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Abstract

We present the inclusion of a CMS SUSY search analysis for final states containing
a single lepton, missing energy and b-jets in the Monte-Carlo validation tool Rivet.
We discuss the philosophy and implementation of the Rivet package and the new
analysis code written by the author. We then compare the results found using this
code with results from previous CMS studies and discuss the level of agreement.
Possible directions of future work with Rivet are also discussed.
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1. Introduction

The wealth of experimental data coming from the LHC means that it is becoming
increasingly important to have robust and accurate methods for simulating high energy
collisions. In order for event generators to be accepted as valid tools in this endeavour it is
imperative to have their methods tuned and updated in response to previously gathered
data and this is precisely what the Rivet [1] package has been designed to facilitate. Rivet
is an extensive toolkit written in C++ which allows us to implement direct comparisons
between simulated Monte-Carlo generator data and experimental data (and indeed it
also allows comparison between Monte-Carlo generators themselves). It does this in
a generator independent way by only requiring that the format for event files it reads
be HepMC [3] (which most commonly used event generators can accomodate), all of
its subsequent features being completely independent of where the data came from.
Therefore Rivet is a powerful addition to the growing list of sophisticated software at
use in the High Energy Physics community.

In this paper we discuss the implementation of a new CMS SUSY analysis [2] in Rivet and
compare the results found with studies done by the DESY CMS SUSY group. We show
through a detailed implementation that we can obtain good agreement with previous
generation runs performed by the CMS group here at DESY for use in [2].

2. Supersymmetry

The recent success of the LHC collaborations in discovering a new scalar boson reso-
nance at &~ 125 GeV has understandably dominated the current agenda in the particle
physics community. Although this discovery is a major achievement for the LHC and
indeed provides the required justification for construction of the largest and most com-
plex machine ever built, it must be remembered that we expect the LHC not only to
help elucidate the mechanism of Electroweak Symmetry Breaking, but also to provide
insights on some of the conceptual problems of the Standard Model. We are searching
for glimpses to the answers of questions such as: Why is the magnitude of the gauge
Hierarchy between the ElectroWeak and Planck scales so huge? Do the couplings of the
forces described by the Standard Model unite at some as of yet unknown energy scale?
What is the particle content of Dark Matter? These questions are ones which theorists
have attempted to answer by extending the Standard Model in various ways and of all
of these extensions, none is more studied than Supersymmetry.

Supersymmetry is an attempt to reconcile the Hierarchy problem and the problem of
unstable fluctuations in the calculation of the Higgs mass (due to top loops) in the
Standard Model by hypothesising a mapping between bosonic and fermionic degrees of
freedom. This equates to us assuming that for every fermionic particle (an electron
for example) there is a corresponding boson (a selectron in this case) with all gauge
quantum numbers identical except the magnitude of the intrinsic spin, which will differ



by a half. This very simple idea (compelling from an aesthetic point of view) provides
a solution to almost all of the problems mentioned above. In does this in the following
way:

1. The introduction of particles with identical quantum numbers but spins differing by
a half allows dramatic cancellations to occur in the calculation of the Higgs boson
mass in the Standard Model (due to the introduction of loops with a relative minus

sign).
2. The introduction of these new degrees of freedom alters the running of the different

couplings in the Standard Model, allowing unification at some high energy scale
(the GUT scale).

3. Supersymmetric theories provide particle spectra in which the Lightest Super-
symmetric Particle (LSP) is only weakly interacting and yet massive and stable,
providing a Dark Matter candidate.

So these are the perks of introducing Supersymmetry into the Standard Model, but what
are the downsides? Well for one there has been no observation of any Supersymmetric
particles to date, so Supersymmetry must be a broken symmetry. Secondly, by introduc-
ing these new degrees of freedom we generate many new parameters in our theory (on the
order of ~ 100) so SUSY parameter space is very complicated. These two points taken
together means that SUSY phenomenology should be very rich, but that the challenge
of finding it is a very daunting one.



2.1. The Experimental Status of Supersymmetry
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Figure 1: Observed limits from several 2011 CMS SUSY searches plotted in the CMSSM
(mo, m12) plane.
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Figure 2: Summary of the five dedicated ATLAS searches for top squark (stop) pair
production based on 4.7 fb~! of pp collision data taken at /s = 7 TeV.

These plots show some recent exclusion limits placed on the Constrained Minimal Su-
persymmetric Standard Model by the CMS and ATLAS collaborations.

