
Deutsches Elektronen-Synchrotron
Theory
Notkestraße 85
22607 Hamburg

Summer Student Programme 2011 Report

Cohomology of Lie Superalgebras

Sven Möller
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In this work we will study the cohomology of Lie algebras and Lie superalgebras,
especially of sl2(C) and gl(1|1). A basic introduction to the theory of Lie (super)-algebras
and their representations will be given as well as to the concepts of cohomology.
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Overview

In this work we want to study the cohomology of Lie algebras and Lie superalgebras
and apply the results to several examples. Chapters 1 and 2 give an introduction to
the theory of Lie algebras and Lie superalgebras as well as to their representations.
The reader may skip these chapters if he or she feels sufficiently versed in that topic.
In these chapters we will also introduce those examples of Lie (super)algebras whose
cohomologies will study later on in the text. For a physical motivation see for example
[HT92].

In Chapters 3 and 4 we introduce the concept of cohomology in the cases of Lie
algebras and Lie superalgebras and calculate it for the examples of sl2(C) and gl(2|2).
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1 Lie Algebras

In this chapter we will introduce the concept of Lie algebras and look at some elementary
properties. Furthermore we will group Lie algebras into different classes. Next, we will
look at representations of Lie algebras and will also classify them. The concepts shall
be illustrated with the help of the irreducible representations of sl2(C). An elementary
introduction to the theory of Lie algebras can be found in [EW06].

1.1 Basics

Definition 1.1. A Lie algebra (g, [·, ·]) is a vector space g over a field K together with
a binary operation

[·, ·] : g× g→ g, (x, y) 7→ [x, y] ,

called Lie bracket which satisfies:

1. (K-bilinearity)
[αx+ βy, z] = α [x, z] + β [y, z] (1.1)

and
[z, αx+ βy] = α [z, x] + β [z, y] (1.2)

for all scalars α, β ∈ K and all x, y, z ∈ g.

2. (Alternating on g)
[x, x] = 0 (1.3)

for all x ∈ g.

3. (Jacobi identity)

[x, [y, z]] + [y, [x, x]] + [z, [x, y]] = 0 (1.4)

for all x, y, z ∈ g.

In the following we will simply write g for the Lie algebra (g, [·, ·]).

In this text we will deal exclusively with (as vector spaces) finite-dimensional Lie
algebras, which does dot mean that some of the results are not true in a more general
setting.
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Remark 1.1. (1) and (2) in the above Definition 1.1 imply the anti-symmetry of the
Lie bracket, i.e.

[x, y] = − [y, x]

for all x, y ∈ g. Conversely, the implication that (2) follows from the antisymmetry is
only true for fields K with char(K) 6= 2. (Set x = y.) We will later in the super case
(cf. Definition 2.3) use a generalisation of the antisymmetry for the definition of a Lie
superalgebra.

Remark 1.2. Let g be a Lie algebra with finite vector space dimension. Choose a basis
{l1, l2, . . . , ln} of g and we can evaluate the Lie bracket for pairs of basis vectors and
write the result again in terms of the basis vectors. This gives

[li, lj ] =
n∑
k=1

fkijlk =: fkijlk (1.5)

for 1 ≤ i, j ≤ n, which are the defining relations for the fkij (1 ≤ i, j, k ≤ n), called
structure constants. (In the second step of the above equation we used the Einstein
summation convention, which means we sum over indices appearing twice (one upper
and one lower index).)

Conversely, a Lie algebra is uniquely defined by giving a basis and the structure
constants.

Remark 1.3. It follows directly from the definition of a Lie algebra that the structure
constants satisfy the equations

fkii = 0 and fkij = −fkji (1.6)

for all 1 ≤ i, j, k ≤ n and
fdabf

e
cd + fdbcf

e
ad + fdcaf

e
bd = 0 (1.7)

for all 1 ≤ a, b, c, e ≤ n.

In the following we want to introduce an important class of Lie algebras, which is
defined starting from an associative algebra.

Definition 1.2. 1. An algebra over a field K is a K-vector space A together with a
binary operation

∗ : A×A→ A, (a, b) 7→ a ∗ b,

which is K-bilinear, i.e.

(λa+ µb) ∗ c = λ (a ∗ c) + µ (b ∗ c) (1.8)

and
c ∗ (λa+ µb) = λ (c ∗ a) + µ (c ∗ b) (1.9)

for all scalars λ, µ ∈ K and all a, b, c ∈ A. For the sake of simplicity we will simply
denote the Algebra as A.
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2. If the operation ∗ is in addition associative, i.e.

a ∗ (b ∗ c) = (a ∗ b) ∗ c (1.10)

for all a, b, c ∈ A, then A is called an associative algebra over the field K.

3. If an algebra A has an element 1 such that 1 ∗ x = x ∗ 1 = 1 for all x ∈ A, then
the algebra is called unital. (The element 1 is called multiplicative identity and is
unique if it exists.)

4. A map F : A→ B between two algebras A and B over K is called homomorphism
of algebras if F is K-linear, i.e. F (kx + y) = kF (x) + F (y) for all k ∈ K and
x, y ∈ A and if F is multiplicative, i.e. F (x ∗ y) = F (x) ∗ F (y) for all x, y ∈ A.

5. If an algebra homomorphism F : A → B between two unital algebras A and B
maps the identity 1 in A to the one in B, then F is called unital.

Remark 1.4. Let A be an associative algebra as in the above Definition 1.2. Then A
together with the commutator [·, ·] as Lie bracket defined by

[a, b] = a ∗ b− b ∗ a (1.11)

for all a, b ∈ A forms a Lie algebra. In particular, A together with the commutator forms
again an algebra, which however is not associative in general.

Remark 1.5. Let V be a vector space over K. The vector space End(V ) of the endo-
morphisms of V (i.e. the linear maps from V into itself) forms an associative algebra
together with function composition ◦ as operation.

Definition 1.3. Let V be a vector space over K. We denote by gl(V ) the Lie algebra
formed by the associative algebra (c.f. Remark 1.5) End(V ) of endomorphisms of V
together with the commutator as defined in Remark 1.4.

If in particular V = Kn, we write gl(V ) = gln(K) = gl(n).

Definition 1.4. A Lie algebra homomorphism ϕ is a K-linear map (i.e. a vector space
homomorphism)

ϕ : g→ h

of a Lie algebra
(
g, [·, ·]g

)
to another Lie algebra

(
h, [·, ·]h

)
(both over the same field K)

with
ϕ
(

[x, y]g

)
= [ϕ (x) , ϕ (y)]h (1.12)

for all x, y ∈ g.
If in the above situation ϕ is a isomorphism of vector spaces, ϕ is called Lie algebra

isomorphism and g and h are called isomorphic.
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Definition 1.5. A subspace h of a Lie algebra g, which is closed under the Lie bracket,
i.e.

[x, y] ∈ h (1.13)

for all x, y ∈ h is called Lie subalgebra of g. If h fulfils even

[x, y] ∈ h (1.14)

for all x ∈ g, y ∈ h, then h is called an ideal in g.

Definition 1.6. Let i be an ideal of the lie algebra g. Then, as can be readily checked,
one can define a Lie algebra on the quotient space g/i by

[x+ i, y + i] = [x, y] + i

for x, y ∈ g, called quotient algebra.

Remark 1.6. Let ϕ : g → h be a Lie algebra homomorphism. Then ker(ϕ) is an ideal
in g. Conversely to every ideal, we have the canonical projection g → g/i, which has i
as kernel. Hence ideals are exactly kernels of Lie algebra homomorphisms.

Definition 1.7. Let g be a Lie algebra. A universal enveloping algebra U(g) of g consists
of a unital associative algebra with the Lie algebra structure defined by the commutator
and a Lie algebra homomorphism ϕ : g→ U(g) such that the following universal mapping
property holds: If A is an arbitrary unital associative algebra (which we view as a Lie
algebra with the commutator), then the Lie Algebra homomorphisms ψ : g → A are
in bijection with the unital algebra homomorphisms F : U(g) → A. This bijection is
by means of the homomorphism ϕ : g → U(g). In other words: To every Lie algebra
homomorphism ψ : g→ A there is a unique algebra homomorphism F : U(g)→ A with
ψ = F ◦ ϕ.

Definition 1.8. Let V be a vector space over the field K. Then the tensor algebra T (V )
is defined by

T (V ) =
∞⊕
n=0

V ⊗n = K ⊕ V ⊕ (V ⊗ V )⊕ (V ⊗ V ⊗ V )⊕ . . . , (1.15)

where V ⊗W denotes the tensor product space of the vector spaces V and W . With the
multiplication defined by

(x, y) 7→ x⊗ y (1.16)

for all x ∈ V ⊗i for an i and all y ∈ V ⊗j for a j (and by bilinearity defined on all of
T (V )) T (V ) becomes a Z-graded, unitary, associative algebra.

Remark 1.7. We can explicitly construct the universal enveloping algebra. Let I be
the two-sided ideal T (g), generated by elements of the form

x⊗ y − y ⊗ x− [x, y]
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for x, y ∈ g. Then U(g) is given by the quotient of the tensor algebra T (g) by the ideal
I. (Since I is not homogeneous, U(g) does not carry an induced grading, in contrast to
the exterior algebra (cf. Remark 3.2).) One can show that U(g) does indeed have the
properties from Definition 1.7.

Example 1.1. Let us look at the Lie algebra gln(K), i.e. the endomorphisms of Kn.
If we fix a vector space basis, then these correspond to the K-valued n × n-matrices,
where we identify the composition of endomorphisms wit matrix multiplication (and
accordingly for the commutator).

The traceless endomorphisms (n× n-matrices) form a subspace of gln(K) and even a
subalgebra. If one restricts the Lie bracket of gln(K) to this subalgebra, one gets the
Lie algebra of the traceless endomorphisms (n× n-matrices), called sln(K). These even
form an ideal in gln(K).

Example 1.2. Let us now look at the example of the Lie algebra sl2(C), i.e. the Lie
algebra of the traceless complex 2× 2-matrices. As basis we choose

H =
1

2

(
1 0
0 −1

)
, X =

(
0 1
0 0

)
and Y =

(
0 0
1 0

)
.

The basis elements satisfy

[X,Y ] = 2H, [H,X] = X and [H,Y ] = −Y.

If we extend the basis by

C =

(
1 0
0 1

)
and continue to use the commutator as Lie bracket, we get all of gl2(C). C fulfils the
additional relations

[C,X] = [C, Y ] = [C,H] = 0.

An element like C which commutates with all other elements is called a central element.

1.2 Types of Lie Algebras

We shall have a look at some types of Lie algebras and their properties in a nutshell.

Definition 1.9. A Lie algebra g is called abelian if [x, y] = 0 for all x, y ∈ g.

Definition 1.10. A Lie algebra g is called simple if it is not abelian and if {0} and g
are the only ideals in g.

Definition 1.11. Let g1 and g2 be Lie algebras. We define a Lie bracket on the direct
sum

g := g1 ⊕ g2 (1.17)
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of the vector spaces g1 and g2 via

[(x1, x2) , (y1, y2)] := ([x1, y1] , [x2, y2]) (1.18)

for xi, yi ∈ gi (i = 1, 2). The thus defined Lie algebra g := g1⊕ g2 is called direct sum of
the lie algebras g1 and g2.

Definition 1.12. Let g be a Lie algebra over a field of characteristic 0. g is called
semisimple if g is isomorphic to a direct sum of simple Lie algebras, i.e.

g ∼= g1 ⊕ . . .⊕ gk (1.19)

with gi (i = 1, . . . , n) simple. A Lie algebra g is hence semisimple if and only if there
exist simple ideals hi ⊆ g (i = 1, . . . k) with g = h1 ⊕ . . .⊕ hk.

Remark 1.8. Let g be a Lie algebra over a field K with char(K) = 0. Then the
following are equivalent:

1. g is semisimple.

2. g does not contain any non-trivial abelian ideals.

3. g does not contain any non-trivial solvable ideals (cf. Definition 1.15).

We will later for the definition of semisimple in the case of Lie superalgebras (cf. Defi-
nition 2.11) use a generalisation of property (3). Note that the above equivalence then
no longer holds.

Definition 1.13. Let g be a Lie algebra. We define the descending central series
C0g, C1g, . . . by

C0g = g (1.20)

and
Cm+1g = [g, Cmg] (1.21)

for m = 1, 2, . . ..
A Lie algebra g is called nilpotent if its descending central series becomes zero, i.e.

there exists an N ∈ N with
CNg = {0}

and thus
Cng = {0}

for all n ≥ N .

Definition 1.14. A Cartan subalgebra h of a Lie algebra g is a nilpotent Lie subalgebra
which is in addition self-normalising, i.e. [x, y] ∈ h for all x ∈ h implies y ∈ h.
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Definition 1.15. Let g be a Lie algebra. We define the derived series D0g,D1g, . . . by

D0g = g (1.22)

and
Dm+1g = [Dmg,Dmg] (1.23)

for m = 1, 2, . . ..
A Lie algebra g is called solvable if its derived series eventually becomes zero, i.e. there

is a N ∈ N with
DNg = {0}

and thus
Dng = {0}

for all n ≥ N .
A maximal solvable Lie subalgebra is called Borel algebra

1.3 Representations of Lie Algebras

In this section we will study representations of Lie algebras and will also classify them
into different types. We need these concepts from representation theory to be able to
define the cohomology of Lie algebras (cf. Chapter 3).

Definition 1.16. Let g be a Lie algebra over a field K and let V be a vector space over
K. A representation of the Lie algebra g on V is a Lie algebra homomorphism

ρ : g→ gl(V )

from g into the Lie algebra of endomorphisms on V . In the case of gl(V ) = gln(K) (i.e.
V = Kn) we speak of an n-dimensional representation of g.

Definition 1.17. The above Definition 1.16 reads explicitly as

ρ ([x, y]) = [ρ(x), ρ(y)] = ρ(x)ρ(y)− ρ(y)ρ(x) ∈ gl(V ) (1.24)

for all x, y ∈ g. The vector space V together with the representation ρ is called g-module.
Equivalently one can define a g-module as a vector space V together with a bilinear

map · : g× V → V such that

[x, y] · v = x · (y · v)− y · (x · v) (1.25)

for all x, y ∈ g and all v ∈ V . This is equivalent to the above definition via x · v = ρ(x)v.
“·” is called action of g on V . (One often simply writes xv for x · v = ρ(x)v.)

