
Graphical User Interface for Quench
Spot Localisation

Benjamin Schröder

University of Göttingen, Germany

Supervisor: Felix Schlander (FLA)

Project period: July 19th - September 8th 2011

Abstract

This report describes my project at the DESY summer student programme in
2011. Mainly, the work contains the development of a graphical user interface
(GUI) and a measuring device for a cavity mounted in a test insert.
Second sound, a quantum phenomenon in superfluid helium which behaves like a
sound wave and transports heat, is used to localise spots on the cavity wall where
a surface imperfection has induced a thermal breakdown of the superconducting
cavity.
The GUI is used to read in sets of data of a second sound measurement, to process
that data and finally, to display the determined spot where the breakdown started.
Because of noise effects, a fully automated treatment is not efficient. Therefore, a
user has to control the process.
A GUI has been created which embraces all requirements and is able to handle all
types of used data. In addition a measurement device has been built. It allows a
fast determination of the position of newly mounted cavities in the test insert.

Contents

1. Introduction 1

2. Quench Localisation - The Idea and Progress 2
2.1. Second Sound - Phenomenon and Detection 2
2.2. Status of the Project . 3
2.3. Problems and Tasks . 4

3. Realisation 4
3.1. Measuring Device . 4
3.2. Graphical User Interface . 6

4. Conclusion 10

A. GUI I
A.1. Folder and File Structure . I
A.2. Created Code . II
A.3. Modified Code . X

B. Sketches XV

C. References XVI

1. Introduction

Current projects like the European X-Ray Free Electron Laser (XFEL) − which is
being built at DESY − and the future International Linear Collider (ILC) require more
powerful accelerator technologies. Superconducting cavities (resonators) are the most
auspicious candidates for this purpose [1][2]. Thanks to the superconducting properties
the impedance is orders of magnitudes smaller compared to normal conducting cavities
and therefore, much higher energy gains are possible [3].

The focus lies on two physical quantities: The electrical field ~E which gives the energy
gain of a charged particle accelerated by ~E and the quality factor Q which is defined
as the total amount of stored energy divided by the energy loss per period. Currently
applied nine-cell-cavities made of niobium normally do not reach field gradients more
than 25 MV/m at Q-values up to some 1010. Theoretical values of around 55 MV/m
should be possible [3].
There are several reasons why these gradients are not reached so far. The most crucial
effect is the local thermal breakdown of the superconductivity (quench): The applied
cavities are driven by an alternating field with a frequency of 1.3 GHz. But due to
surface imperfections, the cavities have spots with a higher impedance which causes
Joule heating with increasing electromagnetic fields. When the temperature exceeds
the critical temperature of the superconducting material − for niobium TC = 9.2 K −
the area around the quench spot turns into the normal conducting state. A huge ratio
of the stored energy is released and the cavity cannot maintain the accelerating field.
The cavity has to be cooled down by liquid helium to achieve superconductivity. Thus,
a certain period is needed to cool down the quench spot again after a breakdown. That
takes several ms. Most often breakdown producing imperfections are distributed on
welding seams like the equator of a cell [3][4].

Localisation and inspection of the quench spots are important issues to improve the
cavities. At DESY this research is done by the group of professor Eckhard Elsen. Two
topics are treated by his Ph.D. students: On the one hand, a test frame was designed to
use the so called second sound to find quench spots by triangulation. This report will
describe the method of second sound driven localisation in more detail. On the other
hand, a camera system to examine the located quench spots optically was developed [5].

The following chapter gives a brief overview of second sound and how to detect a quench
position with it. Afterwards, the status of the project and the challenges − this report
will deal with − are described. Finally, the main sections present the explanation of the
developed solutions.

1

2. Quench Localisation - The Idea and Progress

2.1. Second Sound - Phenomenon and Detection

Helium shows remarkable properties when reaching temperatures below a critical value of
Tλ = 2.17 K1: The heat conductivity increases by several orders of magnitude compared
to the normal state and the viscosity for a temperature depending part of the helium is
zero2. As it turned out, this state is a new phase which can be described by a two fluid
model, first proposed by Laszlo Tisza and Lev Landau. Within their theory, entropy
is carried by a sound like wave which is called second sound. The altering quantity in
the wave equation is the ratio of a normal fluid density ρn and a superfluid density ρs
while the total density ρ = ρn + ρs is constant. This entropy wave is responsible for the
fast heat flux. For a more detailed description compare [6] and [7]. Second sound has a
temperature dependent velocity. In the temperature range within the cavities are used,
the velocity lies between 16.8 m/s at 2 K and 19.9 m/s at 1.8 K [8].

