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Abstract

The e channel at the SUSY benchmark point SPS1a’ from e+e− → ẽ+ẽ− has
been studied using the full ILD detector simulation foreseen for the Interna-
tional Linear Collider. All accessible SUSY channels and Standard Model back-
grounds were generated at a centre-of-mass energy ECMS = 500 GeV with an
integrated luminosity of 500 fb−1 delivered to the experiment and a beam polari-
sation Pbeam(e+, e−) = (+0.8,−0.22). The masses of the ẽR and χ̃0

1 were measured
to be 123.9± 0.9 GeV and 98.8± 0.7 GeV respectively, with a reduced-χ2 of 1.1,
while the true values in SPS1a’ are 125.3 GeV and 97.7 GeV.
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1 Introduction

This project builds on the ILD analysis of the τ -channel in SPS1a’ [1], using a full
detector simulation of SUSY processes (signal and background), all Standard Model
(SM) backgrounds and ILC machine background. For a detailed description of the ILD
detector, see [2]. The process e+e− → ẽ+ẽ− → e+χ̃0

1e
−χ̃0

1 (see Fig. 1) has been studied
with the aim to extract the masses of the ẽR and χ̃0

1 after a suitable signal selection and
background reduction has been applied to the sample.

Figure 1: Feynman diagram of e+e− → ẽ+ẽ− → e+χ̃0
1e
−χ̃0

1.

The SUSY benchmark point SPS1a’ is a a pure mSUGRA/CMSSM model, charac-
terised by the unification scale parameters: M1/2 = 250 GeV, M0 = 70 GeV, A0 =
−300 GeV, tan β = 10, and sign(µ) = +1. It is compatible with the observations of
WMAP, predicting SUSY particles just outside what is excluded by LEP and low-energy
observations. The neutralino χ̃0

1 is the lightest SUSY particle (LSP) and in this scenario,
would be a Dark Matter candidate. At ECMS = 500 GeV, all sleptons would be pro-
duced, lighter bosinos up to χ̃0

3 and no squarks. There are a total of 13 distinct channels
that would be observable below ECMS = 500 GeV [3] and in this paper, the ẽ channel
will be investigated.

In SPS1a’, the masses of the ẽR and χ̃0
1 are 125.3 GeV and 97.7 GeV respectively, so

that ∆(M) = 27.6 GeV. The typical signature of e+e− → ẽ+ẽ− events is two e leptons
with a minimal energy of Ee,min = 6.6 GeV and maximal energy of Ee,max = 91.4 GeV,
plus a significant amount of missing momentum due to the escaping neutralinos. The
masses of the ẽR and χ̃0

1 can be obtained either from the decay kinematics or from the
cross section. As Ee,min is so low, the background from γγ → ee events is overwhelming
and measuring the lower endpoint becomes problematic.

The outline of the paper is as follows: In Sec. 2, the kinematics of the two-body decay
are analysed. In Sec. 3.1, the method used to extract the ẽ signal is outlined by first
identifying the significant differences between the signal and various backgrounds and
then presenting the consequent signal selection. In Sec. 3.2, a description of the method
used to determine the endpoints of the e spectrum and the main results of the project
are given. The paper is concluded in Sec. 4.

1



2 Spectrum Analysis

We are interested in the decay ẽ → e + χ̃0
1. The Feynman diagram for the process is

shown in Fig. 1. In order to extract the masses of the ẽR and χ̃0
1, we need to relate MẽR

and Mχ̃0
1

to the endpoints of the e energy spectrum, Ee,min and Ee,max.