In the following we want to justify the usage of the word module in this context.
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Definition 1.18. Let A be an associative algebra over the field K. A left A-module is
a K-vector space V together with a K-bilinear map

A× V → V, (a, v) 7→ av

such that
a1 (a2v) = (a1 ∗ a2) v (1.26)

for all a1, a2 ∈ A and v ∈ V . (Analogously a right A-module is a vector space V together
with a K-bilinear map

V ×A→ V, (v, a) 7→ va

such that
(va2) a1 = v (a2 ∗ a1) (1.27)

for all a1, a2 ∈ A and v ∈ V .)
A left/right A-module V is called unital if A is a unital associative algebra and the

identity element 1 in A satisfies 1v = v and v1 = v for all v ∈ V .

The following holds:

Theorem 1.1. The representations of a Lie algebra g are in bijection with the unital
left modules of the universal enveloping algebra U(g) (with the bijection being ψ ↔ F
from Definition 1.7.)

Proof. We use the notation from Definition 1.7. Let ψ be a representation of a Lie
algebra g on the vector space V , i.e. ψ : g → gl(V ) is a Lie algebra homomorphism.
This homomorphism is in turn assigned a unique unital algebra homomorphism F :
U(g)→ gl(V ). V hence becomes a unital left U(g)-module via

uv = F (u)︸ ︷︷ ︸
∈End(V )

v (1.28)

for all u ∈ U(g) and all v ∈ V .
Conversely, let V be a unital left U(g)-module. We then define

ψ(x)︸︷︷︸
∈End(V )

v = ϕ(x)v (1.29)

for x ∈ g and v ∈ V , which means ψ is a representation of g on the vector space V .
The two constructions are inverse to each other because of F ◦ ϕ = ψ.

We now know that representations of g are mapped in a 1-to-1 fashion to unital left
modules over U(g), which is why the name g-module in Definition 1.17 is justified.

Example 1.3. Let g be a Lie algebra and ρ : g → gl(V ) a representation of g on V .
With ρ(x)v = 0 for all x ∈ g and v ∈ V , ρ becomes a representation of g, the trivial
representation. If in this situation V = {0}, ρ is called the zero representation.
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Definition 1.19. Let g be a Lie algebra and ρ : g→ gl(V ) a representation of g on V .
If a subspace U ⊆ V is ρ(g)-invariant, i.e. ρ(x)u ∈ U for all x ∈ g and all u ∈ U , we say
U is stable under g (or under the action of g on V ). In this case U together with the
restriction of ρ(x) ∈ End(V ) to End(U) is called subrepresentation. If U ( V , we speak
of a proper subrepresentation.

Definition 1.20. Let g be a Lie algebra and ρ : g → gl(V ) a representation of g on
V . Then ρ is called irreducible if for all subspaces U ⊆ V , ρ(g)U ⊆ U implies U = V
or U = {0}. (With other words: V and {0} are the only ρ(g)-invariant subspaces of V .
With yet other words: If ρ has a proper subrepresentation, then this must already be
the zero representation.) If ρ is not irreducible, ρ is called reducible.

Definition 1.21. Let g be a Lie algebra and ρ : g → gl(V ) a representation of g on
V and π : g → gl(W ) a representation of g on W . A linear map ϕ : V → W is called
homomorphism of representations if

ϕ(ρ(x)v) = π(x)ϕ(v) (1.30)

for all x ∈ g, v ∈ V .
If in the above situation ϕ is even an isomorphism of vector spaces, then the two

representations are called isomorphic. If V = W , then an isomorphism from V to
W corresponds to a change of basis in V . We therefore also speak of equivalence of
representations.

Definition 1.22. Let g be a Lie algebra and ρ : g→ gl(V ) a representation of g on V .
If ρ is a direct sum of irreducible representations of g, ρ is called completely reducible
(also called semisimple sometimes). In particular every irreducible representation is fully
reducible.

A representation ρ : g → gl(V ) is completely reducible if and only if there exists a
decomposition V = U1 ⊕ . . .⊕ Uk of V into g-stable subspaces U1, . . . , Uk such that the
subrepresentations on them are irreducible.

Definition 1.23. Let g be a Lie algebra and ρ : g → gl(V ) a representation of g on
V . If ρ can be decomposed into a non-trivial direct sum of (not necessarily irreducible)
representations, ρ is called decomposable. Else ρ is called indecomposable.

Definition 1.24. Let g be a Lie algebra and ρV : g→ gl(V ) a representation of g on V
and ρW : g→ gl(W ) a representation of g on W .

The direct sum representation ρ = ρV ⊕ ρW : g→ gl(V ⊕W ) is defined by

ρ(x)(v + w) = ρV (x)v + ρW (x)w (1.31)

for all x ∈ g, v ∈ V,w ∈W .
The tensor product representation π = ρV ⊗ ρW : g→ gl(V ⊗W ) is defined by

π(x)(v ⊗ w) = ρV (x)v ⊗ w + v ⊗ ρW (x)w (1.32)

for all x ∈ g, v ∈ V,w ∈W .
It is easy to see that these are indeed representations of g.
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Definition 1.25. Let g be a Lie algebra. Then ad : g→ gl(g) defined by

ad(x)y = [x, y] (1.33)

for all x, y ∈ g is a representation of g on g, the adjoint representation of g. (In the
expression gl(g), g is viewed as a vector space.) Moreover ad(x) ∈ D1g for all x ∈ g.

If g is n-dimensional and if we choose a basis {l1, . . . , ln} of g, then the representation
matrices of the basis elements can be given by the structure constants:

ad(li) =
(
fkij

)
k,j=1,...n

(1.34)

1.4 Examples

Example 1.4. Let us look at a classical example of a Lie algebra and its representations.
sl2(C) is the Lie algebra of the traceless complex 2 × 2-matrices with the commutator
as Lie bracket, as we have already studied in Example 1.2. We can also choose another
often used basis1 namely

a1 =
1

2

(
0 i
i 0

)
, a2 =

1

2

(
0 1
−1 0

)
and a3 =

1

2

(
i 0
0 −i

)
. (1.35)

The following elementary commutation relations hold

[a1, a2] = −a3, [a2, a3] = −a1 and [a3, a1] = −a2 (1.36)

or in short
[ai, aj ] = −ε k

ij ak, (1.37)

where ε k
ij = εijk is the Levi-Civita symbol with three indices.2 The structure constants

are hence given by
fkij = −ε k

ij . (1.38)

The following holds:

Theorem 1.2. To every non-negative integer or half-integer number j, i.e. j ∈ 1
2Z≥0

there is a (unique up to isomorphism) irreducible (2j + 1)-dimensional representation
ρj of sl2(C), i.e. a representation over a C-vector space Vj of dimension 2j + 1 (here:
Vj = C2j+1).

We can chose an orthonormal basis
{
ψjm

∣∣∣m = −j,−j + 1, . . . , j − 1, j
}

of the repre-

sentation space Vj such that:

1The matrices a1, a2, a3 are related to the Pauli matrices σ1 =

(
0 1
1 0

)
, σ2 =

(
0 −i
i 0

)
and σ3 =(

1 0
0 −1

)
via ai = − i

2
σi (i = 1, 2, 3). The Pauli matrices fulfil the commutation relations [σi, σj ] =

2iε k
ij σk.

2In the whole text we will not make a distinction between upper and lower indices but for aesthetic
reasons we will write the indices always in a way that a sum according to the Einstein summation
convention is over an upper and a lower index.
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1. If we define
Ai = ρj(ai) ∈ End(Vj) (1.39)

for i = 1, 2, 3 and
A2 = A2

1 +A2
2 +A2

3 ∈ End(Vj), (1.40)

the basis vectors satisfy the eigenvalue equations

A2ψjm = j(j + 1)ψjm (1.41)

and
A3ψ

j
m = mψjm. (1.42)

2. W.r.t. to the basis
{
ψj−j , ψ

j
−j+1, . . . , ψ

j
j−1, ψ

j
j

}
of Vj the representations ρj(ai)

have the following matrix structure:

ρj(a1)m′m =
1

2
i
(
δm′,m+1

√
(j −m) (j +m+ 1) + δm′,m−1

√
(j +m) (j −m+ 1)

)
,

ρj(a2)m′m =
1

2

(
δm′,m+1

√
(j −m) (j +m+ 1)− δm′,m−1

√
(j +m) (j −m+ 1)

)
,

ρj(a3)m′m = imδm′m.

(1.43)

The Lie algebra sl2(C) is of importance in physics since it is isomorphic to the com-
plexification su(2)C of the real Lie algebra su(2). su(2) is the Lie algebra of complex,
traceless, anti-hermitian3 2× 2-matrices over R with the commutator as Lie bracket.

Example 1.5. We can also look at sl2(C) with the basis {H,X, Y } from Example 1.2.
With this basis we can again study irreducible representations of sl2(C) of dimension
2j + 1 for j ∈ 1

2C≥0 (these are of course isomorphic to the representations in the above
Example 1.4). The following holds:

Theorem 1.3. For all j ∈ 1
2Z≥0 there is a (unique up to isomorphism) irreducible

representation πj of sl2(C) on a vector space Vj of dimension 2j + 1 (this vector space
shall have the basis {v−j , v−j+1, . . . , vj}) and the following holds:

1. πj(H)vm = mvm for all m = −j,−j + 1, . . . , j,

2. πj(X)vm = vm+1 for all m = −j, . . . , j − 1 and π(X)vj = 0,

3. πj(Y )vm = (m+ j)(j −m+ 1)vm−1 for all m = −j + 1, . . . , j and π(Y )v−j = 0.

Example 1.6. Let us also look at tensor product representations of sl2(C). Let two rep-
resentations πj1 and πj2 on Vj1 and Vj2 respectively be given as in the above Example 1.5.

3In particle physics one often adds a factor i in front of all the basis elements of the Lie algebra such
that the matrices are now hermitian instead of anti-hermitian.
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We can then look at the (2j1 + 1)(2j2 + 1)-dimensional tensor product representation
π(j1,j2) = πj1 ⊗ πj2 on V(j1,j2) := Vj1 ⊗ Vj2 , which is defined by

π(j1,j2)(v ⊗ v′) = πj1(x)v ⊗ v′ + v ⊗ πj2(x)v′ (1.44)

for all x ∈ g, v ∈ Vj1 , v′ ∈ Vj2 . One can show:

Theorem 1.4. The representation π(j1,j2) = πj1 ⊗ πj2 on V(j1,j2) := Vj1 ⊗ Vj2 of sl2(C)
has the following decomposition:

π(j1,j2)
∼= π|j1−j2| ⊕ π|j1−j2|+1 ⊕ . . .⊕ πj1+j2 . (1.45)

We thus see that π(j1,j2) is in general not irreducible but can be decomposed into a
direct sum of irreducible components. In this decomposition all the irreducible repre-
sentations πj with j = |j1 − j2| , |j1 − j2| + 1, . . . , j1 + j2 appear. The change of basis
matrices, which are needed to get from the tensor product basis of V(j1,j2) to the basis in
which the representation matrices have a block diagonal structure where each block cor-
responds to a term in the above decomposition, are given in terms of the Clebsch–Gordan
coefficients.
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2 Lie Superalgebras

Analogously to Lie algebras we can introduce the more general notion of Lie superal-
gebras. Here we introduce a distinction between even and odd elements in the vector
space which is then made a Lie superalgebra. A detailed introduction to the theory of
Lie superalgebras is found in [Kac77]. An extensive summary of Lie superalgebra related
notions is given in [FSS96].

2.1 Basics

Definition 2.1. A super vector space V is a Z2-graded vector space, i.e. a vector space
V with a direct sum decomposition

V = V0 ⊕ V1, (2.1)

where 0, 1 ∈ Z2.
An element in x ∈ V is called homogeneous, if x ∈ V0 or x ∈ V1. We write |x| for

the degree of a homogeneous element x, i.e. |x| = 0 for x ∈ V0 and |x| = 1 for x ∈ V1.
Elements in V0 are called even (or bosonic), those in V1 odd (or fermionic).

We define the superdimension of V as (dim (V0) ,dim (V1)).

Definition 2.2. A superalgebra A over a field K is a K-super vector space A = A0⊕A1

together with a bilinear binary operation

∗ : A×A→ A,

such that
Ai ∗Aj ⊆ Ai+j (2.2)

with i, j ∈ Z2.
If the binary operation is in addition associative, then A is called an associative

superalgebra A over the field K.

Definition 2.3. A Lie superalgebra g over a field K is a superalgebra g = g0⊕g1 with a
binary operation [·, ·], called Lie superbracket, which in satisfies the following conditions:

1. (Super anti-symmetry)

[x, y] = −(−1)|x||y| [y, x] (2.3)

for all homogeneous x, y ∈ g.
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2. (Super Jacobi identity)

(−1)|z||x| [x, [y, z]] + (−1)|y||z| [z, [x, y]] + (−1)|x||y| [y, [z, x]] = 0 (2.4)

for all homogeneous x, y, z ∈ g.

Remark 2.1. The super anti-symmetry (1) in the above definition implies for a field
K with char(K) 6= 2 that

[x, x] = 0 (2.5)

for all homogeneous x ∈ g with |x| = 0.
The super Jacobi identity (2) implies for a field K with char(K) 6= 3 that

[x, [x, x]] = 0 (2.6)

for all homogeneous x ∈ g.

Remark 2.2. Let g = g0⊕g1 be a Lie superalgebra with finite vector space dimension. If
we choose a basis {l1, l2, . . . , lm} of g0 and {lm+1, lm+2, . . . , lm+n} of g1, we can evaluate
the Lie superbracket for pairs of basis vectors and write them again in terms of basis
vectors (as for Lie algebras). This gives

[li, lj ] =

m+n∑
k=1

fkijlk = fkijlk (2.7)

for 1 ≤ i, j ≤ m + n, which are the defining relations for the structure constants fkij
(1 ≤ i, j, k ≤ m+ n).

Also a Lie superalgebra is uniquely determined by choosing a basis and giving the
structure constants.