One technical realisation of a second sound detector is a device shown in fig. 1. It is
similar to a condenser microphone. The porous membrane is coated with a thin metal
layer3; it represents one of the capacitor plates. The other electrode is made out of
solid brass or an other conducting metal. By applying a high voltage the membrane is
attracted.
When the second sound wave front arrives at the membrane the superfluid component
is able to diffuse through the thin pores of the membrane while the normal fluid part is
not able to. Due to the difference in the density of helium in- and outside the casing,

120V

OST

superfluid

normal fluid
glue

gold

Figure 1 A sketch of an OST by
Hannes Vennekate (University of Göttin-
gen).

diffusion occurs to compensate the density gradi-
ent. The distance d between the solid plate and the
metal foil differs and so the capacitance C changes
because of the distance dependency C ∼ A/d (plate
area A is constant). This capacitance variation can
be measured as a change in the voltage. The first
peak gives the arrival time. The name of the device
is oscillating superleak transducer (OST) [9].

To detect a heat source in three dimensional space,
at least three OSTs have to be used: The time of
flight − time difference of the heat release and the
first OST peak − gives the distance dn between the
OST n and heat source via the known velocity. For

every OST a sphere with radius dn is calculated. Finally, the intersection of these spheres
marks the position of the source.

1Because of the shape of the specific heat curve, this temperature is also called λ-Point.
2There are much more unique properties but they will not be treated at this point.
3In this case Gold.

2

2.2. Status of the Project

Figure 2 One of the four
vertical test inserts. The red
framed area indicates the can-
tilever (see next chapter).

The project involves the development and realisation of a
cavity test stand to localise quench spots, based on the OST
technique described above. The advantage of this method
is the speed in comparison to other techniques like tem-
perature mapping. At DESY (Hall III), four vertical test
inserts already exist which can house the nine-cell-cavities;
fig. 2 depicts one of them. The inserts are able to hold the
OSTs as well. To gain sufficient data, eight microphones are
mounted around the cavities at several heights.
A thermal breakdown is observed in a falling edge of the ra-
dio frequency (rf) performance. This peak gives the quench
time. Some of the eight OSTs show a significant amplitude
after a breakdown. By selecting those signals, the quench
spot can be found via the triangulation described above.
However, due to some geometrical constraints even two sig-
nal starts suffice for a localisation; but normally the found
spot has a larger uncertainty.

During a cavity test two data sets are recorded for each res-
onator mode4. The first data set (in the following called rf-

or oo-data) consists of the rf (performance) signal and the
OST signals. For the second one (worf-data) the rf junc-
tion is disconnected. This procedure has to be done because
it turned out that if the rf junction is connected, the OST
signals sometimes are overlaid with noise. Particularly, the
smaller OST amplitudes would not be resolvable anymore.
To make the two data sets comparable, the time scale of the
second data has to be gauged. For that purpose the most
intense OST signal start of the oo-data is selected − this
can be executed by a programme or, in the case it failes,
by hand − and then all OST signals of the worf-data will
be shifted until both signal start times fit to each other.
Now it is possible to get the times of flight for at least 2
OSTs. This, the number of chosen OSTs and the position
of all OSTs are inserted in a programme which calculates
the quench spot. This programme and the programme to
compute the quench time have already been created by Fe-
lix Schlander. For a detailed description of the algorithm
see [10].

4The modes reach from π/9 to π with π/9 increments.

3

2.3. Problems and Tasks

If a new cavity is mounted, it cannot be guaranteed that the position and arrangement
stay the same as before. Therefore, the position of every recently installed cavity has to
be metered relatively to the OSTs. This was so far done with a big expenditure of time.
Furthermore, it was necessary to enter the data like the TOF and the chosen OSTs
manually in the code. Felix Schlander has already begun to design a graphical user
interface to solve the problems mentioned above.

The project can be subdivided in a design and a programming part. The design part
consists of the development and construction of a device or of several devices for a fast
cavity position metering.
The programming part covers the upgrade of the existing GUI: It should be flexible
enough to handle the two kinds of data and it should offer the option to enter all
necessary information over a simple and reliable interface.

3. Realisation

3.1. Measuring Device

The problem is treated in cylindrical coordinates (r, z, ϕ). It turned out − after an
inspection of the mounting frame − that r varies insignificantly within a range of 2 mm.
This value will be considered as an error σr. The resulting uncertainty of ϕ adds up to

δ

OST
r0

β
0

0°

90°

Δβ

r

Δβ

Figure 3 Geometry to estimate the er-
ror in the angle. The maximum is given
by a shifting δ perpendicular to the ra-
dius r0. The error is calculated via
∆β = arctan(δ/r0). With typical values of
r0 of about 200 mm and a maximum shift
of 2 mm, the angle uncertainty is almost
0.6◦.

a maximum of about 0.6◦ for a shifting δ perpendicular to the original radius (fig. 3).
Thus only z and ϕ have to be metered.
At the beginning, a direct measurement between a reference point on the cavity and the
OSTs was considered. However, a better reference point is the test stand’s cantilever
(fig. 2): A solid and expanded metal plate which serves as a fixation for the cavity.

4

Every OST i has a fixed distance zip to the plate and it is possible to attach an angle
scale which defines the OST angle ϕir relative to the 90◦-point of the scale5.

