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In 2015 European X-ray Free Electron Laser (XFEL) will start operating. XFEL 
is a source of almost fully transverse coherent radiation. The X-ray light will be 
generated by Self-Amplified Spontaneous Emission (SASE), where electrons 
interact with the radiation that they or their neighbors emit. The result is 
spontaneous emission of tightly bunched packages of radiation that are amplified 
like laser light.  

In connection with this project we need to know all the possible 
information about the propagation of electromagnetic wave. This work concern 
to propagation of the wave in free space at some range of distances.  

 
1.  Motivation. 
The XFEL pulse propagated in free space from the source  could be 

approximated by a stationary Gaussian beam only with some accuracy. For some 
applications (e.g. modeling of the coherent diffraction imaging experiments) time-
dependent slice-by-slice propagation of SASE XFEL pulse should be done. In the 
article [1 ] was suggested a method for more accurate reproducibility of 
intensity’s and phase’s distribution.  

Let us consider this method. It’s known that the system of orthogonal 
Hermite’s polynomials (details are given below)  are complete in    so we can use 
it as a basis.   The beam’s wave field could be expanded on a linear combination 
of basis’s functions with some preassigned accuracy. Then we can propagate the 
beam’s field using analytical expression for Fresnel transform. So we are able to 
propagate our beam at any distance with preassigned accuracy. 

Another application of this algorithm is to test wave front propagation 
software [4]. We are able to compare the results of propagation  of a linear  
combination of Hermite’s polynomials with results of numerical propagation in 
the framework of Fourier optics approach.  
 

2.Theoretical introduction. 
It is well known that in paraxial approximation the evolution of a coherent 

light field F(x,y,l) under propagation in free space along the axis l is described by 
the parabolic equation 

                       
   

   
 

   

   
    

  

  
                                   (2.1) 

Here k is a wave number, l is a propagation variable, and x,y are transverse 
coordinates. 

There are  many solutions of the parabolic equation, but Hermite-Gaussian 
(HG) and Laguerre-Gaussian (LG) beams have special value among them. These 
solutions are described in terms of HG ana LG functions 

    ( ) = √
 

   (   )      
  ( )  ( )       (    0,1…)                 (2.2) 

 

http://en.wikipedia.org/wiki/Self-Amplified_Spontaneous_Emission
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So, take to attention the weight function: 
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Analytic expression for solutions HG and LG with the usage of Fresnel 
transform are as follows: 
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When the symmetry planes of an astigmatic element and of an HG beam do 

not coincide, the structure of an HG beam changes radically. In this case, an HG 
beam is transformed into the finite  sum of various HG 

beams    (- (   ) 
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are Jacobi polynomials. 
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If to define a function family  

    ( | )   ∑       
     

(   )( )        (  )                                            (2.12) 

 
  (in some sense a unification of HG and LG beams into a common family, that 
were named Hermite-Laguerre-Gaussian (HLG) beams). 
 
 
 3. Application. 

3.1 Expansion into linear combination of Hermite’s polynomials. 
In our case we can expand the solution of the (2.1) equation at l = 0 as a 

sum: 
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Then at arbitrary l the solution can be expand as: 
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We have an output of FAST [4] code that is a field’s distribution (matrix of  
complex numbers) at some distance from source:
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First of all, we need to define field distribution at l=0. We are able to make 
back propagation and to determine what the distance to source is (more details 
are in 3.2). 

 
 
 

After the expansion into the finite sum of Hermite’s polynomials (the 
quantity of polynomials is 15x15 = 225) we obtained: 
: 
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The difference between the function and its expansion into finite sum: 

 
    

      Central sections of intensity and phase (red line – input data)  :

  

 
 
 
 
 
 
 
 
 
 
 
 
 

After propagation the results are not so satisficed. 
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     Central section of intensity (red line – input data)  : 

 
 
 
 
 
 
 
 
 
 
 
 
 

3.2 Back propagation. 
Let us consider the field’s distribution in some slice and propagate it back. 

The distance to source we can estimate by phase’s behavior (!!!) in significant 

area (where the intensity is different from 0). At distance l = 0 the phase change 

its convexity. Shifts of the distance to source between slices in one spike and 

between neighboring spikes evidence about the degree of coherence.  

Let us see on one-dimensional distribution of intensity (we examined only 

indicated fragments): 
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Firstly, we will analyse the data of slices of the same spike. 

Input data: 

1). T=151.613fs (spike3) 
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After back propagation: 

 

The criteria of choice of “optimal” length to sourse – is the best 

correspondence to line (linear approximation). In this case l = 12m. 

The distribution of intensity at “optimal” length: 

 

-0.04 -0.02 0 0.02 0.04
-1.5

-1

-0.5

0

0.5

[mm]

p
h
a
s
e
 [

ra
d
]

Phase of propagated beam at -10 m

-0.04 -0.02 0 0.02 0.04
-1.5

-1

-0.5

0

0.5

[mm]

p
h
a
s
e
 [

ra
d
]

Phase of propagated beam at -11 m

-0.04 -0.02 0 0.02 0.04
-1.5

-1

-0.5

0

0.5

[mm]

p
h
a
s
e
 [

ra
d
]

Phase of propagated beam at -12 m

-0.04 -0.02 0 0.02 0.04
-1.5

-1

-0.5

0

0.5

[mm]

p
h
a
s
e
 [

ra
d
]

Phase of propagated beam at -13 m

mm

m
m

Intensity of propagated beam at -12 m

 

 

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.04

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

0.04

0.2

0.4

0.6

0.8

1

1.2

1.4



11 
 

 

2).T=151.627fs (the second slice from the same spike3)

 
3).T=151.640fs (the third slice from the same spike3)
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With our degree of accuracy we can say that the distance to source does 

not change in one and the same spike. 

Let us see the next spikes: 

4). T=150.400 – 8.5 (spike1) 

5). T=150.893fs – 11m (spike2) 

6). T=151.867fs – 9m (spike4) 

 

 

As we can estimate the distance between different spikes varies from spike 

to spike but within the limits of 10%. 
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3.3 Propagation of the single Hermite’s polynom. 

We took the single Hermite’s polynomial of the oder n = 2, m = 0 at  l = 

30.5, and propagate it (using “SRWLib”) 

 

 
As we see the structure of this polynomial is saved. 
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4.Results and discussions. 
To sum up: we can expand the field distribution with any preassigned 

accuracy at l = 0, but the problem of its propagation is still open. We can make 
some assumptions why it is so: 

- inaccurate determination of plane l = 0 (the distance of input data’s back 
propagation) 

- inappropriate values of beam’s parameters (for example,    – the 
minimum spot size of the beam, that was originally determined for 
Gaussian beam) 

Another part of work connected with back propagation could help us to 
understand the degree of source’s  coherence and if it is possible to use “wave-
front-propagation” in  “SRWLib” – program.  
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