, if std :: atexit is invoked, the Python runtime has already been
shutdown and thus Python has to be started again.

2.2.2 Visualisation of Output

To make the output human-readable, XML [6, 7], XSLT [8, 9] and JavaScript[] were used.
The benefit of the chosen method is that it needs nothing but a modern webbrowser to
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view the results. Anticipating the possible implementation of reading stored data back
to Atom (c.f. 3.1) the XML filetype is well suited. It allows to display the data via XSLT
while being easy to parse, especially since a SAX parser is shipped with Python (import
xml.sax). Besides, a XML/XSLT/XHTML output allows navigation and linking of plots
in the analysis report.

Alternatively, one could think about a pure HTML output, which has the benefit of
being just one file, while having the drawback that the stored information is harder to
read from the file. Also a .pdf or LaTeX output is possible. However, they also suffer
the problem that it is more difficult to write a reader.

In a tentative implementation which can by found in python/readableOutput.py the
definitions from the atom tag module are used for the XML tags. From a point of view of
re-readablity this is a good idea. However, the current atom tag implementation features
unneccessarily long tag names and hence should be replaced by a version with shorter
tags. When writing a new atom tag version (i.e. changing /include/Atom/AtomTags.hh)
one should alter the tag ATOM TAG VERSION, which is intended to indentify the used
set of tags. It might be a good idea to change the current implementation which uses
#define directives to statis class members, to allow for support of many tag versions.

The display of the data is taken over by an XSLT script defined in the file /Tools/xmld-
isplay.xsl which at the moment has to be copied manually to the folder containing the
generated .xml file. It is linked directly in the XML file

An example of the generated output is shown in figure 2.

The XSLT script contains Javascript to handle collapsing of cut, efficiencies, and the
detail section of all the applied analyses. An advantage of XSLT is that is is quite
powerful and allows to arrange data according to information stored an XML tags.

For example the simple graphical realisation of the cutflow is realised exclusively in
XSLT. The XML data is shown in listing 2.

As one can see, no tree structure is evident. Only the cut tags contain information about
their parent nodes. This makes it easy to load the XML file in the containers provided
by Atom. However, listing 3 shows how the XML file is turned into a tree-like structure
using recursion in XSLT as can be seen in figure 2.

The display of mathematical formulas is done with MathML [? ].

2.3 Statistics

The statistic abilities of Atom are still under development, as it has not been decided
yet, which functionality should eventually be provided by Atom. To maintain modularity
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Figure 2: Example of an preliminary version of an Atom report. As can be seen in the
image the analyses and the details can be expanded and collapsed seperately.
The used analyses we selected randomly and applied to a .hepmc with unknown
content. The cutflow is presented in a primitive way and might be changed in
the future. Please keep in mind that this output is not final yet. Please also
appreciate the modern and minimalist design.
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Listing 2: excerpt of readable.xml
1 <Cuts>
2 <Cut>
3 <name>Ht</name>
4 <idx>0</ idx>
5 <parent idx>0</ parent idx>
6 . . .
7 </Cut>
8 <Cut>
9 <name>MHt</name>

10 <idx>1</ idx>
11 <parent idx>0</ parent idx>
12 . . .
13 </Cut>
14 <Cut>
15 <name>dphiJ1</name>
16 <idx>2</ idx>
17 <parent idx>1</ parent idx>
18 . . .
19 </Cut>
20 . . .
21 </Cuts>

and allow the user to define his or her own analyses which can by run by Atom, a plugin
system for statistic tools is neccessary, independent of the functionality Atom might offer
in the future.

2.3.1 Python Plugin System

The statistics plugin system of Atom is basically implemented analoguos to the writer
plugin system (c.f. section 2.2). The only difference lies in that the separation between
code depending on and independent of Python is even stronger. However, the design
should be carried over to the writer plugin system.

The interface Atom::IStatisticsPlugin (include/Atom/Interfaces/IStatisticsPlugin.hh),
which is realized as an abstract class, is used as a base class for all plugins no matter if
they are written in C++ or Python. The interface provides the method doStatistics (
Atom::AtomData∗, Atom::IStatisticsWriter∗), which gives an Atom::AtomData object
to access the data generated by Atom and a pointer to an object of type Atom::
IStatisticsWriter.