In the rest frame of the ẽ (S′), assuming the e travels isotropically in 3-dim. space
and neglecting the e mass,

P µ′

ẽ =

(
Mẽ , 0 , 0 , 0

)
, (1)

P µ′

e =

(
E ′e , E

′
esin(θ′)cos(φ′) , E ′esin(θ′)sin(φ′) , E ′ecos(θ′)

)
. (2)

In the centre of mass frame (S), with ECM as the total energy of the system,

P µ

ẽ =

(
ECM

2
, 0 , 0 ,

√(
ECM

2

)2

−Mẽ
2

)
, (3)

P µ
e =

(
Ee , Eesin(θ)cos(φ) , Eesin(θ)sin(φ) , Eecos(θ)

)
. (4)

The Lorentz transformation matrix for a boost in the z-direction is

Λµ
ν =


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ

 . (5)

Assuming the ẽ is moving in the z-direction in S, we can relate Eqs. (1) and (3) by the
boost matrix in Eq. (5) to obtain

γ =
ECM

2Mẽ

, −γβ =

√(
ECM

2Mẽ

)2

− 1 . (6)

For e, relating Eqs. (2) and (4),

Ee = γE ′e(1 + βcos(θ′)) . (7)

From kinematic considerations, we also know that

Ee
′
=
Mẽ

2 −Mχ̃0
1

2

2Mẽ

. (8)
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Substituting Eqs. (6) and (8) into Eq. (7),

Ee(θ
′) =

ECM

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [
1 +

√
1−

(
2Mẽ

ECM

)2

cos(θ′)

]
. (9)

Similarly, we find that

pe,z(θ
′) =

ECM

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [
cos(θ′) +

√
1−

(
2Mẽ

ECM

)2 ]
. (10)

The maximal and minimal energies will be for θ′ = 0 and θ′ = π respectively i.e.

Ee, min
(max)

=
ECM

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [
1
−

(+)

√
1−

(
2Mẽ

ECM

)2 ]
. (11)

Assuming a uniform distribution, the width (∆Ee) and mean (Ēe) of the e energy spec-
trum are then

∆Ee =
ECM

2

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [√
1−

(
2Mẽ

ECM

)2 ]
, Ēe =

ECM

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ]
. (12)

We can invert Eq. (12) to extract the masses of the ẽ and χ̃0
1,

Mẽ =
ECM

2

√
1−

(
∆Ee
2Ēe

)2

, Mχ̃0
1

= Mẽ

√
1− 4Ēe

ECM

. (13)

Assuming the e is emitted isotropically in S′, we know from geometrical considerations
that θ′ has a sinusoidal distribution i.e.

θ′(x) = sin(x) , (14)

so we can combine Eq. (14) with Eq. (9) to determine the energy distribution of the e.
We have that

θ′(x) = sin(x) ≡ f(x) , Ee(θ
′) = Ēe + ∆Ee · cos(θ′) ≡ g(θ′) , (15)

By definition,
Fθ′(x) ≡ P (θ′ ≤ x) , (16)

and so

FE(x) ≡ P (E ≤ x) = P (g(θ′) ≤ x) = P (θ′ ≤ g−1(x)) = Fθ′(g
−1(x)) . (17)
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Since we know that

fθ′(x) =
d

dx
Fθ′(x) , (18)

and

g−1(x) = arccos

[
(x− Ēe)

∆Ee

]
, (19)

we can write

FE(x) =

[
(x− Ēe)

∆Ee

]
. (20)

Differentiating with respect to x,

f(Ee) =
1

∆Ee
. (21)

Eq. (21) must integrate to unity so we get a box-distribution centred around Ēe,

f(Ee) =

{
1

∆Ee
(Ēe − ∆Ee

2
≤ Ee ≤ Ēe + ∆Ee

2
) ,

0 else .
(22)

However, the actual e energy spectrum is distorted from a simple box distribution (see
Figs. 6, 7). There are two reasons for this:

1. Although the total energy in the centre of mass frame, ECM, is fixed, the individual
beam energies will vary around ECM/2. Therefore, the beam momenta will differ
and the lab frame (S*) will not coincide with the CM frame (S).

2. Distortion from the detector. The signal is measured with greater precision at low
energies and there is a bias towards a smaller mean from the calorimeter. However,
this effect will be negligible compared to (1).