Height Measurement The higher order mode (HOM) coupler (fig. 4 (left, red)) is
chosen as cavity reference because of it’s proximity to the cantilever. It is useful to
define the centre of the fifth cell as the origin; 0◦ matches to the power coupler (fig. 5
(left, violet)). The measured difference zm between the cantilever and the upper edge
of the coupler can is metered by a marking gauge. Fig. 4 (right) illustrates such a
measurement. The geometry is shown in fig. 4 (left). The prospected distance zi is
deduced by a simple calculation:

zi = zip − (zr + zm)

zr is the distance between the power coupler and the centre of the fifth cell.

Zm

Z
i

Zi
p

Zr

#1

#2

#5

Figure 4 (left) Geometry of the height measurement. The necessary distance is zi (turquoise); the
metered one is zm (green). All zip positions for the OSTs have to be quantified one time only. zr is
defined by the cavity construction.

Angle Measurement An attachable plate with an angle scale was built for the ϕm
measurement (fig. 5 (right)). A plumb bob is able to suspend from the HOM-coupler.
The tip points to the scale. A blueprint with all proportions is given in fig. 8. Similar to

5Technically, it is easier to select 90◦ than 0◦ because of the scale arrangement on the plate.

5

the height, the angle ϕi between the middle of the OST i and the power coupler results
from the geometry (fig. 5 (left)):

ϕi = ϕ0 + (ϕir − ϕm) = ϕ0 + ((90◦ − ϕ′ir) − (90◦ − ϕ′m)) = ϕ0 + (ϕ′m − ϕ′ir)

ϕ0 is the angle between the HOM and the power coupler which is given by the cavity
construction. The modification of 90◦ is necessary to rescale the measured values ϕ′ir
and ϕ′m because of the reference point on the scale.

90° (attachable scale)

m

0° (cavity system)

i
r

φ
0

φ

φ

iφ

0° (attachable scale)

Figure 5 (left) Geometry of the angle measurement. The necessary angle is ϕi (turquoise); the
metered one is ϕm (green). All ϕir positions for the OSTs have to be quantified one time only. ϕ0 is
defined by the cavity construction.

3.2. Graphical User Interface

All written and upgraded functions and routines can be found in the appendix. Table
1 and 2 list the folder and file structure with comments about the functions of the par-
ticular file. In Chapter A.2, the entire created functions are presented. The following
chapter (A.3) tabulates the modifications of the already existing programmes (left col-
umn: modifications, right column: old code). main.m is the basic programme which is
invoked by the GUI. Due to the major changes in the code, it is presented as one.
It is not necessary to read the functions for an understanding of the following chapters.

General Description The GUI was developed with Matlab. Fig. 6 illustrates the
final interface. Two figures are used: In the left one the signals (OSTs and cavity
performance) are plotted; in the right one a surface plot with a red dot − indicating
the quench spot − will be drawn after the spot localisation has succeeded. In addition,
the computed position of the quench spot will be quantified in the lower right area in
cylindrical coordinates (theta, rho and z). The point of origin is again the centre of
the fifth cavity cell.
A status bar on the bottom informs the user about errors which occured during the

6

process, proceedings and gives instructions about the further analysis.
For several tasks, data points of the signals have to be selected. This is achieved by
applying the Data cursor mode which gives a cross mouse pointer. By clicking on a
signal a movable datatip appears. It snaps automatically to the curves. If a new datatip
is desired − to select the next signal start − the user can get one by a right click and then
a left click on Create New Datatip on the appearing pop-up menu. If the resolution of
the signal does not allow a good selection of start time, the Zoom button can be used to
replot a smaller area.

Figure 6 The developed graphical user interface. The eight blue curves are the OST signals of the
data set without rf, the pink one is the OST signal which was used to gauge the two data sets and the
green one is the rf performance progression. The negative peak at about 3.875 s indicates the quench
time.

By clicking on Set cavity origin a new window appears (also shown in fig. 6) where
it is possible to enter or check − in the case that those are already entered − the values
ϕm and zm to gauge the coordinate system.
Reset is used to remove all set variables and figures to restore the GUI for a new analysis.
The two browser buttons are applied to read in the two data sets. By clicking on Load

files manually the analysis will be started. All other buttons are explained in the
next paragraph.

7

Procedure As mentioned before, there exist two kinds of data sets: For the first one
the programme routine succeeds with the automatic determination of the quench time
(in the code: qtrf). The user can directly select all identifiable start times and initiate
the quench spot localisation by Calc quench spot. Between the two plot areas the
quench time (QT) and signal running times (SRT) are displayed.

For the second kind this is not the case: The gauging has to be done by the user. If
the programme cannot find the quench time, the OST signals of the first data set and
the rf performance will be ploted over the entire measured period (usually 10 s). The
user is supposed to select a reference start time. Logically, that one with the highest
amplitude should be chosen. The OST number and selected time are read in by pressing
Adjustment rf/worf.
Since the number of the OST is known, the programme can automatically find the start
signal in the second data set, rearrange both time scales and plot the OST signals of the
second data set in an adequate interval. Now the user has to select the quench time and
to acquire it by clicking on Read-in quench time. The last step consists of the selection
of all identifiable signal starts and the spot localisation (Calc quench position). The
flow chart in fig. 7 summarises this procedure.