Objects inheriting from IStatisticsWriter have to implement the methods and hence are
responsible for storing or writing the data. In the current Atom implementation, this is
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Listing 3: xmldisplay.xsl
1 <xsl :stylesheet xmlns :x s l=” h t t p : //www. w3 . org /1999/XSL/Transform ” version=”

1 .0 ”>
2
3 . . .
4
5 < !−− i dx=0 and p a r e n t i d x=0 i n d i c a t e roo t node −−>
6 <xsl:apply−templates s e l e c t=” ∗ [ idx = ’0 ’ and parent idx = ’0 ’ ] ” />
7
8 . . .
9

10 < !−− app ly temp la te to a l l c h i l d nodes o f curren t node −−>
11 <xsl:apply−templates s e l e c t=” . / . . / ∗ [ pa rent idx=current ( ) / idx and idx > 0 ] ”

/>
12 . . .
13
14 <xsl:template match=”Cut/name”>
15 <xsl:param name=”show”/>
16 < !−− f o r every parent up to the roo t node−−>
17 <x s l : i f t e s t=” . . / idx &gt ; 0”>
18 <xsl:apply−templates s e l e c t=” . / . . / . . / Cut [ idx=current ( ) / . . / parent idx ] /

name” >
19 <xsl:with−param name=”show”>0</xsl:with−param>
20 </xsl:apply−templates>
21 < !−− wr i t e . . . . −−>
22 <xsl :text> . . . . </ xsl :text>
23 </ x s l : i f>
24 < !−− only wr i t e down the name o f the c u r r e n t l y s e l e c t e d node −−>
25 <x s l : i f t e s t=”$show &gt ; 0”>
26 <xsl:value−of s e l e c t=” . ” />
27 </ x s l : i f>
28 </xsl:template>
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Listing 4: Python
1 from atom import I S t a t i s t i c s P l u g i n
2
3 class S igna lP lug in ( I S t a t i s t i c s P l u g i n ) :
4 def d o S t a t i s t i c s ( s e l f , data , w r i t e r ) :
5 for k , v in data . getAnalys isMetadata ( ) . i t e r i t e m s ( ) :
6
7 w r i t e r . s e tS i gna lEvent s ( ) ;

done by the Atom::WriterHelper singleton.

3 Oulook and Conclusion

3.1 Outlook

Although Atom in principle is fully operable, there are still may things that should be
done before releasing a version to the public.

Atom needs the possibility to store and provide access to experimental data like the
background and signal events. This is very crucial in order to allow for statistical anal-
yses.

Atom still needs a command line. By construction analogous to Rivet one might get
around compiling Rivet before compiling Atom and thus might reduce the dependencies
on third party programs such as SWIG. The commandline is further needed to allow
the user to load plugins for writing data or doing statistics. The selection of data to be
stored works via environment variables and also should be moved into a command line
tool.

Simultaneously, one might think about getting away from the histogram handling of
Rivet and implement a histogram output (self developed or third party library) analoguos
to Atom::EfficiencyHelper or Atom::CutHelper. Besides the fact that AIDA will be
removed from Rivet anyway, histogram handling done by Atom increases flexibility and
decreases the dependence on Rivet.

Another improvement would be to refactor the output plugin system according to the
statistics plugin system. The use of interfaces makes the code more readable and relaxes
dependencies between the writer part of Atom and the actual handling of the analyses.

Furthermore ar eader plugin system analogous to the writer plugin system which provides
methods to load data is useful. This serves two purposes. First, it allows to convert
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between different output formats (which indeed is helpful as the dependence of Atom
on ROOT is only optional) and second, it allows to do statistics independent from the
analyses.

To be able to maintain and use Atom, the code should be moved from its current version
control system SVN to another one which allows for fast and more user-friendly2 version
control system. A bugtracker needs to be set up to give the possibility to report and
track bugs, esp. if bugs might affect analysis which have been done before. Last but not
least, there is lots of room for improvements when it comes to the documentation.

3.2 Conclusions

Although Atom still is in development, it has been shown that it indeed can be used to
set limits on physics models[1]. In the course of this project Atom has been extended,
primarily in terms of usability. Nonetheless, further efforts are neccessary before Atom
can be made available to the public.
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