Remark 2.3. The following relations for the structure constants follow directly from
the defining relations of a Lie superalgebra:

fkij = −(−1)|i||j|fkji (2.8)

for all 1 ≤ i, j, k ≤ m+ n,

(−1)|b||c|fdabf
e
cd + (−1)|c||a|fdbcf

e
ad + (−1)|a||b|fdcaf

e
bd = 0 (2.9)

for all 1 ≤ a, b, c, e ≤ m+ n and

fkij 6= 0 =⇒ |i|+ |j| = |k| ∈ Z2 (2.10)

for all 1 ≤ i, j, k ≤ m+ n. Here we wrote short

|i| := |li| =
{

0 for 1 ≤ i ≤ m
1 for m+ 1 ≤ i ≤ m+ n

.
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Remark 2.4. Given a Lie superalgebra g = g0 ⊕ g1, we can look at the restriction of
the Lie superbracket on the even part g0, which is sensible because of relation 2.2. This
makes g0 a Lie algebra, since the Lie superbracket simplifies to a Lie bracket. Hence a Lie
superalgebra is a generalisation of a Lie algebra where a Lie algebra is a Lie superalgebra
with dim(g1) = 0.

Remark 2.5. Analogously to Remark 1.4, starting from an associative superalgebra
A = A0 ⊕A1 with binary operation ∗, we can define the supercommutator by

[x, y] = x ∗ y − (−1)|x||y|y ∗ x (2.11)

for all homogeneous elements x, y ∈ A (defines [·, ·] by linearity for all elements in A).
One readily checks that with this construction A becomes indeed a Lie superalgebra
with the supercommutator as Lie superbracket.

Remark 2.6. If one looks at the definition of the supercommutator in the above Re-
mark 2.5, one realises that this is just the commutator for two even elements or one even
and one odd element. For two odd elements one has the anticommutator {·, ·}, defined
for an associative algebra analogously to the commutator as {a, b} = a ∗ b+ b ∗ a.

Remark 2.7. Let V = V0⊕ V1 be a K-super vector space. Then there is a natural way
of introducing a Z2-grading on the K-vector space End(V ). If we look at an arbitrary
endomorphism T , this can uniquely be written as

T = T00 + T01 + T10 + T11

where for xi ∈ Vi, i ∈ Z2:
Tij(x0 + x1) = Tijxi ∈ Vj ,

i.e. Tij maps elements in Vi to elements in Vj and elements in Vi+1 to 0. T00 and T11

conserve the degree of a homogeneous element in V , whereas T01 and T10 reverse the
degree. We set T0 = T00 + T11 and T1 = T01 + T10. We can then define the subspaces
End0(V ) and End1(V ) as

End(V )i = {Ti(T ) ∈ V |T ∈ V } .

With the above considerations the following holds:

End(V ) = End(V )0 ⊕ End(V )1. (2.12)

Remark 2.8. Given a super vector space V = V0 ⊕ V1 and the corresponding super
vector space End(V ) = End(V )0 ⊕ End(V )1 as in Remark 2.7. End(V ) together with
the composition ◦ as binary operation forms a superalgebra. In particular, as can be
easily checked, condition (2.2) is satisfied.

Definition 2.4. We define analogously to Definition 1.3 starting from an associative
superalgebra End(V ) = End(V )0⊕End(V )1 the Lie superalgebra gl(V0, V1) by using the
supercommutator defined in Remark 2.5.

If in particular V0 = Km and V1 = Kn (i.e. V has superdimension (m,n)), we write
gl(V0, V1) = gl(m|n).
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Example 2.1. A very simple Lie superalgebra which is not a Lie algebra is gl(1|1),
in the following viewed over the field C. The underlying vector space V = V0 ⊕ V1 is

2-dimensional with V0 = C
(

1
0

)
and V1 = C

(
0
1

)
. An arbitrary complex 2 × 2-matrix

can be decomposed as follows:(
a b
c d

)
=

(
a 0
0 d

)
+

(
0 b
c 0

)
,

a, b, c, d ∈ C. The first matrix forms the even part, hence lies in gl(1|1)0 and the second
matrix defines the odd part and lies in gl(1|1)1. We can choose

C =

(
1 0
0 1

)
and H =

1

2

(
1 0
0 −1

)
as basis for the even subspace gl(1|1)0 and

X =

(
0 1
0 0

)
and Y =

(
0 0
1 0

)
as basis for the odd subspace gl(1|1)1.

If we write the supercommutator explicitly as commutator [·, ·] and anti-commutator
{·, ·}, we have the following elementary (anti)-commutation relations

[H,H] = [H,C] = [C,C] = 0,

[H,X] = X, [H,Y ] = −Y, [C,X] = [C, Y ] = 0,

{X,Y } = C and {X,X} = {Y, Y } = 0.

We cab further decompose g by setting g(−1) := CY , g(0) := g0 = CC + CH and
g(1) := CX. Then{

g(−1), g(1)

}
⊆ g(0) and

{
g(−1), g(−1)

}
=
{
g(1), g(1)

}
= 0 (2.13)

hold, which makes g = g(−1) ⊕ g(0) ⊕ g(1) a Z-graded algebra. One says g is of type I.
(In general a Lie superalgebra g = g(−1) ⊕ g(0) ⊕ g(1), which is a Z-graded algebra with
that decomposition is called Lie superalgebra of type I.)

Definition 2.5. A Lie superalgebra homomorphism ϕ is a K-linear map

ϕ : g→ h

from a Lie superalgebra
(
g = g0 ⊕ g1, [·, ·]g

)
to a Lie superalgebra

(
h = h0 ⊕ h1, [·, ·]h

)
(both over the same field K) with

ϕ
(

[x, y]g

)
= [ϕ (x) , ϕ (y)]h (2.14)

for all x, y ∈ g and
ϕ(gi) ⊆ hi (2.15)

for i ∈ Z2.
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Definition 2.6. A Z2-graded subspace h = h0 ⊕ h1 of a Lie superalgebra g = g0 ⊕ g1

with h0 ⊆ g0 and h1 ⊆ g1, which is closed under the Lie superbracket, i.e.

[x, y] ∈ h (2.16)

for all x, y ∈ h is called subalgebra of g. If h satisfies even

[x, y] ∈ h (2.17)

for all x ∈ g, y ∈ h, then h is called an ideal in g.

Definition 2.7. Let i = i0 ⊕ i1 be an ideal in the Lie superalgebra g = g0 ⊕ g1. Then
analogously to the case of Lie algebras we can define a Lie superalgebra on the quotient
space g/i = g0/i0︸ ︷︷ ︸

=(g/i)0

⊕ g1/i1︸ ︷︷ ︸
=(g/i)1

by

[x+ i, y + i] = [x, y] + i,

the quotient algebra.

Remark 2.9. Let ϕ : g → h be a Lie superalgebra homomorphism. Then ker(ϕ) is an
ideal in g. Conversely, to every ideal there is the canonical projection g→ g/i, which has
i as kernel. Hence ideals are exactly the kernels of Lie superalgebra homomorphisms.

Definition 2.8. We define and construct the universal enveloping algebra for Lie super-
algebras analogously to Definition 1.7 and Remark 1.7 for Lie algebras by replacing the
commutator by the supercommutator and look at representations and homomorphisms
of Lie superalgebras accordingly.

2.2 Types of Lie Superalgebras

Definition 2.9. A Lie superalgebra g = g0 ⊕ g1 is called simple if {0} and g are the
only ideals in g.

Definition 2.10. The terms direct sum, nilpotent, Cartan subalgebra and solvable for
Lie superalgebras are defined formally identically to the case of ordinary Lie algebras
(cf. Definitions 1.11, 1.13, 1.14 and 1.15).

Definition 2.11. A Lie superalgebra g = g0 ⊕ g1 is called semisimple if it has no
non-trivial solvable ideals g.

Remark 2.10. We should remark that in contrast to Lie algebras (cf. Remark 1.8)
semisimplicity of a Lie superalgebra does not imply that the Lie superalgebra can be
written as a direct sum of simple Lie superalgebras.
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2.3 Representations of Lie Superalgebras

Definition 2.12. Let g = g0⊕g1 be a Lie superalgebra over the field K. Let V = V0⊕V1

be a K-super vector space and gl(V0, V1) the canonical endomorphism Lie superalgebra.
A Lie superalgebra homomorphism

ρ : g→ gl(V0, V1)

is called representation of the Lie superalgebra g. V together with the representation
ρ on V is again called g-module and the action of g on V is given by · : g × V → V ,
x · v = ρ(x)v.

If in particular gl(V0, V1) = gl(m|n) (i.e. V0 = Km and V1 = Kn), we speak of a
(m,n)-dimensional representation of g.

Remark 2.11. We have seen in Remark 2.4 that the even part g0 of a Lie superalgebra
becomes an ordinary Lie algebra with the restriction of the Lie superbracket to it. Fur-
thermore, because of [g0, g1] ⊆ g1 we can view the odd part g1 as g0-module with the
representation ρ : g0 → End (g1) defined by

ρ(x)y = [x, y] (2.18)

for all x ∈ g0, y ∈ g1.

Definition 2.13. The terms subrepresentation, irreducible, homomorphism of repre-
sentations, completely reducible, decomposable, direct sum representation and adjoint
representation for representations of Lie superalgebras are defined formally identically
to the case of ordinary Lie algebras (cf. Definitions 1.19, 1.20, 1.21, 1.22, 1.23, 1.24 and
1.25).

Definition 2.14. Let V = V0 ⊕ V1 and W = W0 ⊕W1 be super vector spaces. Then
the tensor product space V ⊗W becomes a super vector space with the Z2-grading

(V ⊗W )0 := (V0 ⊗W0)⊕ (V1 ⊗W1) ,

(V ⊗W )1 := (V0 ⊗W1)⊕ (V1 ⊗W0)
(2.19)

and is called the tensor product super vector space.

Definition 2.15. Let g = g0 ⊕ g1 be a Lie superalgebra and ρV : g → gl(V0, V1) a
representation g of V = V0 ⊕ V1 and ρW : g → gl(W0,W1) a representation of g on
W = W0 ⊕W1.

The tensor product representation π = ρV ⊗ ρW : g → gl((V ⊗W )0 , (V ⊗W )1) on
V ⊗W is defined by

π(x)(v ⊗ w) = ρV (x)v ⊗ w + (−1)|v|v ⊗ ρW (x)w (2.20)

for all x ∈ g and homogeneous v ∈ V,w ∈ W . This indeed defines a representation of g
on the super vector space V ⊗W .
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2.4 Examples

Example 2.2. In the following we want to study the (irreducible) representations of
g = gl(1|1) (cf. Example 2.1).

First, there is a 1-dimensional atypical representation ρλ of g on V = V0 = C1 = C
(V1 = {0}). It is given by

ρλ(H) = λ and ρλ(C) = ρλ(X) = ρλ(Y ) = 0 (2.21)

with λ ∈ C = End(C1).
We now construct a 2-dimensional typical representation ρΛ, Λ = (λ, c), of g on the

vector space V = Cv0 + Cv1, where v0, v1 ∈ V are linearly independent. Let the action
of g0 be given by

H · v0 = λv0 (2.22)

and
C · v0 = cv0 (2.23)

with c, λ ∈ C, c 6= 0. X shall act trivially on v0, i.e.

X · v0 = 0. (2.24)

Further let v1 be defined by
v1 := Y · v0. (2.25)

The representation is now already uniquely determined. The representation matrices
w.r.t. the basis {v0, v1} of V are:

ρΛ(H) =

(
λ 0
0 λ− 1

)
, ρΛ(C) =

(
c 0
0 c

)
, ρΛ(X) =

(
0 c
0 0

)
and ρΛ(Y ) =

(
0 0
1 0

)
.

(2.26)
It is clear that V0 = Cv0 and V1 = Cv1.

Proposition 2.1. ρΛ is irreducible if and only if c 6= 0.

Proof. Let c = 0. Then all the representation matrices ρΛ(x) for x ∈ g have lower
triangular form since this is the case for the representation matrices of all basis elements.
Then Cv1 is a ρΛ(g)-invariant subspace.

Let conversely c 6= 0. Because of ρΛ(Y )v0 = v1 and ρΛ(X)v1 = cv0 it is easy to show
that there is no non-trivial , i.e. 1-dimensional, ρΛ(g)-invariant subspace of V .

For c = 0 the representation ρΛ = ρ(λ,0) is hence reducible. It is however not decom-
posable since for this to be true also a complement of Cv1 would have to be stable under
g. (There would have to be a basis of V w.r.t. which all the representation matrices
of elements in g are diagonal.) But because of ρΛ(Y )v0 = v1 this is not possible. But
we can say ρΛ = ρ(λ,0) consists of two atypical representations ρλ and ρλ−1, which are
connected via the action of Y . This can be illustrated in the following diagram:

ρ(λ,0) : ρλ
Y // ρλ−1
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Further representations ρ′Λ which are isomorphic to ρΛ can be found by looking at an
arbitrary automorphism ϕ : V → V and choosing ρ′Λ such that

ϕ(ρΛ(x)v) = ρ′Λ(x)ϕ(v) (2.27)

for all x ∈ g, v ∈ V , i.e. one chooses

ρ′Λ(x)v = ϕ (ρΛ (x))ϕ−1(v). (2.28)

W.r.t. a basis this corresponds to a similarity transformation of the representation
matrix, i.e.

ρ′Λ (x) = SρΛS
−1 (2.29)

with S ∈ GL2(C). (The same similarity transformation is obtained by leaving the
representation ρΛ unchanged and conducting an appropriate change of basis on V .)

With S =

(
0 1
1
c 0

)
we obtain

ρ′Λ(H) =

(
λ− 1 0

0 λ

)
, ρ′Λ(C) =

(
c 0
0 c

)
, ρ′Λ(X) =

(
0 0
1 0

)
and ρ′Λ(Y ) =

(
0 c
0 0

)
,

(2.30)

and hence X and Y have changed their roles or with S =

(
0 1
1 0

)
one obtains

ρ′′Λ(H) =

(
λ− 1 0

0 λ

)
, ρ′′Λ(C) =

(
c 0
0 c

)
, ρ′′Λ(X) =

(
0 0
c 0

)
and ρ′′Λ(Y ) =

(
0 1
0 0

)
.