Verifications There are a lot of verifications implemented which shall avoid wrong
inputs by the user. Some should be discussed here. By disabling buttons, it is guaranteed
that no unscheduled analysis step will be applied. For example, if the programme was
able to find the quench time automatically, it is impossible to execute an adjustment or
to read in a quench time by hand. An other example is that any analysis step cannot
be achieved until data sets are read in.
Furthermore, kinds of signals are compared. For instance, if the user is supposed to select
a time on the rf signal − but the selected point is one of an OST signal − the procedure
is interrupted and the user is requested to choose the right curve by an instruction on
the status bar.
In case of an error, which cannot be handled by the GUI, it is advisable to reset (Reset
button) the system and start again with the analysis.

8

read in signals,
Plot 8 OST signals

and rfsignal

load quench time:
qtrf

isempty(qtrf)

data cursor mode

yes

start

data cursor mode

no

mark OST signal
starts

select reference OST
start time in dataset 1

signalnr=
rfsignalnr

no

yessave quench time:
qtrf_manually

Save marked
signal starts:

running_times
used_signal_nr
used_signal

calculate quench position with
running times and OST positions

plot cavity surface,
and quench spot

display quench position

cavity position start

read in cavity position:
z, phi

calculate OST position
relative to cavity

adjust time scale
of dataset 1 and 2

data cursor mode

select quench time

load marked
signal nr:
signalnr

Figure 7 Flow chart of the procedure: the red framed areas were already written by Felix. This parts
are simplified and many intermediate steps are neglected. The green framed is the part of this project.

9

4. Conclusion

During the period of the summer student programme, it was possible to become ac-
quainted with the Matlab environment to generate graphical user interfaces. Because
of previous knowledge, it took only a few days to get familiar with the other theoretical
knowledge about the second sound topic and about Felix’s project.
We considered a lot of ideas concerning the gauging devices and many sketches were
drawn until we got that simple solution described above. It was easy to build and only
two coordinates have to be measured. Previously, it took almost half an hour to meter
all eight OST positions relative to the centre of the cavity. With the new idea it only
needs two minutes.
The upgrade of the GUI gives control of the two types of data and allows the user to
select all identifiable signal start times manually. This replaces a routine which deter-
mines the start times automatically. Such a routine would be unreliable due to the noise
and highly varying amplitudes. The GUI combines the programmes written by Felix
Schlander in an easy operable terminal. The user is able to review each analysis step in
the plot areas and the status bar.

Acknowledgement I would like to thank my supervisor Felix Schlander and professor
Elsen for the opportunity to work with the FLA group, for all the help I got and for my
exciting time at DESY. Also thankworthy is the work of Uwe Cornett who contributed
many ideas and built the angle scale plate. Last but not least, I want to thank Olaf
Behnke, Andrea Schrader and their team for the great organisation of the summer
student programme.

10

A. GUI

A.1. Folder and File Structure

Created files Function

adjustment.m Rearranges time scales
calc quench spot.m Invokes quench localisation
coordinates popup.fig GUI for pop-up menu
coordinates popup.m Handle file for pop-up menu
coordinate transformation.m Calculates OST positon relative to cavity
plot rfsignals.m Plots data set one and rf power
runningtime.m Calculates time of flight

Modified files Function

dataevaluation.m Processes and plots data
main.m Handle file for the main GUI
openfiles.m Main file for quench time calculation
findspot.m Calculates the quench spot
main quenchpos.m Invokes quench localisation
setdetectors.m Set detector positions relative to cavity

Table 1 List of created and modified code.

Type Original name New name

folder origquenchlocmitwinkelmitcavity2/ quench loc 2OST

folder origquenchlocmitwinkelmitcavity3/ quench loc 3OST

folder origquenchlocmitwinkelmitcavity4/ quench loc 4OST

file ./quench loc 2OST/main.m ./quench loc 2OST/main quenchpos.m

file ./quench loc 3OST/main.m ./quench loc 3OST/main quenchpos.m

file ./quench loc 4OST/main.m ./quench loc 4OST/main quenchpos.m

Table 2 List of modified file and folder names.

I

A.2. Created Code

main.m

1 [...]
2
3 % --- Executes on button press in btn_files.
4 function btn_files_Callback(hObject, eventdata, handles)
5 % hObject handle to btn_files (see GCBO)
6 % eventdata reserved - to be defined in a future version of MATLAB
7 % handles structure with handles and user data (see GUIDATA)
8
9 set(handles.edt_status, 'String', 'Loading...', 'BackgroundColor', [1 1 1]);

10 pause(0.1); % needed to update
'handles.edt_status'

11 setappdata(0, 'handles', handles); % will be loaded in
'dataevaluation.m'