3. CMS

Figure 3: Piecewise view of the CMS detector.

The Compact Muon Solenoid is one of the two main multi-purpose detectors at the LHC
and as such plays a hugely important role in the LHC physics programme. The centre
of the detector contains a 13-m-long, 4 T superconducting solenoid with an inner diam-
eter of 5.9m. The decision to include such a high magnetic field in the CMS detector
was largely due to the desire for very good momentum resolution of charged particles
(especially muons) and such a high field has meant that muon-chamber resolution and
alignment requirements can be relatively relaxed (see pg. 8 of [5]). The detector con-
sists of silicon tracking, electromagnetic and hadronic calorimeters (ECAL and HCAL



respectively) and the aforementioned muon-chambers. The detector is fully hermitic
with a pseudorapidity coverage of |n| < 5.

4. Implementing an Analysis in Rivet

The main philosophy of Rivet is to act as an independent validation tool for Monte-Carlo
event generators. In performing this task however it also acts as a very good platform
for storage of different experimental analyses which have been performed on modern
particle physics data. For a brief tutorial on how to implement an analysis in Rivet, the
reader is referred to the appendices attached to this report.

5. Event Generation

In generating event samples for our current study we utilized the event generator Pythia
6.4 [4]. We generated 100,000 ¢t events with up to one extra parton in the final state.

5.1. Pythia

Pythia [4] is a multi-purpose high energy physics Monte-Carlo event generator. Like all
Monte-Carlo event generators it combines analytical results and phenomenological mod-
els with probablistic methods in order to provide a good model of particle collisions at
high energy. We will not go into detail about the methods employed in event generators
nor much of the detailed physics of Pythia, which is beyond the scope of this report.

6. Results

In this section we shall compare the analyses of the Rivet code implemented by the author
and that performed by the SUSY group here at DESY over the past year. We shall
show plots of Hy, Yy er, Jet Er, Isolated Jet Multiplicity, Isolated b-Jet Multiplicity
and finally Yy pr vs. Hp. Red histograms are results found by the SUSY group and
blue points represent data found using the Rivet code. The histograms have been scaled
in order to have the same area.

6.1. Hy
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6.3. Jet ET
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6.4. Isolated Jet Multiplicity and Isolated b-Jet Multiplicity
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In general these results show good agreement between the Rivet code and the dedicated
physics analysis codes implemented by the CMS SUSY group here at DESY over the
past year. We do however see some slight differences, for example in Jet Ep, which we
believe could be down to the use of a different matrix element generator (the Author has
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used Pythia straight out of the box whereas the SUSY group used Madgraph samples
passed to Pythia for fragmentation). Essentially though, a rather simple Rivet code
seems to have captured the main points of a dedicated physics analysis.

7. Conclusions

In this paper we have discussed the implementation of a CMS SUSY analysis in the
software package Rivet. We have shown results found with the code and compared these
to results used in the analysis in [2]. In general we see quite good agreement between
these results, but the author believes that further improvement could be obtained by
using the same matrix element and parton level information generator (i.e Madgraph

[7])-
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A. Appendices

B. The basic structure of a Rivet code

The basic features of a Rivet analysis code are very simple. On the next page show the
main structure of a Rivet code with a large amount of detail omitted:
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B.1. Main Structure

#include “°...7"7
#include “°...7"7

namespace Rivet {
class Name_Of_Analysis : public Analysis {
public:
RA4B_Newest_Analysis() : Analysis(‘‘RA4B_Newest_Analysis’’) {}
void init () {...}
void analyze() {...}
void finalize () {...}
private:

}s
DECLARE RIVET PLUGIN ( Name_Of_Analysis );

}

Here the ellipses denote omitted detail. What is shown above is the backbone of a Rivet
analysis, so let’s start building on top of this. We should note here that the correct
header files to include at the top of the file can be found from the Rivet documentation
online (http://rivet.hepforge.org/trac/wiki). We will however briefly discuss some of the
main header files and classes in this mini-report.