(2.31)
Let us compare the representations ρΛ and ρ′Λ for c = 0. It is clear that the represen-

tations are not isomorphic any more for c = 0. For ρ′Λ we get analogously as for ρΛ the
following diagram:

ρ′(λ,0) : ρλ ρλ−1
Xoo

Let us finally look at the tensor product representation ρ⊗Λ1,Λ2
:= ρΛ1 ⊗ ρΛ2 of V ⊗

V where Λ1 = (λ1, c1), Λ2 = (λ2, c2). The representation is calculated according to
Definition 2.15. If we choose the standard basis {v0 ⊗ v0, v0 ⊗ v1, v1 ⊗ v0, v1 ⊗ v1} for
V ⊗ V , the representation matrices have the form

ρ⊗Λ1,Λ2
(H) =


λ1 + λ2 0 0 0

0 λ1 + λ2 − 1 0 0
0 0 λ1 + λ2 − 1 0
0 0 0 λ1 + λ2 − 2

 ,

ρ⊗Λ1,Λ2
(C) =


c1 + c2 0 0 0

0 c1 + c2 0 0
0 0 c1 + c2 0
0 0 0 c1 + c2


(2.32)
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as well as

ρ⊗Λ1,Λ2
(X) =


0 c2 c1 0
0 0 0 c1

0 0 0 −c2

0 0 0 0

 ,

ρ⊗Λ1,Λ2
(Y ) =


0 0 0 0
1 0 0 0
1 0 0 0
0 1 −1 0

 .

(2.33)

Proposition 2.2. For c1 + c2 6= 0 ρ⊗Λ1,Λ2
= ρ(λ1,c1) ⊗ ρ(λ2,c2) is decomposable and

ρ(λ1,c1) ⊗ ρ(λ2,c2)
∼= ρ(λ1+λ2,c1+c2) ⊕ ρ(λ1+λ2−1,c1+c2). (2.34)

Proof. To show the assertion we have to find an appropriate basis of V ⊗ V such that
the representation matrices are in 2 × 2-block diagonal form. To find such a basis, we
look at the following chains starting from the vectors which are annihilated by X and
Y :

0 v0 ⊗ v0
Xoo

Y
��

0

v0 ⊗ v1 + v1 ⊗ v0

Y
��

c1v0 ⊗ v1 − c2v1 ⊗ v0

X

OO

0 v1 ⊗ v1

X

OO

Y // 0

We choose the vectors appearing above (after normalisation) as new basis, i.e.{
v0 ⊗ v0, v0 ⊗ v1 + v1 ⊗ v0,

c1

c1 + c2
v0 ⊗ v1 −

c2

c1 + c2
v1 ⊗ v0, v1 ⊗ v1

}
.

This gives the representation matrices

ρ⊗Λ1,Λ2
(X) =


0 c1 + c2 0 0
0 0 0 0
0 0 0 c1 + c2

0 0 0 0

 ,

ρ⊗Λ1,Λ2
(Y ) =


0 0 0 0
1 0 0 0
0 0 0 0
0 0 1 0

 .

(2.35)

ρ⊗Λ1,Λ2
(H) and ρ⊗Λ1,Λ2

(C) stay obviously unchanged. The assertion can now be read
off.
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For c1 + c2 = 0 ρ⊗Λ1,Λ2
is indecomposable. We can however again view it as consisting

of the atypical representations ρλ−2, 2 times ρλ−1 and ρλ where we set λ = λ1 +λ2. The
structure is shown in the following diagram:

ρλ
Y

$$
ρλ−1

X
::

Y

$$

ρλ−1

ρλ−2

X
::
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3 Lie Algebra Cohomology

In this chapter we want to deal with the cohomology of Lie algebras. For this we define
starting from a Lie algebra an operator Q on a suitable vector space with Q2 = 0.

An introduction to the theory of Lie algebras and the corresponding cohomology is
given in [Kna88].

In this chapter and in the following one we will only study the case of the field K = C,
which in particular means it has characteristic zero.

3.1 Basics

Given a finite-dimensional Lie algebra g with basis {l1, . . . , ln} and structure constants{
fkij

∣∣∣ 1 ≤ i, j, k ≤ n}. We will study a vector space, which we shall call Λ(g) for the

moment and which is spanned by the vacuum state |0〉 and the vectors which arise when
applying the operators bi ∈ End(Λ(g)) and cj ∈ End(Λ(g)) (1 ≤ i, j ≤ n) and arbitrary
products of those on |0〉. The bi’s and cj ’s have to fulfil the conditions

{
bi, c

j
}

= δji :=

{
1 for i = j
0 for i 6= j

(3.1)

and
{bi, bj} =

{
ci, cj

}
= 0 (3.2)

for all 1 ≤ i, j ≤ n. In addition
bi |0〉 = 0 (3.3)

shall hold for all 1 ≤ i ≤ n, i.e. the bi’s annihilate the vacuum. The elements in Λ(g)
are called (fermionic) ghost fields. The bi’s are called annihilation operators, the cj ’s are
called creation operators.

In particular, cjcj = 0 holds, which is why it is easy to see that dim(Λ(g)) = 2n. A
basis of Λ(g) is given by

{|0〉︸︷︷︸n
0


, c1 |0〉 , . . . , cn |0〉︸ ︷︷ ︸n

1


, c1cn |0〉 , c1c3 |0〉 , . . . , cn−1cn |0〉︸ ︷︷ ︸n

2


, . . . , c1c2 . . . cn |0〉

}︸ ︷︷ ︸n
n


.

(We explicitly assume all these vectors to be linearly independent.)
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We also see now that there is a natural way of making the vector space Λ(g) a graded
(i.e. Z-graded) vector space by setting

Λ0(g) = span {|0〉} ,
Λ1(g) = span

{
c1 |0〉 , . . . , cn |0〉

}
,

...

Λn(g) = span
{
c1c2 . . . cn |0〉

}
.

(3.4)

(For i ∈ Z \ {0, 1, . . . , n} is Λi(g) = {0}.) Then dim(Gi) =

(
n
i

)
with the convention(

n
i

)
= 0 for i ∈ Z \ {0, 1, . . . , n}. In addition

Λ(g) =
⊕
i∈Z

Λi(g) =

n⊕
i=0

Λi(g) = Λ0(g)⊕ Λ1(g)⊕ . . .⊕ Λn(g)

and

dim(Λ(g)) =
∑
i∈Z

dim(Λi(g)) =
n∑
i=0

dim(Λi(g)) =
n∑
i=0

(
n
i

)
= 2n

hold.
The index i of Λi(g) is called ghost number. We define the ghost number operator U

by

U =
n∑
i=1

cibi = cibi. (3.5)

Then
Ux = ix (3.6)

holds for all x ∈ Λi(g) as is easily checked.
We can also define the above vector space Λ(g) rigorously. It also explains the origin

of the name Λ(g).

Definition 3.1. Let V be a vector space over the field K. Further, let for k ∈ N

T k(V ) =
k⊗
i=1

V = V ⊗ . . .⊗ V︸ ︷︷ ︸
k−fold

(3.7)

be the k-fold tensor product of V with itself (with the convention T 0(V ) = K and
T 1(V ) = V ).

Let the subspace Jk(V ) ⊆ T k(V ) be given by

Jk(V ) := span {v1 ⊗ . . .⊗ vk |v1, . . . , vk ∈ V,∃i, j ∈ {1, . . . , k} : vi = vj } , (3.8)

i.e. Jk(V ) is spanned by elementary tensors having two equal factors. To each k ∈ N
the exterior power is defined as the quotient space

Λk(V ) = T k(V )/Jk(V ). (3.9)
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Definition 3.2. The direct sum

J(V ) =
∞⊕
k=0

Jk(V ) (3.10)

is a two-sided, homogeneous ideal in the tensor algebra

T (V ) =
∞⊕
k=0

T k(V ). (3.11)

(Alternatively one can define J(V ) as the ideal in T (V ), generated by all the elements of
the form v ⊗ v with v ∈ V .) The exterior algebra (or Grassmann algebra) of the vector
space V is the quotient algebra

Λ(V ) := T (V )/J(V ). (3.12)

Viewed as a vector space it is isomorphic to

∞⊕
k=0

Λk(V ) =
∞⊕
k=0

T k(V )/Jk(V ). (3.13)

Definition 3.3. The product of two elements a, b ∈ Λ(V ) in the exterior algebra is
written as a ∧ b and

a ∧ b = a⊗ b+ J(V ). (3.14)

Remark 3.1. By definition of J(V ) the exterior product is alternating on elements in
V = T 1(V ) = Λ1(V ), i.e. we have

x ∧ x = 0 (3.15)

for all x ∈ V . This implies the anticommutativity, i.e.

x ∧ y = −y ∧ x (3.16)

for all x, y ∈ V . (For char(K) 6= 2 from the anticommutativity of a K-bilinear map it
follows that is is alternating. Therefore for char(K) 6= 2 we can define the ideal J(V ) as
the ideal in T (V ) generated by the elements of the form x⊗ y+ y⊗ x with x, y ∈ V . In
the super case we will use a generalisation of this definition of J(V ).)

More generally the exterior product is anticommutative graded, i.e.

a ∧ b = (−1)klb ∧ a (3.17)

for all a ∈ Λk(V ), b ∈ Λl(V ).

Remark 3.2. As we have already seen, the exterior algebra can be decomposed into a
direct sum of components of different degrees. Λk(V ) is the subspace of degree k and is
generated by all exterior products v1∧v2∧ . . .∧vk consisting of k factors vi ∈ V . (These
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products are called k-multivectors. It follows that every element in Λ(V ) can be written
as a sum of multivectors.) If dim(V ) = n and {e1, . . . , en} is a basis of V , then

{ei1 ∧ . . . ∧ eik | 1 ≤ i1 < . . . < ik ≤ n}

is a basis of Λk(V ) (and Λk(V ) = {0} for k > n). Then

dim
(

Λk (V )
)

=

(
n
k

)
(3.18)

holds and
dim (Λ (V )) = 2n. (3.19)

The exterior algebra together with the exterior product has the structure of a Z-graded
algebra. In particular

Λk(V ) ∧ Λp(V ) ⊆ Λk+p(V ) (3.20)

holds. (The exterior algebra has a grading which is inherited from the tensor algebra
because it is formed as the quotient by a homogeneous ideal. For the universal enveloping
algebra (cf. Remark 1.7) this was not the case.)

Let us return to our original description. We identify the vector space we had simply
called Λ(g) with the vector space Λ(g) by the above construction via

ci1 . . . cik |0〉 = li1 ∧ . . . ∧ lik (3.21)

for i1, . . . , ik ∈ {1, . . . , n}. (Here |0〉 = 1 ∈ K is the empty exterior product.)
This corresponds to the following definitions for the creation and annihilation opera-

tors:

Creation Operators: Let lα1∧lα2∧. . .∧lαk ∈ Λk(g) with αj ∈ {1, . . . , n} for k = 1, . . . , k
and assume that none of the αj ’s appear twice since otherwise the state vanishes.
Define for i ∈ {1, . . . , n}:

ci (lα1 ∧ . . . ∧ lαk) =

{
li ∧ lα1 ∧ . . . ∧ lαk if αj 6= i for all j

0 if αj = i for a j.
(3.22)

Annihilation operators: Let lα1 ∧ lα2 ∧ . . . ∧ lαk ∈ Λk(g) with αj ∈ {1, . . . , n} for k =
1, . . . , k and assume that none of the αj ’s appears twice since otherwise the state
vanishes. Define for i ∈ {1, . . . , n}:

bi (lα1 ∧ . . . ∧ lαk) =

=

{
(−1)j−1lα1 ∧ . . . lαj−1 ∧ lαj+1 ∧ . . . ∧ lαk if αj = i for a j

0 if αj 6= i for all j.

(3.23)

Herefrom we can conversely derive the relations for the creation and annihilation
operators (3.1, 3.2, 3.3) by using the properties of the exterior product:
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Proposition 3.1. Let ci and bi (i = 1, . . . , n) be defined as above. The the creation and
annihilation operators are well-defined as linear operators in End(Λ(g)) and

{bi, cj} = δji (3.24)

as well as
{bi, bj} = {ci, cj} = 0 (3.25)

hold for all i, j ∈ {1, . . . , n}.

Proof. The proof is left to the reader.

The next theorem shows that the Lie algebra g and the vector space Λ(g) are intimately
related namely that Λ(g) can be made a (non-trivial) g-module.

Theorem 3.1. The Lie algebra g has a representation π on Λ(g) given by

λα := π(lα) := −fγαβc
βbγ = fγβαc

βbγ ∈ End(Λ(g)) . (3.26)

In particular
[λα, λβ] = fγαβλγ . (3.27)

Proof. The map π is defined on the basis vectors of g and hence defines a unique linear
map π : g → End(Λ(g)) = gl(Λ(g)). We have to show that this map respects the Lie
bracket (here: the commutator) on g and gl(Λ(g)). Obviously, this follows from

[λα, λβ] = fγαβλγ ,

which is what we will show in the following.
We have

[λα, λβ] =
[
−fναµcµbν ,−fσβρcρbσ

]
= fναµf

σ
βρ (cµbνc

ρbσ − cρbσcµbν) . (3.28)

By application of the anticommutation relations (3.1) and (3.2) one gets

[λα, λβ] = fναµf
σ
βρ (cµ (δρν + cρbν) bσ − cρ (δµσ + cµbσ) bν)

= fναµf
σ
βρ

(
cµbσδ

ρ
ν +�����cµcρbνbσ − cρbνδµρ −�����cρcµbσbν

)
= fναµf

σ
βνc

µbσ − fναµf
µ
βρc

ρbν

=
(
fναµf

σ
βν − fνβµfσαν

)
cµbσ,

(3.29)

where we have renamed some indices which are summed over in the last step. By
application of the Jacobi identity (cf. (1.7) in Remark 1.3)

fνβµf
σ
αν + fνµαf

σ
βν + fναβf

σ
µν = 0

we finally get
[λα, λβ] = fναβf

σ
µνc

µbσ = −fναβfσνµcµbσ = fναβλν . (3.30)
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Let us look at the Lie algebra g and an arbitrary representation ρ of g on a vector
space V (write Lα := ρ(lα) ∈ End(V )). Furthermore we have the representation π of g
on the vector space Λ(g) (with λα = π(lα) ∈ End(Λ(g))).