12 oofile=get(handles.edt_filerf,'String');
13 worffile=get(handles.edt_fileworf,'String');
14
15 % verification if a rf AND a worf file are filled in
16 if strcmp(oofile, 'file') || strcmp(worffile, 'file')
17 set(handles.edt_status, 'String', 'No files browsed', 'BackgroundColor', 'red');
18 else
19 data=openfiles(oofile, worffile);
20 %check whether a quench time is automatically found or if a quench time
21 %has to be picked manually; 'data' is empty in the first case
22 if isempty(data)
23 plot_rfsignals(handles, oofile, worffile)
24 set(handles.adjustment_rf_worf, 'Enable', 'on')
25 set(handles.edt_status, 'String', 'Loaded. No quench time detected. Select OST

reference!',...
26 'BackgroundColor', 'yellow');
27 else
28 set(handles.calc_quench_position, 'Enable', 'on')
29 set(handles.edt_status, 'String',...
30 'Loaded. Quench time detected. Select OST signal starts!', 'BackgroundColor',

'green');
31 end
32 end
33 guidata(hObject, handles); % store GUI data for further processing
34
35 [...]
36
37 rfsignalnr=getappdata(0, 'rfsignalnr'); % retrieve plot handle of rf plot; is stored in

'dataevaluation.m'
38 % verification that 'rfsignalnr' is not empty; means that a the plots are already done
39 if isempty(rfsignalnr)~=1
40 cursor=datacursormode(gcf);
41 set(cursor,'Enable', 'on', 'SnapToDataVertex', 'off');
42 setappdata(0, 'cursor', cursor); % store cursor handle
43 set(handles.edt_status, 'String', 'Data cursor mode on', 'BackgroundColor', [1 1 1])
44 else
45 set(handles.edt_status, 'String', 'No signals are loaded', 'BackgroundColor', 'red')
46 end
47
48
49 % --- Executes on button press in zoom.
50 function zoom_Callback(hObject, eventdata, handles)
51 % hObject handle to zoom (see GCBO)
52 % eventdata reserved - to be defined in a future version of MATLAB
53 % handles structure with handles and user data (see GUIDATA)
54
55 zoom(handles.axes1, 'on')
56 set(handles.edt_status, 'String', 'Zoom mode on', 'BackgroundColor', [1 1 1])
57
58
59 % --- Executes on button press in adjustment_rf_worf.
60 function adjustment_rf_worf_Callback(hObject, eventdata, handles)
61 % hObject handle to adjustment_rf_worf (see GCBO)
62 % eventdata reserved - to be defined in a future version of MATLAB
63 % handles structure with handles and user data (see GUIDATA)
64
65 cursor=getappdata(0, 'cursor');
66 cursor_info=getCursorInfo(cursor);
67
68 if isempty(cursor_info)~=1
69 signalnr=getappdata(0, 'signalnr');

II

1 rfsignalnr=getappdata(0, 'rfsignalnr');
2
3 if cursor_info(1).Target ~= rfsignalnr
4 [~, ref_ost_info(1)] = max(signalnr == cursor_info.Target);
5 ref_ost_info(2)=cursor_info.Position(1);
6 adjustment(handles, ref_ost_info)
7 set(handles.adjustment_rf_worf, 'Enable', 'off')
8 set(handles.read_in_quench_time, 'Enable', 'on')
9 set(handles.edt_status, 'String', ...

10 'Reference OST start picked. RF and WORF data adjusted. Select quench time!',...
11 'BackgroundColor', 'green')
12 else
13 set(handles.edt_status, 'String', 'Pick a OST start instead of rf signal', ...
14 'BackgroundColor', 'red')
15 end
16 else
17 set(handles.edt_status, 'String', 'No reference OST start signal selected', ...
18 'BackgroundColor', 'red')
19 end
20
21
22 % --- Executes on button press in read_in_quench_time.
23 function read_in_quench_time_Callback(hObject, eventdata, handles)
24 % hObject handle to read_in_quench_time (see GCBO)
25 % eventdata reserved - to be defined in a future version of MATLAB
26 % handles structure with handles and user data (see GUIDATA)
27
28 cursor=getappdata(0, 'cursor');
29 cursor_info=getCursorInfo(cursor);
30 rfsignalnr=getappdata(0, 'rfsignalnr');
31
32 % verification that 'cursor_info' is not empty; means that a cursor tip exists
33 if isempty(cursor_info)~=1
34 % verification that picked data point is an acual rfsignal data point
35 if cursor_info.Target == rfsignalnr
36 qtrf_manually=cursor_info.Position(1);
37 setappdata(0, 'qtrf', qtrf_manually)
38 set(handles.read_in_quench_time, 'Enable', 'off')
39 set(handles.calc_quench_position, 'Enable', 'on')
40 set(handles.edt_status, 'String', ...
41 'Quench time manually picked. Select OST signal starts!', 'BackgroundColor', 'green')
42 else
43 set(handles.edt_status, 'String', 'No or wrong signal selected. Select quench time!',