To examine the effect of (1) on the energy spectrum, we can apply a second boost matrix
such that the combined 4-momentum of the two beams satisfies

Elab

0
0
z

 =


γ 0 0 −γβ
0 1 0 0
0 0 1 0
−γβ 0 0 γ



ECM

0
0
0

 , (23)

where z > 0 is the additional longitudinal momentum due to the non-coinciding inertial
frames S and S*. We assume that the total energy in S*, Elab, is known.

From Eq. (23), we see that

γ =
Elab

ECM

, −γβ =
z

ECM

, (24)
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and due to Lorentz invariance,

ECM =
√
E2

lab − z2 = Elab

√
1−

(
z

Elab

)2

. (25)

Applying the boost matrix in Eq. (23) to the 4-momentum of e in S,

E∗e = γEe − γβpe,z . (26)

Substituting the expressions for Ee (Eq. (9)), pe,z (Eq. (10)) and γ and −γβ (Eq. (24))
into Eq. (26),

E∗e (θ
′, z) =

Elab

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [
1−

(
z

Elab

)2 ]− 1
2

×
{[

1 +

√
1−

(
2Mẽ

Elab

)2

cos(θ′)

]
+

z

Elab

[
cos(θ′) +

√
1−

(
2Mẽ

Elab

)2 ]}
(27)

Setting z = 0 so that Elab = ECM, we recover the expression for Ee in S (Eq. (9)). We
can also determine the maximal and minimal energies by setting θ′ = 0 and θ′ = π
respectively,

E∗
e, min

(max)

(z) =
Elab

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ] [
1
−

(+)

√
1−

(
2Mẽ

Elab

)2 ]

×
[
1−

(
z

Elab

)2 ]− 1
2
[
1
−

(+)

z

Elab

]
= Ee, min

(max)
×
[
1−

(
z

Elab

)2 ]− 1
2
[
1
−

(+)

z

Elab

]
. (28)

A greater value of z results in a wider distribution. However, since z will usually be
much smaller than Elab, we would not expect a significant distortion to the spectrum
due to the variation of the momenta of the two beams.

Assuming the additional momentum z is constant, we can write that

E∗e (θ
′) = A(Ēe + ∆Ee · cos(θ′)) +B(Ēecos(θ′) + ∆Ee) ≡ g(θ′) , (29)

where A and B are the constants

A =

[
1−

(
z

Elab

)2 ]− 1
2

, B =
z

Elab

[
1−

(
z

Elab

)2 ]− 1
2

. (30)
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The inverse

g−1(x) = arccos

[
x− AĒe −B ·∆Ee
A ·∆Ee −BĒe

]
. (31)

Following the same procedure as before, we find that

f(E∗e ) =
1

A ·∆Ee −BĒe
. (32)

Thus for constant z, the e energy distribution is still uniform. Note that if z = 0, A = 1
and B = 0 so we recover the box distribution for S* = S (Eq. (21)).

For small z, we can make the first order Taylor approximation, [1 + (z/Elab)2]
−1/2 ' 1.

Eq. (27) simplifies to

E∗e (θ
′, z) ' Ee(θ) +

z

4

[
1−

(
Mχ̃0

1

Mẽ

)2 ][
cos(θ′) +

√
1−

(
2Mẽ

Elab

)2 ]
, (33)

and again taking only first order terms,

[E∗e (θ
′, z)]

2 ' [Ee(θ)]
2 +

{
z · Elab

8

[
1−

(
Mχ̃0

1

Mẽ

)2 ]2

×
[
cos(θ′) +

√
1−

(
2Mẽ

Elab

)2 ][
1 +

√
1−

(
2Mẽ

Elab

)2

cos(θ′)

]}
. (34)

Now we assume that z takes values from 0 to zmax. In S*, we require that the total
energy of the two beams is Elab and the difference is z (we assume that Elab is fixed).
So, neglecting the beam spectra, the energies of the two beams would be

E∗e,1 =
1

2
(Elab − z) , E∗e,2 =

1

2
(Elab + z) . (35)

To a reasonable approximation, the beam spectra will be Gaussian, with mean values
given by Eq. (35). To see the effect of the beam spectra on the e energy distribution,
we can perform the integration∫ zmax

