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Abstract 

In this report we analyze data collected by Beam Position Monitors at FLASH from 

June 2010 to August 2011. We have selected measurements taken during the user runs when 

the photon intensity of the FEL is high. Then we have analyzed the transverse beam position 

along the undulators as a function of beam energy and measurement time. As a result of our 

analysis we can conclude that the best reference orbits (“golden” orbits) taken for high FEL 

photon intensities do not change significantly on the beam energy nor in time. Therefore, we 

have selected a central “golden” orbit and we show statistically that this orbit is a good 

reference orbit for FEL runs independent of beam energy, measurement time and bunch 

charge. 

Introduction 

FLASH was constructed to generate radiation in the vacuum ultraviolet and soft X-ray 

regions. To get high photon intensity (high-gain FEL) we need to have a good transverse 

overlap between the electron and the photon beam. So, we need to have a straight trajectory of 

electron bunches inside the undulators. For this reason the investigation of spatial 

characteristics of particle beam is very important.  

Experimental setup 

FLASH (Free Electron Laser in Hamburg) is a user facility for producing entirely 

coherent, bright and ultra-short pulses of extreme-ultraviolet radiation and soft X-rays in 

special undulators, as well as a test facility for the European XFEL (X-Ray Free Electron 

Laser) and the ILC (International Linear Collider).  

Figure 1. The principal scheme of Free Electron Laser FLASH 

 

1 



The electron bunches are produced in a laser-driven photoinjector (RF Gun in the Fig. 1) 

with tiny emittances mandatory for an efficient self-amplified spontaneous emission process. 

At intermediate energies of 130 and 470 MeV the electron bunches are longitudinally 

compressed by magnetic Bunch Compressors, thereby increasing the peak current mandatory 

for producing femtosecond X-ray in the undulators. Seven superconducting accelerator 

modules allow to accelerate thousands of bunches per second to up to 1.2 GeV, before passing 

about 30 m of undulators. A collimator removes the beam halo which might cause radiation 

damage in the permanent magnets of the undulators. The 30 m long undulators consists of 

permanent magnets. The electrons interact with the undulator field in such a way, that so 

called micro bunches are developed. These micro bunches radiate coherently and produce 

intense X-ray pulses. Finally, a dipole magnet deflects the electron beam safely into a dump, 

while the FEL radiation propagates to the experimental hall. 

 

Total length of FLASH accelerator is about 260 m. Undularors are settled at a distance of 

about 200 m to 230 m from RF gun.  

For measuring the spatial characteristics ((x,y,z) coordinate) of particle beam about 60 

Beam Position Monitors (BPMs) are installed along the accelerator.  

The data we analyze contains the position of particle beam, the value of electron bunch 

charge, beam energy, time of measurement and the intensity of photons emitted by electron 

bunches in the undulator magnetic field. 

Method to analyze the orbit data at FLASH 

Most FLASH accelerator experts say that an orbit of electron bunches when the FEL 

output is high with different parameters (beam energy, time measurement and so on) differs 

from each other. Another words, electron bunches with different energy or measurement time 

have different orbits and for each data selection (beam energy selection, time measurement 

selection) the so-called “golden” orbits are different. To see how much the golden orbit 

changes we have to choose data with one parameter selection and compare the average orbits. 

We first select orbits measured when photon intensity is more than 50 µJ. Fig.2 shows 

the beam energy and the time when measurements were taken.  
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  Figure 2. History of beam energy for 589 orbits taken with photon intensity > 50 µJ 

 

To see how much the golden orbit changes we choose data with beam energy range selection. 

Beam energy range selection 

Based on the history of beam energy shown in Fig.2 the following beam energy ranges 

have been selected: [485; 515] MeV, [685; 715] MeV, [935; 965] MeV. 

The average orbits and standard deviation with the beam energy ranges pointed above 

and the difference between average orbits with E = [685; 715] MeV and E = [935; 965] MeV, 

and with E = [685; 715] MeV and E = [485; 515] MeV are shown in Fig.3 and Fig.4 

accordingly. 