'BackgroundColor', 'red')
44 end
45 end
46
47
48 % --- Executes on button press in calc_quench_position.
49 function calc_quench_position_Callback(hObject, eventdata, handles)
50 % hObject handle to calc_quench_position (see GCBO)
51 % eventdata reserved - to be defined in a future version of MATLAB
52 % handles structure with handles and user data (see GUIDATA)
53
54 cursor=getappdata(0, 'cursor');
55
56 if isempty(cursor)~=1
57 cursor_info=getCursorInfo(cursor);
58 if size(cursor_info,2) > 1
59 datacursormode off
60 set(gcf, 'CurrentAxes', handles.axes2)
61 [running_times used_signals used_signal_nr]=runningtime(hObject, eventdata, handles)
62 calc_quench_spot(hObject, eventdata, handles, running_times, used_signals, used_signal_nr)
63 view(45,45)
64 else
65 set(handles.edt_status, 'BackgroundColor', 'red', ...
66 'String', 'Only one signal start picked. At least 2 are needed!')
67 end
68 else
69 set(handles.edt_status, 'BackgroundColor', 'red', 'String', 'Missing signal start marks')
70 end
71

III

1 % --- Executes on button press in set_cavity_origin.
2 function set_cavity_origin_Callback(hObject, eventdata, handles)
3 % hObject handle to set_cavity_origin (see GCBO)
4 % eventdata reserved - to be defined in a future version of MATLAB
5 % handles structure with handles and user data (see GUIDATA)
6
7 coordinates_popup
8
9 % --- Executes on button press in reset.

10 function reset_Callback(hObject, eventdata, handles)
11 % hObject handle to reset (see GCBO)
12 % eventdata reserved - to be defined in a future version of MATLAB
13 % handles structure with handles and user data (see GUIDATA)
14
15 cla(handles.axes1)
16 cla(handles.axes2)
17
18 setappdata(0, 'cursor', [])
19 setappdata(0, 'signalnr', [])
20 setappdata(0, 'rfsignalnr', [])
21
22 set(handles.edt_filerf,'String', 'file')
23 set(handles.edt_fileworf,'String', 'file')
24
25 set(handles.adjustment_rf_worf, 'Enable', 'off')
26 set(handles.read_in_quench_time, 'Enable', 'off')
27 set(handles.calc_quench_position, 'Enable', 'off')
28
29 datacursormode off
30 set(gcf, 'CurrentAxes', handles.axes1)
31 delete(findall(gca, 'Type','hggroup','HandleVisibility','off','Draggable','on'))
32
33 hold(handles.axes1, 'off')
34 hold(handles.axes2, 'off')
35
36 set(handles.edt_status, 'String', 'All variables reseted. New measurement possible.', ...
37 'BackgroundColor', [1 1 1])
38
39 set(handles.quench_time, 'String', 'Quench time')
40 set(handles.quench_pos, 'String', 'Quench spot position')
41
42 for j=1:8
43 set(eval(['handles.OST' num2str(j) '_running_time']), 'String',...
44 ['OST' num2str(j) '_run_time'], 'BackgroundColor', [1 1 1])
45 end

IV

adjustment.m

1 function adjustment(handles, ref_ost_info)
2 % function: fits the time scale of the second data set to the first by
3 % shifting the time scale unitl start time fits to ref_ost_info
4
5 threshold_sigma = 5; % mulitplicator: defines the threshold
6 rfdata=getappdata(0, 'rfdata');
7 worfdata=getappdata(0, 'worfdata');
8 dt=getappdata(0, 'dt'); % sampling rate
9 pl_rg = 500; % plot range

10
11 ref_ost_idx = ref_ost_info(2)/dt;
12
13 % average of the signal
14 average_worf = sum(worfdata(:, ref_ost_info(1)+2)) / length(worfdata(:, ref_ost_info(1)+2));
15 % corrected signal
16 cor_worfdata = worfdata(:, ref_ost_info(1)+2) - average_worf;
17 threshold = threshold_sigma*sum(abs(cor_worfdata)) / length(cor_worfdata);
18
19 % select two signal start indexes
20 [~, signal_start_idx_th] = max(abs(cor_worfdata) > threshold)
21 [~, signal_start_idx_min]= min(cor_worfdata)
22
23 % compare the two indexes if they do not fit within a interval of 20 stop
24 % the program
25 if (signal_start_idx_min < signal_start_idx_th - 10) || (signal_start_idx_min >

signal_start_idx_th + 10)
26 set(handles.edt_status, 'String', 'Could not find signal start in picked reference OST.

Process aborted.')
27 return
28 end
29
30 % plot the rf signal
31 average = sum(rfdata(:,2))/length(rfdata(:,2));
32 rfsignalnr=plot(handles.axes1, rfdata(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg,1), ...
33 rfdata(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg,2)-average+5.5, 'g');
34
35 hold(handles.axes1, 'on')
36
37 % plot the chosen OST signal of the first data set
38 average = sum(rfdata(:,ref_ost_info(1)+2))/length(rfdata(:,ref_ost_info(1)+2));
39 plot(handles.axes1, rfdata(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg,1), ...
40 rfdata(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg,ref_ost_info(1)+2)-average+5, 'm');
41
42 % calc the index shift to gauge the two data sets
43 shift=signal_start_idx_min-ref_ost_idx
44
45 % plot the 8 OST signals of the shifted second data set
46 for i=1:8
47 average = sum(worfdata(:,i+2)) / length(worfdata(:,i+2));
48 shifted_data = circshift(worfdata(:,i+2), -shift);
49 signalnr(i) = plot(handles.axes1, worfdata(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg,1), ...
50 shifted_data(ref_ost_idx-pl_rg:ref_ost_idx+pl_rg)-average+(i-1)*0.5);
51 end
52
53 % save the plot handles
54 setappdata(0, 'signalnr', signalnr)
55 setappdata(0, 'rfsignalnr', rfsignalnr)
56 hold(handles.axes1, 'off')