The vector space C, on which we want to define the cohomology be defined as C =
V ⊗ Λ(g). Then C becomes a graded vector space by

C = V ⊗ Λ(g) = V ⊗

(
n⊕
i=0

Λi(g)

)
=

n⊕
i=0

(
V ⊗ Λi(g)

)
=

n⊕
i=0

Ci, (3.31)

where we put Ci = V ⊗ Λi(g) (i ∈ Z). (In particular Ci = V ⊗ {0} = {0} for i ∈
Z \ {0, 1, . . . , n}.) C inherits the grading from Λ(g), thus it is ordered by ghost number.

In the following we will define a (linear) operator Q on C with the property

Q2 = 0 (3.32)

and
[IV ⊗ U,Q] = Q, (3.33)

where IV is the identity operator on V and U is the ghost number operator (cf. (3.5))
on Λ(g). The second property implies that Q raises the ghost number by one 1, i.e.

Q(Ci) ⊆ Ci+1 (3.34)

for i ∈ 0, 1, . . . , n. We put
Qi = Q|Ci . (3.35)

Graphically this is written as a sequence:

{0} −→ C0 Q0

−→ C1 Q1

−→ . . .
Qn−1

−→ Cn
Qn−→ {0} . (3.36)

The condition Q2 = 0 then implies that

im
(
Qi−1

)
⊆ ker

(
Qi
)
. (3.37)

If im
(
Qi−1

)
= ker

(
Qi
)
, the above sequence is an exact sequence (in the category of

vector spaces and linear maps).
In general one defines:

Definition 3.4. Let
(
Ck
)
k∈Z be a sequence of K-vector spaces and let

dk : Ck → Ck+1 (3.38)

be a K-vector space homomorphism for all k ∈ Z (called coboundary operator) with
dk+1 ◦dk = 0 for all k ∈ Z. We then call

C =
(
Ck,dk : Ck → Ck+1

)
k∈Z

(3.39)
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0 0

im(Q   )k-1 im(Q )k

Figure 3.1: The k-th position of the cochain complex
(
Ck, Qk

)
k∈Z.

a cochain complex. The situation is depicted in Figure 3.1. An element in Ck is called
k-cochain. If for a cochain ϕ ∈ Ck it holds that dk(ϕ) = 0, then ϕ is called a cocycle.
If there exists a ψ ∈ Ck−1 with dk−1(ψ) = ϕ then ϕ is called a coboundary. Let
Zk(C) = ker(dk) denote the subspace of all cocycles and Bk(C) = im(dk−1) the subspace
of all coboundaries.

We define the k-th cohomological space of the cochain complex C as

Hk(C) = Zk(C)/Bk(C). (3.40)

An element of the cohomological space Hk(C) is called cohomology class. A cochain
complex is called exact at position k if Zk(C) = Bk(C) (iff. Hk(C) = {0}). A cochain
complex is called exact if it is exact at every position. In this case we say the cohomology
is trivial.

We now want to measure how inexact the cochain complex
(
Ci, Qi

)
i∈Z is at position

i. For this we look at the i-th cohomological space

H i = ker
(
Qi
)
/im

(
Qi−1

)
(3.41)

and determine its vector space dimension.
We call H(g, V ) :=

(
H i
)
i∈Z the cohomology of g with coefficients in V .

Remark 3.3. We already know that Λi(g) = {0} and thus Ci = {0} for i ∈ Z \
{1, 2, . . . , n}. Hence H i = {0} / {0} = {0} for i ∈ Z \ {1, 2, . . . , n} and therefore(
Ci, Qi

)
i∈Z is exact at the corresponding positions i. We thus only have to study

H0, H1, . . . ,Hn.

The following theorem shows how one can define an operator Q which fulfils the
conditions (3.32) and (3.32).
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Theorem 3.2. The operator Q defined on C as

Q = ρ(lα)⊗ cα +
1

2
IV ⊗ cαπ(lα)

= Lα ⊗ cα −
1

2
fγαβIV ⊗ c

αcβbγ ,

(3.42)

fulfils
Q2 = 0

and
[IV ⊗ U,Q] = Q.

Proof. For readability we omit the tensor product sign and IV and we will ignore the
order of the factors of the tensor product. We have

[U,Q] = [Lαc
α − 1

2
fγαβc

αcβbγ , U ] = Lα[cα, U ]− 1

2
fγαβ[cαcβbγ , U ]. (3.43)

Furthermore

[U, cα] = [cβbβ, c
α] = cβ [bβ, c

α]︸ ︷︷ ︸
=δαβ

+ [cβ, cα]︸ ︷︷ ︸
=0

bβ = δαβ cc
β = cα (3.44)

and analogously one can show

[cαcβbγ , U ] = cαcβbγ . (3.45)

This proves the second claim.
The first claim is more difficult to show. We have

Q2 =

(
Lαc

α − 1

2
fγαβc

αcβbγ

)(
Lµc

µ − 1

2
fρµνc

µcνbρ

)
= LαLβc

αcβ︸ ︷︷ ︸
=:(1)

− 1

2
fγαβ

(
cαcβbγc

µ + cµcαcβbγ

)
Lµ︸ ︷︷ ︸

=:(2)

+
1

4
fγαβf

ρ
µνc

αcβbγc
µcνbρ︸ ︷︷ ︸

=:(3)

.
(3.46)

We rewrite (2) and get

(2) =
1

2
fγαβ

(
cαcβbγc

µ + cµcαcβbγ

)
Lµ =

1

2
fγαβ

(
cαcβbγc

µ + (−1)2cαcβcµbγ

)
Lµ

=
1

2
fγαβ

(
cαcβbγc

µ + cαcβ
(
δµγ − bγcµ

))
Lµ

=
1

2
fγαβ

(
�����
cαcβbγc

µ − cαcβδµγ −�����
cαcβbγc

µ
)
Lµ

=
1

2
fµαβc

αcβLµ =
1

2
cαcβ[Lα, Lβ] =

1

2
cαcβLαLβ −

1

2
cαcβLβLα

=
1

2
cαcβLαLβ −

1

2
cβcαLαLβ =

1

2
cαcβLαLβ +

1

2
cαcβLαLβ = cαcβLαLβ

= (1).

(3.47)
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Hence (1) and (2) cancel.
To show that (3) = 0 we first observe that from the Jacobi identity

f δβγf
ε
αδ + f δγαf

ε
βδ + f δαβf

ε
γδ = 0 (3.48)

follows that

0 =
(
f δβγf

ε
αδ + f δγαf

ε
βδ + f δαβf

ε
γδ

)
cαcβcγbε

= f δβγf
ε
αδc

αcβcγbε + f δγαf
ε
βδc

αcβcγbε + f δαβf
ε
γδc

αcβcγbε

= f δβγc
βcγf εαδc

αbε + f δγαc
γcαf εβδc

βbε + f δαβc
αcβf εγδc

γbε

= f δβγc
βcγλδ + f δγαc

γcαλδ + fγαβc
αcβλδ

= 3cαcβ[λα, λβ]

(3.49)

and thus
cαcβ[λα, λβ] = 0. (3.50)

On the other hand

cαcβ{λα, λβ} = cαcβλαλβ + cαcβλβλα

= cαcβλαλβ + cβcαλαλβ

= cαcβλαλβ − cαcβλαλβ
= 0,

(3.51)

which also shows
cαcβλαλβ = 0. (3.52)

A short calculation shows
[λα, c

µ] = fµαβc
β. (3.53)

Together this means

4 · (3) = fγαβf
ρ
µνc

αcβbγc
µcνbρ = cαλαc

µλµ = cα
(
fµαβc

β + cµλα

)
λµ

= cαcβ[λα, λβ] + cαcβλαλβ = 0,
(3.54)

which concludes the proof.

3.2 Example of sl2(C)

In this section we will deal with the cohomology of the Lie algebra sl2(C). We will step
by step develop more elaborate concepts (cf. [Tan95b, Tan95a]) to make the calculation
of the cohomology easier.
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Example 3.1. We want to study the cohomology of the Lie algebra g = sl2(C) (cf.
example 1.4). We choose the basis {a1, a2, a3} and look at the irreducible (2j + 1)-
dimensional representations ρj on Vj .

We first look at the simplest case j = 0. This is in fact the trivial representation on
V0 = C1 = C, i.e.

ρ0(ai) = 0 ∈ C1×1 (3.55)

for i = 1, 2, 3. The Grassmann algebra Λ(g) has independently of the representation
dimension 2n = 23 = 8 where n = 3 is the dimension of the Lie algebra. The vector
space C is hence

C = V0 ⊗ Λ(g) = C⊗ Λ(g) = Λ(g) (3.56)

and decomposes into its graded components

C = C0 ⊕ C1 ⊕ C2 ⊕ C3 (3.57)

with

C0 = span {|0〉}
C1 = span

{
c1 |0〉 , c2 |0〉 , c3 |0〉

}
C2 = span

{
c1c2 |0〉 , c1c3 |0〉 , c2c3 |0〉

}
C0 = span

{
c1c2c3 |0〉

}
.

(3.58)

The operator Q is of the form

Q = Lα ⊗ cα −
1

2
fγαβIV ⊗ c

αcβbγ = −1

2
fγαβc

αcβbγ (3.59)

and with fγαβ = −ε γ
αβ one calculates

Q = c1c2b3 + c2c3b1 + c3c1b2. (3.60)

Theorem 3.3. The cohomology of sl2(C) w.r.t. the representation ρ0 is trivial except
for the beginning at i = 0 and the end at i = 3 with dim(H0) = dim(H3) = 1. The
situation is as depicted in Table 3.1.

i · · · -2 -1 0 1 2 3 4 5 · · ·
dim(Ci) · · · 0 0 1 3 3 1 0 0 · · ·
dim

(
ker
(
Qi
))

· · · 0 0 1 0 3 1 0 0 · · ·
dim

(
im
(
Qi−1

))
· · · 0 0 0 0 3 0 0 0 · · ·

dim(H i) · · · 0 0 1 0 0 1 0 0 · · ·

Table 3.1: Cohomology of sl2(C) w.r.t. ρ0.
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Proof. With the above preparations the calculation of the cocycles and cochains is now
simple. We have dim

(
im
(
Q−1

))
= 0. Further

Q |0〉 = 0, (3.61)

which implies dim
(
im
(
Q0
))

= 0 and dim
(
ker
(
Q0
))

= dim(C0) − dim
(
im
(
Q0
))

=
1− 0 = 1. From

Qc1 |0〉 = c2c3 |0〉 , Qc2 |0〉 = c3c1 |0〉 , Qc3 |0〉 = c1c2 |0〉 (3.62)

follows dim
(
im
(
Q1
))

= 3 and dim
(
ker
(
Q1
))

= 3− 3 = 0 and from

Qc1c2 |0〉 = Qc2c3 |0〉 = Qc3c1 |0〉 = 0 (3.63)

follows that dim
(
im
(
Q2
))

= 0 and dim
(
ker
(
Q2
))

= 3−0 = 3. Clearly dim
(
ker
(
Q3
))

=
1− 0 = 1.

In the same way we can calculate the cohomology for representations with higher j,
e.g. j = 1

2 . It can be shown however (cf. Example 3.3), that for all other representations
with j > 0 the cohomology is trivial. For j = 1

2 we have the situation depicted in
Table 3.2.

i · · · -2 -1 0 1 2 3 4 5 · · ·
dim(Ci) · · · 0 0 2 6 6 2 0 0 · · ·
dim

(
ker
(
Qi
))

· · · 0 0 0 2 4 2 0 0 · · ·
dim

(
im
(
Qi−1

))
· · · 0 0 0 2 4 2 0 0 · · ·

dim(H i) · · · 0 0 0 0 0 0 0 0 · · ·

Table 3.2: Cohomology of sl2(C) w.r.t. ρ 1
2
.

Let us now look at the example of sl2(C) with the finite-dimensional irreducible rep-
resentation ρj we just dealt with from another perspective and see how the cohomology
can be obtained without much calculation. First some preliminary considerations:

Let g be an arbitrary n-dimensional Lie algebra and ρ a d-dimensional representation
on V , i.e. dim (V ) = d. Let {l1, . . . , ln} be a basis of g and fkij the corresponding structure

constants. We have seen (cf. Theorem 3.1) that by π(lα) = fγβαc
βbγ = −fγαβc

βbγ we can
define a representation of g on Λ(g). Correspondingly, by (ρ̃ (x)) (v ⊗ a) = (ρ(x)v) ⊗ a
and (π̃ (x)) (v ⊗ a) = v ⊗ (π(x)a) for x ∈ g, v ∈ V and a ∈ Λ(g) representations ρ̃ and π̃
on C = V ⊗ Λ(g) are defined.

Definition 3.5. We define the natural representation ρnat of g on C as

ρnat(x)(v ⊗ a) = (ρ̃(x) + π̃(x)) (v ⊗ a) = (ρ(x)v)⊗ a+ v ⊗ (π(x)a) . (3.64)

Lemma 3.1. It holds
{Q, IV ⊗ bµ} = ρnat(lµ). (3.65)
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Proof. For better readability we omit again the tensor product sign and IV and set
Lα := ρ(lα) as well as λα := π(lα). It holds

{Q, bµ} = {Lαcα −
1

2
fγαβc

αcβbγ , bµ} = Lα{cα, bµ} −
1

2
fγαβ{c

αcβbγ , bµ}

(!)
= Lαδ

α
µ −

1

2
fγαβ

(
−δβµcαbγ + δαµc

βbγ

)
= Lµ − fγµβc

βbγ

= Lµ + λµ = ρnat(lµ).

(3.66)

For (!) we used
{cα, bµ} = δαµ (3.67)

on the one hand and{
cαcβbγ , bµ

}
= cαcβbγbµ + bµc

αcβbγ = −cαcβbµbγ + bµc
αcβbγ

= −δβµcαbγ + cαbµc
βbγ + bµc

αcβbγ

= −δβµcαbγ + δαµc
βbγ −�����

bµc
αcβbγ +�����

bµc
αcβbγ

= −δβµcαbγ + δαµc
βbγ

(3.68)

on the other hand.

