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In 2015 European X-ray Free Electron Laser (XFEL) will start operating. XFEL
is a source of almost fully transverse coherent radiation. The X-ray light will be
generated by Self-Amplified Spontaneous Emission (SASE), where electrons
interact with the radiation that they or their neighbors emit. The result is
spontaneous emission of tightly bunched packages of radiation that are amplified
like laser light.

In connection with this project we need to know all the possible
information about the propagation of electromagnetic wave. This work concern
to propagation of the wave in free space at some range of distances.

1. Motivation.

The XFEL pulse propagated in free space from the source could be
approximated by a stationary Gaussian beam only with some accuracy. For some
applications (e.g. modeling of the coherent diffraction imaging experiments) time-
dependent slice-by-slice propagation of SASE XFEL pulse should be done. In the
article [1 ] was suggested a method for more accurate reproducibility of
intensity’s and phase’s distribution.

Let us consider this method. It’s known that the system of orthogonal
Hermite’s polynomials (details are given below) are complete in R? so we can use
it as a basis. The beam’s wave field could be expanded on a linear combination
of basis’s functions with some preassigned accuracy. Then we can propagate the
beam’s field using analytical expression for Fresnel transform. So we are able to
propagate our beam at any distance with preassigned accuracy.

Another application of this algorithm is to test wave front propagation
software [4]. We are able to compare the results of propagation of a linear
combination of Hermite’s polynomials with results of numerical propagation in
the framework of Fourier optics approach.

2.Theoretical introduction.

It is well known that in paraxial approximation the evolution of a coherent
light field F(x,y,]) under propagation in free space along the axis | is described by
the parabolic equation

T+7+2ik—l=0, X€R,yeER (2.1)

Here k is a wave number, [ is a propagation variable, and x,y are transverse
coordinates.

There are many solutions of the parabolic equation, but Hermite-Gaussian
(HG) and Laguerre-Gaussian (LG) beams have special value among them. These
solutions are described in terms of HG ana LG functions

Hyppn (1) = /mHn(x)Hm(y) (n,m =0,1... (2.2)
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So, take to attention the weight function:

ff Hn,m(xJ y) : Hn,m(x' Y)e_xz_ydedy =1 (2.3)

And LG functions
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Analytic expression for solutions HG and LG with the usage of Fresnel
transform are as follows:
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When the symmetry planes of an astigmatic element and of an HG beam do
not coincide, the structure of an HG beam changes radically. In this case, an HG
beam is transformed into the finite sum of various HG
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are Jacobi polynomials.



If to define a function family

Gum(Tla) = T ik ™™ (@) H 4 s (1) (2.12)

(in some sense a unification of HG and LG beams into a common family, that
were named Hermite-Laguerre-Gaussian (HLG) beams).

3. Application.
3.1 Expansion into linear combination of Hermite’s polynomials.
In our case we can expand the solution of the (2.1) equationat/=0as a

sum:
F(,7,0) = Znmzt™ com Hom (=12) (3.1),

where
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Then at arbitrary / the solution can be expand as:
n,m=N,M
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We have an output of FAST [4] code that is a field’s distribution (matrix of
complex numbers) at some distance from source:
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First of all, we need to define field distribution at I=0. We are able to make
back propagation and to determine what the distance to source is (more details
arein 3.2).

Intensity of propagated beam at -10.5 m
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After the expansion into the finite sum of Hermite’s polynomials (the
guantity of polynomials is 15x15 = 225) we obtained:
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The difference between the function and its expansion into finite sum:
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After propagation the results are not so satisficed.



Central section of intensity (red line — input data) :
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3.2 Back propagation.
Let us consider the field’s distribution in some slice and propagate it back.

The distance to source we can estimate by phase’s behavior (!!!) in significant
area (where the intensity is different from 0). At distance | = 0 the phase change
its convexity. Shifts of the distance to source between slices in one spike and
between neighboring spikes evidence about the degree of coherence.

Let us see on one-dimensional distribution of intensity (we examined only
indicated fragments):
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Firstly, we will analyse the data of slices of the same spike.
Input data:

1). T=151.613fs (spike3)
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After back propagation:
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The criteria of choice of “optimal” length to sourse —is the best

correspondence to line (linear approximation). In this case | = 12m.

The distribution of intensity at “optimal” length:
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2).T=151.627fs

(the second slice from the same spike3)
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With our degree of accuracy we can say that the distance to source does
not change in one and the same spike.

Let us see the next spikes:
4). T=150.400 — 8.5 (spikel)
5). T=150.893fs — 11m (spike2)

6). T=151.867fs — 9m (spike4)

As we can estimate the distance between different spikes varies from spike

to spike but within the limits of 10%.
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3.3 Propagation of the single Hermite’s polynom.

We took the single Hermite’s polynomial of the odern=2, m=0at | =
30.5, and propagate it (using “SRWLib")
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As we see the structure of this polynomial is saved.



4.Results and discussions.

To sum up: we can expand the field distribution with any preassigned
accuracy at | =0, but the problem of its propagation is still open. We can make
some assumptions why it is so:

- inaccurate determination of plane | = 0 (the distance of input data’s back

propagation)

- inappropriate values of beam’s parameters (for example, w, — the
minimum spot size of the beam, that was originally determined for
Gaussian beam)

Another part of work connected with back propagation could help us to

understand the degree of source’s coherence and if it is possible to use “wave-
front-propagation” in “SRWLib” — program.
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