Figure 3. The average orbits of measurements with the beam energy range [485;515] MeV; 

[685;715] MeV; [935;965] MeV 
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Figure 4. The difference between average orbits with E = [685;715] MeV; E = [935;965] 

MeV and average orbit with E = [485;515] MeV 
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Fig.3;4 shows that taking into account standard deviation, the average orbits of 

electron bunches with different energy ranges are the same, therefore if the “golden” orbit 

exists it is unique one for  all electron bunches with different beam energy selections. 

Time period of measurements selection 

We select measurements taken within 3 time periods: 

1 time period: 25 September 2010 – 12 October 2010 

2 time period: 30 April 2011 – 26 May 2011 

3 time period: 24 June 2011 – 26 July 2011 

 

Figure 5. The average orbits of measurements with measurement time 25 Sep 2010 - 12 Oct 

2010; 30 Apr 2011 - 26 May 2011; 24 June 2011 - 26 July 2011 
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Figure 6. The difference between average orbits with measurement time:  

30 Apr 2011 - 26 May 2011 and 25 Sep 2010 - 12 Ort 2010;  

24 June 2011 - 26 July 2011 and 25 Sep 2010 - 12 Ort 2010 

 

 
 

Fig.5;6 shows that taking into account standard deviation, the average orbits of 

electron bunches with different measurement time are the same( with the exception of Y 

measurement by BPMs located between 220 and 222 m). 

The comparison of golden orbits taken with different energies (500, 700 and 950 

MeV) and the comparison of golden orbits taken at 3 different time periods don’t show 

significant differences.  
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Search of “golden” orbit independent of time, energy and charge 

First we select data with E = [678; 710] MeV,           and measurement time 

from 27
th

 June to 1
st
 August 2011 and then we calculate the average orbit for both planes X 

and Y. 

In order to estimate how close the orbits are to the average orbit for the selection 

defined above, we use the root mean square deviation (RMSD). 

      √
 

    
∑ (   ̂    )     

          (1) 

      √
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where j - index of BPM,      – number of BPMs installed at a distance of about      

[200; 230] m from RF gun,    ̂ and   ̂ is   and   coordinate of the average orbit of data 

selection pointed above,    and    is   and   coordinate of orbit of data we calculate RMSD. 

We restrict the calculation of RMSD to the BPMs located in the undulators (between z 

= 200 and z = 230 m). 

To get a candidate for golden orbit we start with the selection pointed above and 

choose only data with value of RMSD less than 0.25 mm. To do this we use the algorithm 

showed in Fig. 7. Number of points in this selection is equal to 65. 

Figure 7. Algorithm for value of              selection for data with E = [678; 710] 

MeV,           and measurement time from 27
th

 June to 1
st
 August 2011 
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Now we take all orbits in the database that have           (independent of beam 

energy, measurement time and bunch charge) and we calculate the RMSD with respect to the 

average orbit of 65 orbits selected above using the algorithm just mentioned. RMSD values 

thus obtained are shown in Fig. 8 as a function of bunch charge and in the Fig. 9 as a function 

of photon intensity. 

Figure 8. RMSD values of all data with          as a function of bunch charge 

 

 
In Fig. 8 we can observe that RMSD values are between 0 and 0.2 mm for bunch 

charges below         (with some few exceptions) as compared with RMSD values for 

bunch charge above         which are spread up to 0.8 mm (in X plane).  

This fact may indicate that a selection of orbits with low bunch charge less than 

        can give a good candidate for golden orbit independent of beam energy, 

measurement time and bunch charge. 

Based on Fig. 8 we select all data with photon intensity more than 50 µJ and bunch 

charge less than        . Then using the algorithm showed on Fig.7 we select only data with 

photon intensity more than 50 µJ, bunch charge less than         and value of RMSD less 

than 0.2 mm. This selection gives the second candidate for “golden” orbit. Number of points 

in the selection just mentioned is equal to 68.  
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Figure 9. RMSD values of all data with           as a function of photon intensity 

 

 
 

In Fig. 9 we observe that RMSD values have a larger spread if the values of the photon 

intensity are lower. Furthermore, most of orbits taken for            have RMSD values 

less than 0.3 mm in X plane and less than 0.2 mm in Y plane. 