Remark 3.4. Obviously ρnat(x) leaves the ghost number invariant for all x ∈ g. It is
therefore sensible to restrict ρnat to Ck. We denote by ρknat the subrepresentation ρnat

on Ck.

Lemma 3.2. It holds
[ρnat(x), Q] = 0 (3.69)

for all x ∈ g or equivalently

ρk+1
nat (x)Qk = Qkρknat(x) ∈ Hom

(
Ck, Ck+1

)
(3.70)

for all k ∈ Z.

Proof. We prove the second assertion for x = lµ. The assertion of the lemma then follows
by linearity of ρnat. (We again use the simplified notation as is the proof of Lemma 3.1.)
By Lemma 3.1 we have

ρknat(lµ) = Qk−1bµ + bµQ
k. (3.71)

This implies
Qkρknat(lµ) = QkQk−1︸ ︷︷ ︸

=0

bµ +QkbµQ
k = QkbµQ

k. (3.72)

Analogously
ρk+1

nat (lµ)Qk = QkbµQ
k + bµQ

k+1Qk︸ ︷︷ ︸
=0

= QkbµQ
k. (3.73)

This proves the assertion.
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Proposition 3.2. Let W be a subspace of Ck, which is stable under the natural repre-
sentation ρknat of g, i.e. it forms a g-module w.r.t. the restriction of ρknat on W . Then
U := Q(W ) ⊆ Ck+1 is also stable under ρk+1

nat .

Proof. Let W be in Ck with ρknat(g)W ⊆W . Then the following holds:

ρk+1
nat (g)U = ρk+1

nat (g)QkW = Qkρknat(g)W ⊆ QkW = U. (3.74)

Proposition 3.3. Let the restriction of ρknat on a subspace W of Ck be an irreducible
subrepresentation of dimension d of g. Then U := Q(W ) carries again a d-dimensional
irreducible representation of g, namely the restriction of ρk+1

nat on U or U = {0}.

Proof. Let {w1, . . . , wd} be a basis of W . Then {u1, . . . , ud} with ui := Qwi for i =
1, . . . , d is a spanning set of Q(W ). W.l.o.g. we can choose the basis of W such that
{u1, . . . , ul} (0 ≤ l ≤ d) is a basis of U and ul+1 = . . . = ud = 0. Then ρnat(lα)wi = cji,αwj

for uniquely determined cji,α (1 ≤ i, j ≤ d,1 ≤ α ≤ n). Then

ρk+1
nat (lα)ui = ρk+1

nat (lα)Qwi = Qρknat(lα)wi = Qcji,αwj = cji,αuj . (3.75)

ρk+1
nat hence fulfils on U the same defining relations as ρknat on W . We have ul+1 = . . . =
ud = 0 but on the other hand the ui’s with i ≥ l+ 1 obey the relation 0 = ρk+1

nat (lα)ui =
cji,αuj =

∑l
j=1 c

j
i,αuj , which means that cji,α = 0 for l + 1 ≤ i ≤ d and 1 ≤ j ≤ l. This

means nothing else but that span {ul+1, . . . , ud} forms a ρknat-invariant subspace of W .
Since the restriction of ρknat on W is irreducible, l = 0 or l = d follows.

We now want to apply the concepts we just learned to the calculation of the cohomol-
ogy of g = sl2(C).

Example 3.2. We first look at the representation π(lα) := −fγαβc
βbγ = fγβαc

βbγ on
Λ(g). Clearly, this representation is not irreducible since we have just seen that the
spaces Λk(g) for k = 0, 1, 2, 3 are stable under it (π does not change the ghost number).
However, it can be easily seen that the representations on the components Λk(g) are
irreducible. In addition we already know all the irreducible representations of g =
sl2(C) (cf. Theorem 1.3). Hence, because of dim

(
Λ0 (g)

)
= dim

(
Λ3 (g)

)
= 1 and

dim
(
Λ1 (g)

)
= dim

(
Λ2 (g)

)
= 3 we have

π ∼= π0 ⊕ π1 ⊕ π1 ⊕ π0. (3.76)

Here, πj denotes the (2j + 1)-dimensional representation of sl2(C) from Example 1.5.
(One could also take the representations ρj from Example 1.4, which are of course
equivalent.)

Further, we are given the representation πj of sl2(C) on V = Vj , for which we want
to calculate the cohomology. We can then look at the natural representation ρknat on
Ck = V ⊗ Λk(g), which is equivalent to the representation πj ⊗ πl with l = 0, 1. This
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Ck C0 C1 C2 C3

dim
(
Ck
)

2j + 1 3(2j + 1) 3(2j + 1) 2j + 1

j = 0 (0) (1) (1) (0)
j = 1/2 (1/2) (1/2)⊕ (3/2) (1/2)⊕ (3/2) (1/2)
j ≥ 1 (j) (j − 1)⊕ (j)⊕ (j + 1) (j − 1)⊕ (j)⊕ (j + 1) (j)

Table 3.3: Irreducible representations of sl2(C) on C0, . . . , C3 starting from a (2j + 1)-
dimensional irreducible representation on Vj where Ck = Vj ⊗ Λk (sl2 (C)).

representation decomposes according to Theorem 1.4 again into a sum of irreducible
representations of sl2(C). The situation is depicted in Table 3.3. We have written (j)
for πj and the corresponding representation space.

We have seen in Proposition 3.2 that Qk maps a subrepresentation of ρknat on a cor-
responding representation space W ⊆ Ck again to a subspace U ⊆ Ck+1, which itself
carries a subrepresentation of ρk+1

nat . Because of the uniqueness of the irreducible repre-
sentations of sl2(C) (cf. Theorem 1.3) and Proposition 3.3, when applying the operator
Q on Ck and looking at a subspace which carries an irreducible representation (j) of
sl2(C), this subspace can only be mapped to a subspace which itself carries such a
representation (j) or to {0}. This enables us to determine the cohomology using the
decomposition of Ck in several irreducible sl2(C)-modules.

Let us first have a look at the case j = 0. Here, C0 carries a representation (0). Since
the corresponding subspace cannot be mapped to (0) in C1, Q has to map it to {0}.
This gives the sequence

{0} Q
−1

−→ (0)
Q0

−→ {0},

which however is not exact. If we in contrast look at C1 and C2, the following exact
sequence is possible:

{0} Q0

−→ (1)
Q1

−→ (1)
Q2

−→ {0}.

Here we assumed that in the second step (1) is in fact mapped to (1), although this
does not have to be the case since (1) could have also been mapped to {0}, which would
not give an exact sequence any more. (The following arguments will be based on the
assumption that the cohomology is as exact as possible.)

At C3 we have the same problem as at the beginning at C0 and we get the following
inexact sequence:

{0} Q2

−→ (0)
Q3

−→ {0}.

As a conclusion we have (where we omitted {0} at the beginning and the end of each
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sequence))

C0 C1 C2 C3

(0) (1) // (1) (0),

which is exactly the cohomology calculated above.
In the case of j = 1

2 we get

C0 C1 C2 C3

(1/2) // (1/2) (1/2) // (1/2)

(3/2) // (3/2),

which is exact at every position.
In the generic case for j ≥ 1 we get

C0 C1 C2 C3

(j − 1) // (j − 1)

(j) // (j) (j) // (j)

(j + 1) // (j + 1),

which is also exact.

Another way of simplifying the calculation of the cohomology arises when instead of
looking at the whole Lie algebra we only need to deal with a subalgebra. The following
lemma holds:

Lemma 3.3. Let g be a n-dimensional Lie algebra with a d-dimensional representation
ρ on V and let (Ck, Qk)k∈Z be the corresponding cochain complex. We look at the natural
representation on Ck. The following holds:

1. ker
(
Qk
)

is stable under g.
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2. im
(
Qk−1

)
is stable under g.

3. ρknat(g)
(
ker
(
Qk
))
⊆ im

(
k−1
)
.

Proof. (1): Let w ∈ ker
(
Qk
)
. Then by Lemma 3.2

Qkρknat(x)w = ρk+1
nat (x)Qkw = 0. (3.77)

(2): Let w ∈ im
(
Qk−1

)
, i.e. w = Qk−1v for a v ∈ Ck−1. Then again by Lemma 3.2

ρknat(x)w = ρknat(x)Qk−1v = Qk−1ρk−1
nat v ∈ im

(
Qk−1

)
. (3.78)

(3): Let w ∈ ker
(
Qk
)

and x = αili ∈ g (αi ∈ C for i = 1, . . . , n). Then by Lemma 3.1

ρknat(x)w =
(
Qk−1αibi + αibiQ

k
)
w = Qk−1αibiw ∈ im

(
Qk−1

)
. (3.79)

We then have:

Lemma 3.4. Let g be an n-dimensional Lie algebra with a d-dimensional representation
ρ on V and (Ck, Qk)k∈Z the corresponding cochain complex. Let q be a subalgebra of
g such that the natural representations ρknat of q on Ck are all completely reducible.
Then the cohomology of H(g, V ) is identical to the cohomology one obtains from the

subcomplex
(
Ckq , Q

k
∣∣
Ckq

)
k∈Z

where Ckq denotes the subspace of the elements of Ck which

are annihilated by ρknat(x) for all x ∈ q.

Proof. The subspace Ckq is trivially stable under q. Since the representation ρknat of

q on Ck is completely reducible, we can find a q-stable subspace Ĉk of Ck such that

Ck = Ckq ⊕ Ĉk. Then Qk
(
Ckq
)
⊆ Ck+1

q and Qk
(
Ĉk
)
⊆ Ĉk+1 since ρk+1

nat (x)Qkw =

Qkρknat(x)w = 0 holds for w ∈ Ckq . The cochain complex (Ck, Qk)k∈Z is hence a direct

sum of the cochain complexes
(
Ckq , Q

k
∣∣
Ckq

)
k∈Z

and
(
Ĉk, Qk

∣∣
Ĉk

)
k∈Z

.

By the above Lemma 3.3 (1 and 2) ker
(
Qk
)

and im
(
Qk−1

)
are stable under g, hence

also under q. We can again choose a q-stable complement T k of im
(
Qk−1

)
in ker

(
Qk
)
.

Then by Lemma 3.3 (3) ρknat(x)T k = T k∩im
(
Qk−1

)
= {0} for all x ∈ q. Hence T k ⊆ Bk

q .

This way every element in the cohomological space Hk(C) = ker
(
Qk
)
/im

(
Qk−1

)
is

represented by an element in T k ⊆ Bk
q .

Example 3.3. Let us look again at the cohomology of sl2(C) w.r.t. the (2j + 1)-
dimensional representation πj on Vj with basis {v−j , v−j+1, . . . , vj}. The element H
(from the basis in Example 1.2) in g generates a subalgebra q := CH. We set l1 = H,
l2 = X and l3 = Y . The structure constants of sl2(C)are then given by

f1
23 = 2 = −f1

32, f2
12 = 1 = −f2

21 and f3
13 = −1 = −f3

31. (3.80)
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This gives
λ1 = −fγ1β = −c2b2 + c3b3. (3.81)

The natural representation ρknat of q on Ck = Vj ⊗ Λk(g) is hence given by

ρknat(H)(vm ⊗ a) = πj(H)vm ⊗ a+ vm ⊗ λ1a

= mvm ⊗ a+ vm ⊗
(
−c2b2 + c3b3

)
a

(3.82)

for m ∈ {−j,−j + 1, . . . , j} and a ∈ Λk(g). If a is a k-multivector, i.e. of the form
v1 ∧ v2 ∧ . . . ∧ vk with vi ∈ V , then the operator in front of the a simply counts the
number of Y ’s minus the number of X’s in the expression a. Since every element in
Λk(g) can be written as a sum of k-multivectors, we can in particular find a basis in
Λk(g) of eigenvectors of

(
−c2b2 + c3b3

)
. The basis of Vj is already chosen such that πj(H)

is diagonal on it and hence ρnat(H) is overall diagonalisable on Ck = Vj ⊗Λk(g). Hence
the restriction of ρknat on q = CH is in particular completely reducible and Lemma 3.4
can be applied. We are now looking for the elements in Ck which are annihilated by
ρnat(H). These define the subspace Ckq .

Let first j = 0. Then πj(H)v0 = 0 (V0 = span {v0}) and one finds:

C0
q = span {v0 ⊗ |0〉} ,

C1
q = span {v0 ⊗H} ,

C2
q = span {v0 ⊗X ∧ Y } ,

C3
q = span {v0 ⊗H ∧X ∧ Y } .

(3.83)

The operator Q has the form

Q = πj(H)⊗ c1 + πj(X)⊗ c2 + πj(Y )⊗ c3 + IVj ⊗
(
−2c2c3b1 − c1c2b2 + c1c3b3

)
(3.84)

w.r.t. the basis l1 = H, l2 = X and l3 = Y of sl2(C) and for j = 0

Q = IVj ⊗
(
2c2c3b1 + c1c2b2 − c1c3b3

)
(3.85)

holds. One then readily calculates

QC0
q = {0} ,

QC1
q = C2

q ,

QC2
q = {0} ,

QC3
q = {0} ,

(3.86)

which again gives the cohomology dim
(
Hk
)

= 1 for k = 0, 3 and dim
(
Hk
)

= 0 for
k ∈ Z \ {0, 3}.

For j ∈ 1
2Z>0 obviously all Ckq = {0} and hence the cohomology must be trivial.
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For j ∈ Z>0 one easily finds:

C0
q = span {v0 ⊗ |0〉} ,

C1
q = span {v−1 ⊗ Y, v0 ⊗H, v1 ⊗X} ,

C2
q = span {v−1 ⊗H ∧ Y, v0 ⊗X ∧ Y, v1 ⊗H ∧X} ,

C3
q = span {v0 ⊗H ∧X ∧ Y } .