0

A exp

[
−

(Ee − 1
2
(Elab − z))2

c2
1

]
+B exp

[
−

(Ee − 1
2
(Elab + z))2

c2
2

]
dz , (36)

where A, B, c1 and c2 are constants that depend on the shape of the Gaussian distribu-
tions. Performing the integration, we find

f(Ee) = a1 erf

[
Ee + b1

c1

]
− a2 erf

[
Ee − b2

c2

]
+ a3 , (37)

where a1, a2, a3, b1 and b2 are constants and erf(x) is the (Gauss) error function.
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Fig. 2 shows the effect of a Gaussian beam spectrum on the e energy distribution. If
the two beam spectra are different, it is reasonable to suggest that this a cause of the
asymmetry in Figs. 6 and 7, and the deviation from a simple box distribution. However,
the beam spectrum is not simply a Gaussian but has a tail to lower energies. Further
work will be needed to see the effect that this has on the energy spectrum.

Figure 2: The e energy distribution assuming a Gaussian beam spectrum when a) the
two Gaussians are identical, b) the two Gaussians are different (c1 6= c2).

Additionally, we have assumed that the total energy, Elab, is constant but in reality, this
will also vary. Using Eq. (28), we can plot the dependence of the endpoints on Elab (see
Fig. 3). For energies close to Elab, the upper endpoint has an almost linear dependence,
while the lower endpoint varies only slightly. Therefore, this also contributes to the
distinctive shape of the energy spectrum. Further investigation will be needed to show
the relative contribution to the distortion from other sources such as beamstrahlung.

Figure 3: The upper endpoint (solid line) and lower endpoint (dashed line) as a function
of Elab, where Elab takes values from the threshold energy Elab = 2MẽR to the
maximum energy of 500 GeV.
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3 Mass Measurements

3.1 Signal Selection

Before we could accurately determine the masses of the ẽR and χ̃0
1, it was necessary

to reduce beam-beam and γγ backgrounds, find e candidates and select selectron-like
topology. The signal selection was developed from that of the stau analysis [1]. Note
that for this study, ECMS = 500 GeV with an integrated luminosity of 500 fb−1 and a
polarisation Pbeam(e+, e−) = (+0.8,−0.22). The key characteristics of ẽ production and
decay, which distinguish it from the background are:

• only two e leptons in the final state

• large missing energy and momentum

• high acollinearity, which little correlation to the energy of the e decay products

• central production

• no forward-background asymmetry.

Before selection, the signal was dominated by the γγ background and since we used
the entire spectrum for mass measurements, the SUSY background also needed to be
addressed. At this stage, the number of events were: 3.32× 105 (signal), 1.64× 109 (SM
background) and 9.57× 104 (SUSY background).

Stage 1: Events compatible with the ẽ topology were selected requiring:

• exactly two jets

• less than 10 charged particle candidates

• vanishing total charge, with charge of each jet = ±1

• invariant jet masses Mjet < 2.5 GeV for both jets

• a total visible energy Evis < 170 GeV (looser than for the τ̃ analysis)

• a missing mass Mmiss > 250 GeV

• no particles with momentum above 180 GeV,

where Mmiss is the invariant mass of the invisible system, determined by the differ-
ence between the initial e+e− system and the visible system. It was suggested that the
cut on the visible energy be adjusted to Evis < 144 GeV, which increases the signal
to background ratio significantly; however, the effect on the shape of the spectrum was
too severe. After this initial selection, the number of events were: 2.88 × 105 (signal),
6.50× 108 (SM background) and 6.66× 104 (SUSY background).