This fact may indicate that a selection taken with            can give a good 

candidate for golden orbit independent of beam energy, measurement time and bunch charge. 

Based in Fig. 9 and applying the algorithm showed in Fig.7 we select data with high 

photon intensity more than 200 µJ and the value of RMSD less than 0.3 mm. This selection 

gives the third candidate for “golden” orbit. Number of points in the selection just mentioned 

is equal to 39. 

We have three criteria to get a candidate for golden orbit. In order to find which 

candidate represents a “golden” orbit independent of measurement time, beam energy and 

bunch charge we plot histogram of RMSD (only in X plane) for all three criteria. The 

histograms are shown in the Fig. 10; 11; 12.  
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Figure 10. Histogram of RMSD for all data in the database with respect to the average for 

first criteria data mentioned above (X plane) 

 
 

Figure 11. Histogram of RMSD for all data in the database with respect to the average for 

second criteria data mentioned above (X plane) 
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Figure 12. Histogram of RMSD for all data in the database with respect to the average for 

third criteria data mentioned above (X plane) 

 
 

In Fig. 10; 11; 12 we can observe that the distribution of RMSD values of each group 

of data with the same photon intensity range are different for three “golden” orbit candidates. 

In Fig. 10; 11; 12 the RMSD distribution is shifted to the right relative to Y axis. The 

explanation of these shifts is shown in Appendix 1.  

We calculate the average RMSD value for each photon intensity range with a step of  

     (we start from  ,      -    range and end at ,        -    range) for each of three 

“golden” orbit candidates. 

Figure 13. The average RMSD values for each photon intensity range starting from 

,      -    and ending at ,        -    range for each of three “golden” orbit candidates 
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Based on Fig. 13 we can see that both for X and Y planes the average RMSD values 

for all photon intensity ranges pointed above are lowest in case of third criteria (data with 

high photon intensity more than 200 µJ and the value of RMSD less than 0.3 mm).  In this 

case the average value of RDMS is about 0.195 mm for X plane and about 0.125 mm for Y 

plane for data with high photon intensity more than           .  

This fact may indicate that the third selection taken with            and the value of 

RMSD less than 0.3 mm seems to be the best candidate of the three considered for “golden” 

orbit independent of beam energy, measurement time and bunch charge.  

In order to show clearly that “golden” orbit is independent of time, beam energy and 

bunch charge we plot (only X plane) RMSD values with respect to the “golden” orbit data as 

a function of bunch charge for three ranges with high photon intensity (see Fig. 14); the 

history of RMSD values with respect to the “golden” orbit data for six photon intensity ranges 

(see Fig. 15); RMSD values with respect to the “golden” orbit data as a function of beam 

energy for six photon intensity ranges (see Fig. 16). 

Figure 14. RMSD values with respect to the “golden” orbit data as a function of bunch charge 

for three ranges with high photon intensity: [100; 150]   ; [150; 200]   ; [200; 500]              
(X plane) 
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Figure 15. The history of RMSD values with respect to the “golden” orbit data for six photon 

intensity ranges: [0; 15]   ; [15; 50]   ; [50; 100]   ; [100; 150]   ; [150; 200]   ; [200; 

500]    (X plane) 

 
 

Figure 16. RMSD values with respect to the “golden” orbit data as a function of beam energy 

for six photon intensity ranges: [0; 15]   ; [15; 50]   ; [50; 100]   ; [100; 150]   ; [150; 

200]   ; [200; 500]    (X plane) 

 
 

In Fig. 14; 15; 16 we can observe that most data with high photon intensity more than 

       (marked as red, dark blue and green) have lower RMSD values than the data with 

photon intensity less than        (marked as magenta, cyan and yellow) with the exception of 

a group of data taken at beginning of May 2011 for beam energies around 1.2 GeV. These 

facts clearly show that the “golden” orbit is independent of measurement time (from August 

2010 to August 2011), beam energy (from 450 MeV to 1200 MeV) and bunch charge (from 

         to         ).  
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The “golden” orbit is shown in Fig. 14. In Fig. 14 the standard deviation for data 

selection with            and RMSD < 0.3 mm from the “golden” orbit (dark red) and 

standard deviation for data selection with           and RMSD < 0.3 mm from the 

“golden” orbit (light red) are shown. 