(3.87)

One then calculates

Q(v0 ⊗ |0〉) = v1 ⊗X + j(j + 1)v−1 ⊗ Y (3.88)

and

Q(v−1 ⊗ Y ) = v0 ⊗X ∧ Y,
Q(v0 ⊗H) = −v1 ⊗H ∧X − j(j + 1)v−1 ⊗H ∧ Y − 2v0 ⊗X ∧ Y,
Q(v1 ⊗X) = −j(j + 1)v0 ⊗X ∧ Y

(3.89)

and

Q(v−1 ⊗H ∧ Y ) = −v0 ⊗H ∧X ∧ Y,
Q(v0 ⊗X ∧ Y ) = 0,

Q(v1 ⊗X) = j(j + 1)v0 ⊗H ∧X ∧ Y
(3.90)

and
Q(v0 ⊗H ∧X ∧ Y ) = 0. (3.91)

With this one sees:

dim
(
QC0

q

)
= 1,

dim
(
QC1

q

)
= 2,

dim
(
QC0

q

)
= 1,

dim
(
QC1

q

)
= 0,

(3.92)

One calculates that this corresponds to the trivial cohomology as can be seen in Ta-
ble 3.4. We therefore have proven by the use of Lemma 3.4 what we made plausible in
Example 3.2, namely that the cohomology of sl2(C) for irreducible representations with
j 6= 0 is trivial.
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i · · · -1 0 1 2 3 4 · · ·
dim(Ciq) · · · 0 1 3 3 1 0 · · ·

dim
(

ker
(
Qi
∣∣
Ciq

))
· · · 0 0 1 2 1 0 · · ·

dim
(

im
(
Qi−1

∣∣
Ciq

))
· · · 0 0 1 2 1 0 · · ·

dim(H i) · · · 0 0 0 0 0 0 · · ·

Table 3.4: Cohomology of q = span {H} on the subcomplex
(
Ckq , Q

k
∣∣
Ckq

)
k∈Z

for j ∈ Z>0.
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4 Lie Superalgebra Cohomology

We will now generalise the concept of cohomology to be able to apply it to Lie super-
algebras. Some care is needed when dealing with the Z2-grading. There are several
conventions as to the definition of the generalised exterior algebra. We will use the
definition as in [HT92] rather as the one in [Tan95b, Tan95a].

4.1 Basics

Analogously to the case of ordinary Lie algebras we want to define a cohomology for
a finite-dimensional Lie superalgebra g = g0 ⊕ g1. Let {l1, l2, . . . , lm} be a basis of g0

and {lm+1, lm+2, . . . , lm+n} a basis of g1. Further, let
{
fkij

∣∣∣ 1 ≤ i, j, k ≤ m+ n
}

be the

structure constants w.r.t. that basis.
In the following we will again construct a ghost vector space Λ(g). We do so by

generalising the notion of exterior algebra.

Definition 4.1. Let V = V0 ⊕ V1 be a super vector space. Let T (V ) be again the
tensor algebra of V . We look at the two-sided, homogeneous ideal J(V ) ⊆ T (V ) which
is generated by the elements of the form

x⊗ y − (−1)(|x|+1)(|y|+1)y ⊗ x

with x, y ∈ V homogeneous.
The (generalised) exterior Algebra (or Grassmann algebra) of the super vector space

V is given by
Λ(V ) := T (V )/J(V ). (4.1)

Alternatively we can again decompose

T (V ) =
∞⊕
k=0

T k(V ). (4.2)

in its graded components T k(V ) =
⊗k

i=1 V and define the subspace Jk(V ) ⊆ T k(V ) on
them by

Jk(V ) := span
{
a ∈ T k(V )

∣∣∣∃i, j ∈ {1, . . . , k} ∃v1, . . . vk ∈ V0 ∪ V1 : a = v1 ⊗ . . .

⊗vi ⊗ . . .⊗ vj ⊗ . . .⊗ vk − (−1)(|vi|+1)(|vj |+1)v1 ⊗ . . .⊗ vj ⊗ . . .⊗ vi ⊗ . . .⊗ vk
}
.

(4.3)
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Then

J(V ) =
∞⊕
k=0

Jk(V ). (4.4)

With the (generalised) exterior power, the quotient space

Λk(V ) = T k(V )/Jk(V ) (4.5)

Λ(V ) is again as a vector space isomorphic to

∞⊕
k=0

Λk(V ) =
∞⊕
k=0

T k(V )/Jk(V ). (4.6)

Definition 4.2. The product of two elements a, b ∈ Λ(V ) in the (generalised) exterior
algebra is again written as a ∧ b. We have

a ∧ b = a⊗ b+ J(V ). (4.7)

Remark 4.1. By definition of J(V ) the exterior product is itself supercommutative on
elements in V = T 1(V ) = Λ1(V ), i.e

x ∧ y = (−1)(|x|+1)(|y|+1)y ∧ x (4.8)

holds for all x ∈ V . However Elements in V of degree 0 are assigned the degree 1 in the
exterior algebra and elements in V of degree 1 accordingly the degree 0.

Definition 4.3. As mentioned above we can again define a Z2-grading on Λ(V ), i.e.
Λ(V ) can be made a super vector space. The homogeneous elements in Λ(V ) are of the
form v1 ∧ v2 ∧ . . . ∧ vk with the vi ∈ V homogeneous. The degree of such an element is
defined by

‖v1 ∧ v2 ∧ . . . ∧ vk‖ := (|v1|+ 1) + . . . (|vk|+ 1) ∈ Z. (4.9)

Here, |·| denotes the original Z2-grading in V = V0⊕ V1 and–to avoid confusion– ‖·‖ de-
notes the degree of an element in Λ(V ). Especially ‖v‖ = |v|+1 holds for a homogeneous
v ∈ V where on the left side we consider v ∈ Λ1(V ) = V .

Remark 4.2. With the above definition formula (4.8) reads:

x ∧ y = (−1)‖x‖‖y‖x ∧ y. (4.10)

Remark 4.3. The exterior algebra can be decomposed again into a direct sum of com-
ponents of different degrees (w.r.t. a Z-grading). Here, Λk(V ) is the subspace of degree
k and is spanned by all exterior products v1 ∧ v2 ∧ . . .∧ vk consisting of k factors vi ∈ V ,
called k-multivectors. The exterior algebra together with the exterior product has the
structure of a Z-graded algebra, which implies

Λk(V ) ∧ Λp(V ) ⊆ Λk+p(V ). (4.11)

In contrast to the case of an n-dimensional (ordinary) vector space where the vector
space Λ(V ) was finite-, i.e. 2n-dimensional, Λ(V ) is infinite-dimensional for a super
vector space with V1 6= {0}. This is due to the fact that (assuming char(K) 6= 2) terms
of the form x ∧ x vanish only for x ∈ V0 but not for x ∈ V1.
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The following statement holds:

Proposition 4.1. The dimension d(k) of the vector space Λk(V ) where V = V0 ⊕ V1 is
a super vector space with dim(V0) = m and dim(V1) = n obeys:

d(k;m,n) =
k∑

f=0

(
m
f

)(
n+ k − f − 1

k − f

)
=

k∑
b=0

(
m

k − b

)(
n+ b− 1

b

)
. (4.12)

Outline of proof. To prove the above assertion we have to determine which k-multi-
vectors one can write down and use some combinatorics formulae.

Let us now look at Λ(g) for the Lie superalgebra g = g0 ⊕ g1 mentioned at the
beginning of the section. As a reminder: {l1, l2, . . . , lm} be a basis of g0 and a basis of

g1 be given by {lm+1, lm+2, . . . , lm+n}. Let
{
fkij

∣∣∣ 1 ≤ i, j, k ≤ m+ n
}

be the structure

constants w.r.t. that basis.
We express Λ(g) again by a vacuum state |0〉 with span {|0〉} = Λ0(g) (|0〉 corresponds

to the empty exterior product, which we set 1 ∈ K) and an appropriate choice of creation
and annihilation operators..

For this, let the creation operators ci (i = 1, . . . ,m+ n) be defined by:

Fermionic Case (|i| = 0, ‖li‖ = 1): Let lα1 ∧ lα2 ∧ . . . ∧ lαk ∈ Λk(g) be given with αj ∈
{1, . . . ,m+ n} for j = 1, . . . , k where none of the αj ’s with |αj | = 0 (i.e.

∥∥lαj∥∥ = 1)
appears twice since otherwise the state vanishes anyway. Then set for i with |i| = 0:

ci (lα1 ∧ . . . ∧ lαk) =

{
li ∧ lα1 ∧ . . . ∧ lαk if αj 6= i for all j

0 if αj = i for one j.
(4.13)

Bosonic Case (|i| = 1, ‖li‖ = 0): Let lα1 ∧ lα2 ∧ . . . ∧ lαk ∈ Λk(g) be given with αj ∈
{1, . . . ,m+ n} for j = 1, . . . , k. Then set for i with |i| = 1:

ci (lα1 ∧ . . . ∧ lαk) =
√
ni + 1 li ∧ lα1 ∧ . . . ∧ lαk , (4.14)

where ni is the number of j ∈ {1, . . . , k} with αj = i.

The annihilation operators are defined analogously by:

Fermionic Case (|i| = 0, ‖li‖ = 1): Let lα1 ∧ lα2 ∧ . . . ∧ lαk ∈ Λk(g) be given with αj ∈
{1, . . . ,m+ n} for j = 1, . . . , k where none of the αj ’s with |αj | = 0 (i.e.

∥∥lαj∥∥ = 1)
appears twice since otherwise the state vanishes anyway. Then set for i with |i| = 0:

bi (lα1 ∧ . . . ∧ lαk) =

=

{
(−1)|α1|+...+|αj−1|+j−1lα1 ∧ . . . lαj−1 ∧ lαj+1 ∧ . . . ∧ lαk if αj = i for a j

0 if αj 6= i for all j.

(4.15)
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Bosonic Case (|i| = 1, ‖li‖ = 0): Let lα1 ∧ lα2 ∧ . . . ∧ lαk ∈ Λk(g) be given with αj ∈
{1, . . . ,m+ n} for j = 1, . . . , k. Then set for i with |i| = 1:

bi (lα1 ∧ . . . ∧ lαk) =
√
ni lα1 ∧ . . . lαj−1 ∧ lαj+1 ∧ . . . ∧ lαk , (4.16)

where ni is again the number of l ∈ {1, . . . , k} with αl = i and j is (e.g.) the first
position for which αj = i.

For the creation and annihilation operators follows:

Proposition 4.2. Let ci and bi (i = 1, . . . ,m+n) be defined as above. Then the creation
and annihilation operators are well-defined as linear operators in End(Λ(g)) and obey

bic
j − (−1)(|i|+1)(|j|+1)cjbi = δji (4.17)

as well as
bibj − (−1)(|i|+1)(|j|+1)bjbi = cicj − (−1)(|i|+1)(|j|+1)cjci = 0 (4.18)

for all i, j ∈ {1, . . . ,m+ n}.

Proof. The proof is left to the reader.

The ghost creation and annihilation operators for |i| = 0 are called fermionic creation
operators and annihilation operators as they anticommute with themselves and each
other. In contrast, the creation and annihilation operators for |i| = 1 commute, which
is why we call them bosonic creation operators and annihilation operators. A fermionic
and a bosonic creation or annihilation operator commute with each other.

Definition 4.4. We again introduce a Z2-grading on End(Λ(g)) by defining∣∣ci∣∣ = |bi| = |i|+ 1. (4.19)

This means bosonic creation and annihilation operators have degree 0 and the fermionic
ones have degree 1, as one would expect. Products of creation and annihilation operators
have as degree the sum of the degrees of their factors. Hence, we can make End(Λ(g))
a Lie superalgebra gl(Λ(g)) by using the supercommutator

[A,B] = AB − (−1)|A||B|BA

for A,B ∈ End(Λ(g)) as Lie superbracket.

Remark 4.4. With the help of the super commutator the relations in Proposition 4.2
can be cast in the elegant form [

bi, c
j
]

= δji (4.20)

and
[bi, bj ] =

[
ci, cj

]
= 0. (4.21)

Also in the super case Λ(g) can be made a (non-trivial) g-module:
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Theorem 4.1. The Lie superalgebra g = g0 +g1 has a representation π̃ on Λ(g) defined
by

λ̃α := π̃(lα) := fγβαc
βbγ ∈ End(Λ(g) . (4.22)

In particular:
[λ̃α, λ̃β] = fγαβλ̃γ . (4.23)

Proof. We have seen that End(Λ(g)) can be made a Lie superalgebra namely gl(Λ(g)).
For the map π̃ : g → gl(Λ(g)) to be a homomorphism of Lie superalgebras we have to
show that even elements in g are mapped to even elements in gl(Λ(g)) and odd ones to
odd ones, and that the map respects the Lie superbracket. The first assertion is obvious
since |β| + |γ| = |α| for fγβα 6= 0 and thus

∣∣cβbγ∣∣ =
∣∣cβ∣∣ + |bγ | = |β| + 1 + |γ| + 1 =

|α|+ 1 + 1 = |α|.
Next, we look at

[λ̃α, λ̃µ]

= [fγβαc
βbγ , f

ρ
νµc

νbρ]

= fγβαf
ρ
νµ

(
cβbγc

νbρ − (−1)(|β|+1+|γ|+1)(|ν|+1+|ρ|+1)cνbρc
βbγ

)
= fγβαf

ρ
νµ

(
cβ
(
δνγ + (−1)(|γ|+1)(|ν|+1)cνbγ

)
bρ−

− (−1)(|β|+|γ|)(|ν|+|ρ|)cν
(
δβρ + (−1)(|β|+1)(|ρ|+1)cβbρ

)
bγ

)
= fγβαf

ρ
νµ

(
δνγc

βbρ + (−1)(|γ|+1)(|ν|+1)cβcνbγbρ−

− (−1)(|β|+|γ|)(|ν|+|ρ|)δβρ c
νbγ + (−1)(|β|+|γ|)(|ν|+|ρ|)(−1)(|β|+1)(|ρ|+1)cνcβbρbγ

)
= fγβαf

ρ
νµ

(
δνγc

βbρ + (−1)(|γ|+1)(|ν|+1)
�����
cβcνbγbρ−

− (−1)(|β|+|γ|)(|ν|+|ρ|)δβρ c
νbγ −

− (−1)(|β|+|γ|)(|ν|+|ρ|)(−1)(|β|+1)(|ρ|+1)(−1)(|β|+1)(|ν|+1)(−1)(|γ|+1)(|ρ|+1)︸ ︷︷ ︸
=(−1)(|γ|+1)(|ν|+1)

�����
cβcνbγbρ)

= fγβαf
ρ
νµ

(
δνγc

βbρ − (−1)|α||µ|δβρ c
νbγ

)
.