V

calc quench spot.m

1 function calc_quench_spot(hObject, eventdata, handles, running_times, used_signals,
used_signal_nr)

2 % function: reads in the number of selected OST start times and invokes the
3 % particular program
4
5 pause(1) % for one second the number of chosen OSTs will be displayed in the status bar
6 set(handles.edt_status, 'String', 'Calculating quench spot position...', 'BackgroundColor', [1 1

1])
7 pause(0.1) % is needed to update the status bar
8 num_used_signals=sum(used_signals);
9

10 % switch distinguishes between the 3 cases, sets the needed path, invokes
11 % the program and afterwards removes the path again
12 switch num_used_signals
13 case 2
14 path(path, [pwd '/quench_loc_2OST']);
15 main_quenchpos(handles, running_times, used_signal_nr)
16 rmpath([pwd '/quench_loc_2OST'])
17 case 3
18 path(path, [pwd '/quench_loc_3OST']);
19 main_quenchpos(handles, running_times, used_signal_nr)
20 rmpath([pwd '/quench_loc_3OST'])
21 case 4
22 path(path, [pwd '/quench_loc_4OST']);
23 main_quenchpos(handles, running_times, used_signal_nr)
24 rmpath([pwd '/quench_loc_4OST'])
25 end
26
27 set(handles.edt_status, 'String', 'Quench spot position calculated', 'BackgroundColor', 'green')

coord transformation.m

1 function [phi z] = coord_transformation(phi_m, z_m)
2 % function: calculates the position of the 8 OSTs relative to the cavity
3 % origin in cylindrical coordinates; the cav origin is set to the center of
4 % the fifth cell
5 % output: 2 8x1 vectors for phi and z; every entry is for one OST
6
7 phi_0 = 245; % counter clock wise angle between hom and powercoupler
8 z_r = 541.6; % dinstance between the center of the fifth cell and the upper edge of the

hom coupler
9

10 % phi and z values of the OSTs relative to the reference point 90°
11 phi_r = [0; 0; 0; 0; 0; 0; 0; 0];
12 z_p = [0; 0; 0; 0; 0; 0; 0; 0];
13
14 % transformation; for more detail see report
15 phi = phi_r + phi_0 - phi_m - 180
16 z = z_p - z_m - z_r

VI

coordinates popup.m

1 [...]
2
3 % --- Executes just before coordinates_popup is made visible.
4 function coordinates_popup_OpeningFcn(hObject, eventdata, handles, varargin)
5 % This function has no output args, see OutputFcn.
6 % hObject handle to figure
7 % eventdata reserved - to be defined in a future version of MATLAB
8 % handles structure with handles and user data (see GUIDATA)
9 % varargin command line arguments to coordinates_popup (see VARARGIN)

10
11 % Choose default command line output for coordinates_popup
12 handles.output = hObject;
13
14 % Update handles structure
15 guidata(hObject, handles);
16
17 % read out currently used z and phi coordinates of the cavity
18 set(handles.z, 'String', getappdata(0, 'meas_cav_coord_z'))
19 set(handles.phi, 'String', getappdata(0, 'meas_cav_coord_phi'))
20
21 % UIWAIT makes coordinates_popup wait for user response (see UIRESUME)
22 % uiwait(handles.figure1);
23
24 [...]
25
26 % --- Executes on button press in coordinate_transformation.
27 function coordinate_transformation_Callback(hObject, eventdata, handles)
28 % hObject handle to coordinate_transformation (see GCBO)
29 % eventdata reserved - to be defined in a future version of MATLAB
30 % handles structure with handles and user data (see GUIDATA)
31
32 phi=str2num(get(handles.phi, 'String'));
33 z=str2num(get(handles.z, 'String'));
34
35 setappdata(0, 'meas_cav_coord_phi', phi)
36 setappdata(0, 'meas_cav_coord_z', z)
37
38 % invoke function which calculates the coordination transformation
39 [phi_prime z_prime] = coord_transformation(phi, z);
40
41 setappdata(0, 'trans_ost_coord_phi', phi_prime)
42 setappdata(0, 'trans_ost_coord_z', z_prime)
43
44 [...]
45
46 % --- Executes on button press in close.
47 function close_Callback(hObject, eventdata, handles)
48 % hObject handle to close (see GCBO)
49 % eventdata reserved - to be defined in a future version of MATLAB
50 % handles structure with handles and user data (see GUIDATA)
51
52 close(handles.figure1) % closes the figure