In the next section we show an example where we have written a simple Rivet code

which places a veto on events which have Fr < 60 GeV, and outputs the value of Er to
a histogram called MET.
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B.2. Toy Analysis

#include ‘‘Rivet/Analysis.hh’’ //Required in all analyses
#include ‘‘Rivet/RivetAIDA . hh’’ //for Histograms

#include ‘‘Rivet/Projections/FinalState.hh’’ //for FinalState
#include ‘‘Rivet/Projections/MissingMomentum.hh’’ //for
VisibleFinalState

namespace Rivet {
class TOY_ANALYSIS : public Analysis {
public:

TOY ANALYSIS() : Analysis (‘ ‘TOYANALYSIS’’) {}

void init () {
const FinalState fs(—5, 5, 0xGeV);
addProjection(fs, <‘FS’7);
// for pTmiss
addProjection ( VisibleFinalState (—4.9,4.9)," "vfs ’7);
_hist MET = bookHistogram1D ( ‘ ‘METHistol0GeVBins’’, 20, 0, 200);

¥

void analyze (const Event& event) {
const double weight = event.weight ();
ParticleVector vfs_particles =
applyProjection<VisibleFinalState >(event, ‘‘vfs’’).particles ();
FourMomentum pTmiss;
foreach ( const Particle & p, vfs_particles ) {

pTmiss —= p.momentum () ;
¥
double eTmiss = pTmiss.pT();
if (eTmiss/GeV<60) {
vetoEvent ;

¥

_hist MET—fill (fabs(eTmiss/GeV), weight);
}
void finalize () {
normalize (_hist MET , 1/sumOfWeights ());

}
private:
AIDA :: THistogram1Dx _hist MET;
};
DECLARE RIVET PLUGIN (TOY_ANALYSIS ) ;
}
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C. Understanding Toy Analysis - Initialize

As the included header files and general set-up of the Rivet code are relatively self-
explanatory and can also be understood very simply from reading example codes, we
move on to discuss the main functions in the Rivet code. The first of these is Initialize
or void init() as it is written in the code. The init() function is where we tell Rivet
which projections (i.e functions, calculators ..) we would like to access in our analysis.
For instance, in the case of TOY ANALYSIS we wish to loop over all visible final state
particles and take the negative sum of their momenta. Hence, we must first add a
projection for accessing the final state, which is done in the following lines:

const FinalState fs(—5, 5, 0xGeV);
addProjection (fs, ‘‘FS’7);

The syntax here means that we will only consider particles in a pseudorapidity range
—5 < n < 5 and that we would like to place a basic pr cut on final state objects of 0
GeV (not very necessary, but this is only an example!).

Now, since we wish to act on wisible final state particles (i.e those seen by a detec-
tor - so no neutrinos!) then we must build further upon this projection, and this is what
we do in the next line:

addProjection ( VisibleFinalState (—4.9,4.9),’ "vis ’7);

i.e we have told Rivet that we wish to define a projection which will allow us to access
the visible final state of each event. The VisibleFinalState(x,y) command is a set com-
mand in Rivet and has the syntax VisibleFinalState(Mmin, NMmaz). Remember that we

have already placed a minimum py cut on all particles in the event so we do not need
to do so here.

The final command in the init() function in TOY ANALYSIS is simply an instance
of us booking a histogram which we would like to fill during the analysis:

_hist MET = bookHistogram1D ( ‘ ‘METHistol0GeVBins’’, 20, 0, 200);

In this case the syntax reads

histogram _name = bookHistogram1D ( ¢ ‘Name_of_histogram_in ROOT ’’ | #bins ,
X_min, x_max)}

D. Understanding Toy Analysis - Analyze

When we define the analyze function in a Rivet code, you must supply the following
parameters to the arguments:

void analyze(const Event& Something_to_call_your_event) {...}
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Where the parameter Something_to_call_your_event is chosen by the user (but in the
majority of Rivet codes this is chosen to be event). Whenever you wish to access the
event information you will do so via this parameter. An example of this is found in the
next line of the code when we wish to extract the event weight and thus write:

const double weight = event.weight ();

Which we can see makes use of Rivet’s weight() function. Now, in order for us to use
the projections we set up in initialize, we must ’apply’ the projection. This essentially
amounts to us defining a name for the projection which can be passed to foreach(...)’
loops in the Rivet code (these are the constructs through which we can loop over elements
of an event - to be discussed later). We apply the projection through the following
command:

ParticleVector vfs_particles =
applyProjection<VisibleFinalState >(event, ‘‘vfs’’).particles ();

Here it is important to note the first part of the command, ParticleVector. This is
specific to the type of projection you are applying, so the best place to find out which
corresponds to which projection is to check the online Rivet documentation and class lists
(https:/ /rivet.hepforge.org/code/dev/annotated.html). We have then defined a name
for the projection vfs_particles which again we will use later for accessing the projection
information. The following part of the command

applyProjection<VisibleFinalState >(event, ‘‘vfs’’).particles ();

is just standard Rivet syntax, where we must include Rivet’s standard name for the
projection - in this case VisibleFinalState. For another example, if we were applying
Rivet’s projection for charged final states we would have a command of the form:

const ChargedFinalState& charged =
applyProjection<ChargedFinalState >(event , ‘‘CFS’’);

Similar commands apply to the projection for jets and the other projections available in
Rivet. The letters in quotation marks “vfs” must match up with the name you gave to
the projection in the void init() function.