 Figure 17. The “golden” orbit, standard deviation for data with            and RMSD < 

0.3 mm from the “golden” orbit (dark red) and standard deviation for data with           
and RMSD < 0.3 mm from the “golden” orbit (light red) 
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Conclusion 

In this article we show that orbit data taken in Free Electron Laser (FLASH 

accelerator) with beam energy selection and with measurement time selection do not have 

significant differences. We analyze three candidates for a “golden” orbit independent of beam 

energy, measurement time and bunch charge and select the best one: the “golden” orbit is an 

average orbit of data with photon intensity            and the value of RMSD < 0.3 mm. 

Reference 

[1] FLASH website: http://flash.desy.de/. 

Appendix 1: distribution of RMSD 

 In this appendix we want to demonstrate RMSD distribution theory that explains why 

the histograms in the Fig. 10; 11; 12 have RMSD values distribution starting from nonzero 

value (another words, the RMSD spreading is shifted to the right in relative to Y axis in the 

Fig. 10; 11; 12) and show how we can calculate the RMSD standard deviation value in case of 

Gaussian distribution of orbit’s X and Y coordinate values. 

Assume that we have a large finite quantity of orbits. X and Y coordinate values of 

these orbits are selected randomly under the Gaussian distribution with mean value is equal to 

  and the standard deviation value is equal to  . N BPMs settled in the undulator measured 

the X and Y coordinates of the orbits. To simplify the theory review we will take a look only 

in one plane, for example, X plane. 

For each orbit every BPM measures the    coordinate, where   – index of BPM. 

The mean value of    coordinate for all BPMs 

 ̂  
          

 
 

where  -number of BPMs. 

 The residuals are 

 ̂      ̂       

The sum of squares of the residuals, divided by   , has a distribution which is equal 

to the chi-square distribution with     degrees of freedom (Cochran’s theorem) 

∑
(    ̂) 
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Taking into account formula    ( ( ))  (  ( ( )))    ( ), where  ( ) – 
expected (mean) value, we get 
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Example 1: 

We choose     orbits. X and Y coordinate values of these orbits are selected 

randomly under the Gaussian distribution with mean value is equal to zero and the standard 

deviation value is equal to    = 0.2 mm. N = 18 BPMs settled in the undulators measured the 

X and Y coordinates of the orbits. 
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In this case we have: 

 (    )            

     (      )            

            The simulation gives us :   

     (          )            

The difference between the 

theory and simulation value is about 

2%. 

 

Fig. 1.1. The RMSD distribution in case of  
                

 

Example 2: 

               

In this case we have: 

 (    )            

     (      )            

            The simulation gives us :   

     (          )            

The difference between the 

theory and simulation value is about 

4%. 

 

Fig. 1.2. The RMSD distribution in case of  
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Example 3: 

               

In this case we have: 

 (    )            

     (      )           

            The simulation gives us :   

     (          )           

The difference between the 

theory and simulation value is about 

17%.  

 

Fig. 1.3. The RMSD distribution in case of  
               

 

In Fig. 1.1; 1.2; 1.3 we can observe that the distribution of RMSD values moves away 

from 0 as N increase. The reason is following: the probability to have a value of RMSD near 0 

is equal to the probability to have all *  + values around zero at the same time. Therefore, 

 (                )  , (              )-
 . Then for increasing N value the 

probability decreases as a power function.  

The common principle of RMSD distribution shifting can also be simply explained on 

the example of coin. It is two possibilities when the coin is thrown: it falls front faced (the 

probability is 0.5) or it falls back faced (the probability is also 0.5). If we throw the coin two 

times the probability it falls the same faced all two times is     . That means that we can 

expect that this event occur every fourth time we throw it. If we throw the coin ten times the 

probability it falls the same faced all times is      . That means that the number of such 

events approach to zero and the histograms of these events is shifted to the right.  
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