8



Stage 2: The major characteristics of the γγ background are two highly energetic
electrons at low angles and a system of low energy and mass. We also have remnants
escaping the detector through the incoming or outgoing beampipe. To reduce the γγ
background, the following two cuts were applied:

• If φpt,miss < 30◦, then ρ⊥,miss > 8 GeV

• 2
√
ρ⊥ > (2.7 sin Φacop + 1.8) GeV,

where φpt,miss is the azimuthal angle of the missing momentum and Φacop is the an-
gle between the two jets projected to the plane perpendicular to the beam axis. The
variable ρ⊥ is the scalar sum of the transverse momenta of the jets with respect to the
thrust axis, in the projection perpendicular to the beam. For further details on these
cuts, see [1]. At this stage, the number of events were: 2.70 × 105 (signal), 8.85 × 105

(SM background) and 3.30× 104 (SUSY background).

Stage 3: To further reduce the background, the following cuts were made:

• 21 GeV < (Ejet1 + Ejet2) sin Φacol < 105 GeV (see Fig. 4)

• | cos θpt,miss| < 0.95 (see Fig. 5)

• Ehad,jet < 0.015 Ejet, Eelec,jet > 0.9Ejet,

where the final cut selects events with large electromagnetic and small hadronic con-
tributions. After this final selection, the number of events remaining were: 8.79 ×
104 (signal), 2.32 × 103 (SM background) and 1.53 × 103 (SUSY background), with

Signal/(Background)1/2 ' 1400 (see Table 1 for a summary).

Stage Signal SM background SUSY background

Before cuts 3.32× 105 1.64× 109 9.57× 104

1 2.88× 105 6.50× 108 6.66× 104

2 2.70× 105 8.85× 105 3.30× 104

3 8.79× 104 2.32× 103 1.53× 103

Table 1: The number of counts at each stage of the signal selection process.
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Figure 4: The distribution of the sum of the jet energies multiplied by the sine of the
acollinearity angle, showing the signal (black histogram), SM background (red)
and SUSY background (green). The cut, given by the blue lines, corresponds
to 21 GeV < (Ejet1 + Ejet2) sin Φacol < 105 GeV. The selected events are
enclosed by the lines.

Figure 5: The distribution of the absolute value of the cosine of the missing momen-
tum angle, showing the signal (black histogram), SM background (red) and
SUSY background (green). The cut, given by the blue line, corresponds to
| cos θpt,miss| < 0.95. The selected events lie to the left of the line.
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3.2 Results

Fig. 6 shows the electron energy spectrum at the generator level, before the addition
of the SM and SUSY backgrounds. Fig. 7 shows the spectrum after the signal selec-
tion discussed in Sec. 3.1 had been applied to the sample. The overall shape of the
spectrum is maintained, however the endpoints are distorted by both the cuts and
the beam spectrum. Note again that ECMS = 500 GeV,

∫
L dt = 500 fb−1 and

Pbeam(e+, e−) = (+0.8,−0.22).

For a uniform distribution, the standard deviation σ = width/
√

12. We can use the
width (∆Ee) and mean (Ēe) to determine the masses of the ẽR and χ̃0

1 from Eq. (13).
Doing so gives MẽR = 118.5± 0.5 GeV and Mχ̃0

1
= 95.2± 0.4 GeV (the actual values in

SPS1a’ are MẽR = 125.3 GeV and Mχ̃0
1

= 97.7 GeV). Considering only the signal, we
find improved estimates of MẽR = 119.9±0.5 GeV and Mχ̃0

1
= 96.3±0.4 GeV. However,

this analysis assumes that the distribution is uniform; the effect of the beam spectrum
is to skew the masses to lower values.

In order to overcome this, the sum of the two jet energies, Ejet1 +Ejet2, was considered
(see Fig. 8). Because we are essentially adding two box distributions, the overall shape
of the spectrum is triangular. A fit was added to the plot (see Fig. 9 for details) which
returns the masses directly, using the expressions in Eqs. (12) and (13). Two constraints
were applied to the fit: 1) The area contained by the triangle should equal the combined
area of the signal, SM background and SUSY background histograms, 2) the gradients
of the fit either side of the mean should be equal and opposite.