Now onto some physics. The next few lines of the code are almost self explanatory
but we will comment here on a few important details:

FourMomentum pTmiss;
foreach ( const Particle & p, vfs_particles ) {
pTmiss —= p.momentum ();
}
double eTmiss = pTmiss.pT();
if (eTmiss/GeV<60) {
vetoEvent ;

}
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Here we can see that it is possible to define a vector pTmiss which we then fill with the
negative sum of the momenta of all the visible final state particles. The foreach(...) loop
is the tool we use in Rivet in order to scan over all the particles which we wish to study.
Since we are using the Particle class defined in Rivet we must supply this as an argument
to the foreach loop and give a name by which we can access the particle information,
here given by p. This will then mean we can easily grab whatever information about
the particle we would like later in the loop, for example:

p.momentum () .pT ();
p.momentum (). eta ();
p.momentum (). Et ();

will find the particle’s transverse momentum, pseudorapidity and transverse energy re-
spectively. These and many more functions can of course be found in the online Rivet
documentation. As you can see from the piece of code above, we have used this in TOY
ANALYSIS in order to calculate the missing transverse energy in the event. The last
thing to note about this section is that when Rivet gets information such as pr, it does
so with the units attached. This is why we have to divide by GeV when we implement
our Ep cut in the next few lines:

if (eTmiss/GeV<60) {
vetoEvent ;

}

We should also note here that the vetoFvent command can be used at any point in the
code, and very conveniently discards the current event and causes the analyze() function
to proceed to the next event.

The final part of the analyze function in TOY ANALYSIS is simply the filling of the
histogram we defined in void init():

_hist MET—>fill (fabs (eTmiss/GeV), weight );

The syntax again is very simple - we give the name of the histogram, supply the name
of the quantity we wish to fill it with and then also include the event weight, which
Rivet gets from your MC generator. If you wished to fill this histogram without using
the event weights then you would instead simply write:

_hist MET—fill (fabs (eTmiss/GeV));

E. Understanding Toy Analysis - Finalize and
Completing the Code

The void finalize() function is where we normalize any histograms we have filled earlier
in the Rivet code. The command for normalizing a histogram can take two forms, the
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first we have shown in the TOY ANALYSIS code and is written like the following:
normalize (_hist MET , 1/sumOfWeights ());

The syntax here being

normalize (Name_of_histogram , area/sumOfWeights());

where area is the numerical value of the area you wish your histogram to be normalized
to and sumOfWeights() is the sum of all your event weights. The sumOfWeights() vari-
able is predefined in Rivet so there is no need to calculate it.

After the void finalize() function there is a small section where we tell AIDA (the his-
togramming program) the name of all the histograms defined in our code. This section
for TOY ANALYSIS is shown below:

private:
AIDA :: THistogram1Dx _hist MET;
\end{lstlsiting}
If we have more than one histogram then we simply list all of the
histograms we have defined in this section one after another, for
example:
\begin{lstlisting}
private:
AIDA :: THistogram1Dx _hist MET;
AIDA :: THistogram1D* _hist_pT;
AIDA :: THistogram1Dx _hist_eta;

if we had two more histograms called _hist_pT and _hist_eta respectively.

The last thing you must do in any Rivet code is declare the name of your anaylsis
for Rivet’s plugin system. The name you specify must match up to the name of the
file which the code is in and also the name you have given to your analysis before your
initialize function (see the TOY ANALYSIS code above).

DECLARE RIVET PLUGIN (TOY_ANALYSIS ) ;

This then means that your code can be compiled with Rivet.

F. Conclusions

In this mini-report we have studied a simple example Rivet analysis code written by the
author. It is hoped that by discussing some of the details of this code that readers will feel
confident enough to begin writing their own analysis codes in Rivet. This report was very
brief however, and when learning how to code there is no substitute for looking at exam-
ples. The codes for the analyses listed in the Rivet manual (http://rivet.hepforge.org/)

18



provide a great source of information especially pertaining to implementing more com-
plex physics studies into Rivet.
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