VII

runningtime.m

1 function [running_times used_signals used_signal_nr]=runningtime(hObject, eventdata, handles)
2 % function: read in picked OST signals and manually or automatically picked Quenchtime;
3 % write running time for each picked OST and write quench time
4 % output: vectors running_times (8 by 1), used_signals (8 by 1) and used_signals_nr (#picked OSTs

by 1)
5
6 cursor=getappdata(0,'cursor'); % load the cursor handle
7 signalnr=getappdata(0,'signalnr'); % load the plot handles
8 cursor_info=getCursorInfo(cursor); % read out cursor information: position, targets (plots) of

the datatips
9 num_datatips=size(cursor_info,2); % number of choosen datatips

10 qtrf=getappdata(0, 'qtrf'); % quenchtime from RF data; was stored in 'openfiles.m' or
manually in 'main.m'

11 used_signals=zeros(8,1); % vector with '1' if OST Signal is choosen and '0' if not
12 runnig_times=zeros(8,1); % vector with determined running times for each OST
13 used_signal_nr=[];
14
15 % find choosen OSTs by passing the datatips and write running time
16 for i=1:num_datatips
17 temp=signalnr-cursor_info(i).Target;
18 for j=1:8
19 if(temp(j)==0)
20 used_signals(j)=1;
21 used_signal_nr=[used_signal_nr; j];
22 running_times(j,:)=cursor_info(i).Position(1)-qtrf;
23 set(eval(['handles.OST' num2str(j) '_running_time']), 'String',...
24 ['SRT: ' num2str(running_times(j)) 's'], 'BackgroundColor', [1 1 1])
25 end
26 end
27 end
28
29 % Fade out not used running time text arrays
30 for i=1:8
31 if(used_signals(i)==0)
32 set(eval(['handles.OST' num2str(i) '_running_time']), 'String', '',...
33 'BackgroundColor', [0.831 0.816 0.784])
34 end
35 end
36
37 set(handles.edt_status, 'String', [num2str(num_datatips) ' OST signals are selected'], ...
38 'BackgroundColor', 'green')
39 set(handles.quench_time, 'String', ['QT: ' num2str(qtrf) 's'], ...
40 'BackgroundColor', [1 1 1])

VIII

plot rfsignals.m

1 function plot_rf_signals(handles, oofile, worffile)
2 % function: plots rf signals in case of no automatically picked quench time
3 % over the entire time scale; otherwise that is done by 'dataevaluation.m'
4
5 rfdata=dlmread(oofile, ' ', 2, 0);
6 worfdata=dlmread(worffile, ' ', 2, 0);
7 setappdata(0, 'rfdata', rfdata);
8 setappdata(0, 'worfdata', worfdata);
9

10 % plot the rf signal without offset
11 average = sum(rfdata(:,2))/length(rfdata(:,2));
12 rfsignalnr=plot(handles.axes1, rfdata(:,1), rfdata(:,2)-average+5, 'g');
13 hold(handles.axes1, 'on')
14
15 % plot the 8 OST signals of the first data set
16 for i=1:8
17 average = sum(rfdata(:,i+2)) / length(rfdata(:,i+2));
18 signalnr(i) = plot(handles.axes1, rfdata(:,1), rfdata(:,i+2)-average+(i-1)*0.5, 'm');
19 end
20
21 % save the plot handles to compare them later
22 setappdata(0, 'signalnr', signalnr)
23 setappdata(0, 'rfsignalnr', rfsignalnr)
24 hold(handles.axes1, 'off')

IX

A.3. Modified Code

dataevaluation.m

X

openfiles.m

XI

findspots.m

XII

main quenchpos.m

XIII

setdetectors.m

XIV

B. Sketches

38

88.9

80
100

14
0

130

65

13
5

5

18 11.8
88.8

20

Figure 8 Blueprint of the plate with angle scale. All distances are given in mm. The cantilever is
illustrated in grey.

XV

C. References
[1] XFEL Technical Design Report; DESY 2006-097, Hamburg, July 2007

[2] ILC Technical Design Report; ILC-Report-2007-001, August 2007

[3] H. Padamsee, J. Knoblauf, T. Hays: RF Superconductivity for Accelerators; Second
Edition, Weinheim, Wiley-VCH Verlag, 2008

[4] J. Norem und M. Pellin: Gradient limits and SCRF performance; Argonne, USA

[5] F. Schlander, S. Aderhold, E. Elsen and D. Reschke: Progress on Diagnostic Tools for
Superconducting High-gradient Cavities; Proceedings of Linear Accelerator Conference
LINAC2010, Tsukuba, Japan, THP014, 791-793, 2010

[6] R. J. Donelly : The two-fluid theory and second sound in liquid helium; Phys. Today,
34-39, Oct. 2009

[7] L. Tisza: Transport Phenomena in Helium II; Nature, 141, 913, 1938

[8] R. T. Wang, W. T. Wagner, R. J. Donnelly : Precision Second-Sound Velocity Measure-
ments in Helium II; J. Low Temp. Phys. 68, 409-417, 1987

[9] R. A. Sherlock and D. O. Edwards: Oscillating Superleak Second Sound Transducers;
Rev. of Scientific Instruments, 41, 1603, 1970

[10] F. Schlander and E. Elsen: 2nd Sound as quench localisation tool; ILC-HiGrade-Report-
2010-0071, 2010

XVI