Applying the fit to the entire spectrum gives us rather high values: MẽR = 144.9 ±
0.5 GeV and Mχ̃0

1
= 115.1 ± 0.4 GeV. However, since we know that the endpoints are

greatly affected by the beam spectrum, a second fit was taken in the range 40 - 150
GeV (as shown in Fig. 8), ensuring that there was less bias in the reconstructed masses.
Doing so gives values of MẽR = 123.9± 0.9 GeV and Mχ̃0

1
= 98.8± 0.7 GeV, which differ

from the actual values in SPS1a’ by two standard deviations.

Lastly, with the masses from the triangle fit, we can calculate the endpoints of the
spectrum using Eq. (11). We find that Ee,min = 5.97 ± 0.07 GeV and Ee,max = 84.9 ±
0.9 GeV (the expected values in SPS1a’ are Ee,min = 6.60 GeV and Ee,max = 91.4 GeV).
It should be noted that for all the fits applied, the reduced-χ2 values were 1.1.

4 Summary & Conclusion

A study of the ẽ channel in SPS1a’ based on a full simulation of the ILD detector at
the ILC has been presented. All known SUSY, SM and machine related backgrounds
were included in the simulation, and we assumed that ECMS = 500 GeV, the integrated
luminosity = 500 fb−1 and the polarisation Pbeam(e+, e−) = (+0.8,−0.22).
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Figure 6: The electron jet energy spectrum of events at the generator level, before the
background is added. The mean energy is 49.0 GeV with a standard deviation
of 24.5 GeV.

Figure 7: The electron jet energy spectrum of events selected in the ẽ analysis, showing
the signal (black histogram), SM background (red) and SUSY background
(green). The mean energy is 47.2 GeV with a standard deviation of 23.6 GeV.
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Figure 8: The spectrum of the sum of jet energies, showing the signal (black histogram),
SM background (red) and SUSY background (green). A triangular fit to the
sample from 40 GeV to 150 GeV is indicated by the blue line.

Figure 9: The function used to fit a triangular shape to the combined jet energy spectrum
(Fig. 8) and directly return the masses of the ẽR and χ̃0

1.
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The results from the study of the electron energy spectra were:

Ee,min = 5.97± 0.07 GeV (6.60 GeV) Ee,max = 84.9± 0.9 GeV (91.4 GeV)

MẽR = 123.9± 0.9 GeV (125.3 GeV) Mχ̃0
1

= 98.8± 0.7 GeV (97.7 GeV)

where the actual values in SPS1a’ are shown in brackets. The reduced-χ2 value of the
fit was 1.1. The measured masses differ from the actual values in SPS1a’ by 2 standard
deviations. This is most likely due to the limitations of the signal selection, which un-
fortunately alter the shape of the distribution, and distortions from the beam spectrum.

A more thorough analysis of the cuts combined with larger Monte Carlo statistics
would inevitably improve these estimations. It should be noted that the uncertainties
given here are the optimum; however, achieving a value for Mχ̃0

1
with an uncertainty of

less than 1 % by looking at only one channel is encouraging and more work into this
area could prove to be very beneficial.

This paper has only considered ẽ-pair production; the other open channels were con-
sidered as SUSY background. However, the τ̃ channel has been studied in [1], where
it was found that Mχ̃0

1
could be determined with a relative error of 1.7 % (assuming a

known τ̃ mixing angle).

With regards to future analysis, rather than looking at the decay kinematics, the cross
section could be used to determine the masses. Additionally, many more channels could
be investigated to sharpen the estimations, with different values for ECMS and the po-
larisation (it has been suggested in [1], that for many processes, running the accelerator
at ECMS = 500 GeV may not be optimal).

Finally, we have shown the effect of a simple Gaussian beam spectrum on the e en-
ergy distribution, however, a deeper study into the exact shape of the beam spectrum
and an investigation into other sources of distortion such as beamstrahlung would be
advantageous.

I would like to thank my supervisors Dr. M. Berggren and Dr. J. List for their invalu-
able assistance during my time in the FLC group. The project has been a interesting and
useful experience, and I am extremely grateful for the opportunity to work at DESY.
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