(4.24)

By renaming indices we get

[λ̃α, λ̃µ] =
(
fνβαf

ρ
νµ − (−1)|α||µ|fνβµf

ρ
να

)
cβbρ. (4.25)

The Jacobi identity (2.9) can be cast in the form

fνβαf
ρ
νµ − (−1)|α||µ|fνβµf

ρ
να = fναµf

ρ
βν (4.26)

and thus
[λ̃α, λ̃µ] = fναµf

ρ
βνc

βbρ = fναµλ̃ν . (4.27)
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It is easy to derive another representation π from the representation π̃ above.

Corollary 4.1. The Lie superalgebra g = g0 + g1 has a representation π on Λ(g) given
by

λα := π(lα) := (−1)|α|fγβαc
βbγ ∈ End(Λ(g) . (4.28)

In particular
[λα, λβ] = fγαβλγ . (4.29)

Proof. We show that π respects the Lie superbracket. We have

[λα, λβ] = (−1)|α|(−1)|β|[λ̃α, λ̃β] = (−1)|α|+|β|fγαβλ̃γ

= (−1)|γ|fγαβλ̃γ = fγαβλγ .
(4.30)

Now, let ρ be a representation of g on the super vector space V = V0 ⊕ V1. We set

C̃ = V ⊗ Λ(g)⊕ Λ(g)⊗ V.

This vector space is graded by

C̃ = V ⊗ Λ(g)⊕ Λ(g)⊗ V = V ⊗

(
n⊕
i=0

Λi(g)

)
⊕

(
n⊕
i=0

Λi(g)

)
⊗ V

=

n⊕
i=0

(
V ⊗ Λi(g)⊕ Λi(g)⊕ V

)
=:

n⊕
i=0

C̃i,

(4.31)

where C̃i = V ⊗ Λi(g) ⊕ Λi(g) ⊕ V (i ∈ Z) and C̃i = V ⊗ {0} ⊕ {0} ⊗ V = {0} for
i ∈ Z \ {0, 1, . . . , n}. C̃ is a super vector space by defining a Z2-grading on V ⊗Λ(g) and
Λ(g)⊗V according to Definition 2.14, i.e. via |v ⊗ a| = |v|+‖a‖ and |a⊗ v| = ‖a‖+|v| for
v ∈ V and a ∈ Λ(V ) both homogeneous and then putting C̃0 = (V ⊗Λ(g))0⊕(Λ(g)⊗V )0

and C̃1 = (V ⊗ Λ(g))1 ⊕ (Λ(g)⊗ V )1.
We look at the subspace U of C̃ spanned by the elements of the form

v ⊗ a− (−1)|v|‖a‖a⊗ v

with v ∈ V and a ∈ Λ(V ) both homogeneous and form the vector space C as the quotient
space of C̃ by U , i.e.

C = C̃/U.

The vector space C is graded by C =
⊕n

i=0C
i where Ci = C̃i/U i and U i = U ∩Ci. We

write an element (i.e. an equivalence class) in C as

v � a = v ⊗ a+ U ∈ C. (4.32)

Then by definition
v � a = (−1)|v|‖a‖a� v. (4.33)
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C and the Ci’s are again super vector spaces by setting

|v � a| = |a� v| := |a⊗ v| (4.34)

for v ∈ V and a ∈ Λ(V ) both homogeneous, which is well-defined.

Remark 4.5. We have dim(C̃i) = 2 dim(V ⊗ Λi(g)) = 2 dim(V ) dim(Ci) and dimUi =
1
2 dim(C̃i) and thus

dim(Ci) = dim(V ) dim(Λ(g)), (4.35)

as in the case of ordinary Lie algebras. Our construction of C from V and Λ(g) is how-
ever more complicated to account for the correct (anti)-commutation relations between
operators on V and operators on g(cf. Proposition 4.3).

We can now look at the vector space End(C) of linear operators on C = C0⊕C1. This
can be made a super vector space End(C) = End(C)0⊕End(C)1 in a canonical way (cf.
Remark 2.7) and with the supercommutator it becomes a Lie superalgebra gl(C).

We can embed the operators on V and on Λ(g) in a natural way into C by defining

T (v � a) = (Tv)� a (4.36)

for v ∈ V , a ∈ Λ(g) and T ∈ End(V ) as well as

S(a� v) = (Sa)� v (4.37)

for v ∈ V , a ∈ Λ(g) and S ∈ End(Λ(g)). The degree of T and S as elements in End(V )
and End(Λ(g)) respectively corresponds, as can be readily checked, to their degree in
End(C).

Proposition 4.3. For arbitrary T ∈ End(V ) and S ∈ End(Λ(g)) we have with the above
embedding

[T, S] = 0, (4.38)

where [·, ·] is the Lie superbracket, i.e. the supercommutator on End(C).

Proof. Let T ∈ End(V ) and S ∈ End(Λ(g)) be w.l.o.g. homogeneous. C is generated by
elements of the form v � a with v ∈ V and a ∈ Λ(g) both homogeneous. We have

TS(v � a)) = (−1)|v|‖a‖TS(a� v) = (−1)|v|‖a‖T (Sa� v)

= (−1)|v|‖Sa‖(−1)|v|‖a‖T (v � Sa) = (−1)|v||S|Tv � Sa
= (−1)|Tv||Sa|(−1)|v| |S|Sa� Tv = (−1)|T ||S|+|T |‖a‖+|v|‖a‖S(a� Tv)

= (−1)|Tv|‖a‖(−1)|T ||S|+|T |‖a‖+|v|‖a‖S(Tv � a)

= (−1)|T ||S|ST (v � a),

(4.39)

where we used the relation |Tv| = |T | + |v| and analogously for Sa several times. The
assertion follows by linearity of the Lie superbracket.
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In particular we have the relations[
ci, Lj

]
= ciLj − (−1)(|i|+1)|j|Ljc

i = 0 (4.40)

and analogously for [bi, Lj ].
We define the ghost number operator U on Λ(g) by

U =
m+n∑
i=1

cibi = cibi (4.41)

and again have
Ua = ia (4.42)

for all a ∈ Λi(g). Moreover we can look at the embedding in End(C). We have

U(v � a) = i(v � a) (4.43)

for a ∈ Λi(g) (iff. v � a ∈ Ci).
We can again define an operator Q on C, which generates a cohomology similar to the

case of Lie algebras. We have:

Theorem 4.2. The operator Q defined on C as

Q = cαLα +
1

2
cαλα = cαLα +

1

2
(−1)|α|cαλ̃α = cαLα +

1

2
(−1)|α|fγβαc

αcβbγ , (4.44)

with Lα := ρ(lα) fulfils
Q2 = 0

and
[U,Q] = Q.

The second term in the operator Q has exactly the opposite sign compared to [HT92].
However, there the commutation relation

[
bi, c

j
]

= −δji holds and not
[
bi, c

j
]

= δji as in
this text. By mapping ci 7→ −ci and leaving the bj ’s unchanged one can switch between
the two conventions. This gives exactly the difference in signs.

Proof. The second assertion is shown analogously to the case of Lie algebras (cf. proof
of Theorem 3.2). To prove the first assertion we look at:

Q2 = cαLαc
µLµ︸ ︷︷ ︸

=:(1)

+
1

2
(−1)|α|fγβα

(
cµLµc

αcβbγ + cαcβbγc
µLµ

)
︸ ︷︷ ︸

=:(2)

+

+
1

4
(−1)|α|+|µ|fγβαf

ρ
νµc

αcβbγc
µcνbρ︸ ︷︷ ︸

=:(3)

.

(4.45)
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We have

(2) =
1

2
(−1)|α|fγβα

(
cµLµc

αcβbγ + cαcβbγc
µLµ

)
=

1

2
(−1)|α|fγβα

(
cµLµc

αcβbγ + cαcβ
(
δµγ + (−1)(|γ|+1)(|µ|+1)cµbγ

)
Lµ

)
=

1

2
(−1)|α|fγβα

(
cµLµc

αcβbγ + δµγ c
αcβLµ + (−1)(|γ|+1)(|µ|+1)cαcβcµbγLµ

)
=

1

2
(−1)|α|fγβα

(
cµLµc

αcβbγ + δµγ c
αcβLµ + (−1)|γ|+1cαcβcµLµbγ

)
=

1

2
(−1)|α|fγβα

(
������
cµLµc

αcβbγ + δµγ c
αcβLµ+ (−1)|α|+1+|β|+1+|γ|+1︸ ︷︷ ︸

=−1

������
cµLµc

αcβbγ

)
=

1

2
(−1)|α|fµβαc

αcβLµ =
1

2
(−1)|α|cαcβ [Lβ, Lα]

=
1

2
(−1)|α|cαcβ

(
LβLα − (−1)|α||β|LαLβ

)
=

1

2
(−1)|α|cαcβLβLα −

1

2
(−1)|α|(|β|+1)cαcβLαLβ

=
1

2
(−1)|β|cβcαLαLβ −

1

2
cαLαc

βLβ

= −1

2
cαLαc

βLβ −
1

2
cαLαc

βLβ

= −(1),

(4.46)

which means (1) and (2) cancel.
The Jacobi identity holds:

(−1)|γ||α|f δβγf
ε
αδ + (−1)|α||β|f δγαf

ε
βδ + (−1)|β||γ|f δαβf

ε
γδ = 0 (4.47)

and hence

0 =
(

(−1)|γ||α|f δβγf
ε
αδ + (−1)|α||β|f δγαf

ε
βδ + (−1)|β||γ|f δαβf

ε
γδ

)
(−1)|β||ε|cαcβcγbε

= (−1)|γ|(|β|+1)f δβγf
ε
αδc

βcγcαbε + (−1)|α|(|γ|+1)f δγαf
ε
βδc

γcαcβbε

+ (−1)|β|(|α|+1)f δαβf
ε
γδc

αcβcγbε

= (−1)|γ|(|β|+1)f δβγc
βcγ λ̃δ + (−1)|α|(|γ|+1)f δγαc

γcαλ̃δ + (−1)|β|(|α|+1)f δαβc
αcβλ̃δ

= 3(−1)(|α|+1)|β|fγαβc
αcβλ̃γ

= 3(−1)(|α|+1)|β|cαcβ
[
λ̃α, λ̃β

]
.

(4.48)

Thus we have

(−1)(|α|+1)|β|cαcβ
(
λ̃αλ̃β − (−1)|α||β|λ̃βλ̃α

)
= 0. (4.49)
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On the other hand

(−1)(|α|+1)|β|cαcβ
(
λ̃αλ̃β + (−1)|α||β|λ̃βλ̃α

)
= (−1)(|α|+1)|β|cαcβλ̃αλ̃β + (−1)|β|cαcβλ̃βλ̃α

= (−1)(|α|+1)|β|cαcβλ̃αλ̃β + (−1)|α|cβcαλ̃αλ̃β

= (−1)(|α|+1)|β|cαcβλ̃αλ̃β − (−1)(|α|+1)|β|cαcβλ̃αλ̃β

= 0,

(4.50)

which implies
(−1)(|α|+1)|β|cαcβλαλβ = 0. (4.51)

A short calculation shows [
λ̃α, c

µ
]

= fµβαc
β. (4.52)

We have

4 · (3) = (−1)|α|+|µ|fγβαf
ρ
νµc

αcβbγc
µcνbρ = (−1)|α|+|µ|cαλ̃αc

µλ̃µ

= (−1)|α|+|µ|cα
(
fµβαc

β + (−1)|α|(|µ|+1)cµλ̃α

)
λ̃µ

= (−1)|β|cαcβ
[
λ̃β, λ̃α

]
+ (−1)(|α|+1)|µ|cαcµλ̃αλ̃µ︸ ︷︷ ︸

=0

= −(−1)(|α|+1)|β|cαcβ
[
λ̃α, λ̃β

]
= 0,

(4.53)

which completes the proof.

This enables us to define a cohomology for Lie superalgebras. This is done formally
identical to the case of ordinary Lie algebras, i.e.

Qi = Q|Ci (4.54)

and
H i = ker

(
Qi
)
/im

(
Qi−1

)
(4.55)

as well as
H(g, V ) :=

(
H i
)
i∈Z , (4.56)

which we call the cohomology of the Lie superalgebra g = g0 ⊕ g1 with coefficients in V .
In the following we want to define again some useful concepts, which simplify the

calculation of the cohomology.

Definition 4.5. We define the natural representation ρnat of g on C via

ρnat(lµ) = Lµ + λµ ∈ End(C). (4.57)

Lemma 4.1. The following holds:

[bµ, Q] = Lµ + λµ = ρnat(lµ). (4.58)
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Proof. We look at

Qbµ =

(
cαLα +

1

2
(−1)|α|fγβαc

αcβbγ

)
bµ = cαLαbµ +

1

2
(−1)|α|fγβαc

αcβbγbµ. (4.59)

We now have

cαLαbµ = (−1)|α|(|µ|+1)cαbµLα = (−1)|α|(|µ|+1)(−1)(|α|+1)(|µ|+1)
(
bµc

α − δαµ
)
Lα

= −(−1)|µ|bµc
αLα + (−1)|µ|Lµ

(4.60)

and

cαcβbγbµ = (−1)(|γ|+1)(|µ|+1)cαcβbµbγ = (−1)(|γ|+|β|)(|µ|+1)cα
(
bµc

β − δβµ
)
bγ

= (−1)(|γ|+|β|+|α|+1)(|µ|+1)
(
bµc

α − δαµ
)
cβbγ − (−1)(|γ|+|β|)(|µ|+1)δβµc

αbγ

= (−1)(|γ|+|β|+|α|+1)(|µ|+1)bµc
αcβbγ − (−1)(|γ|+|β|+|α|+1)(|µ|+1)δαµc

βbγ

− (−1)(|γ|+|β|)(|µ|+1)δβµc
αbγ .

(4.61)

This implies

Qbµ = −(−1)|µ|bµc
αLα + (−1)|µ|Lµ +

1

2
(−1)|α|fγβα(−1)(|γ|+|β|+|α|+1)(|µ|+1)bµc

αcβbγ

− 1

2
(−1)|α|fγβα(−1)(|γ|+|β|+|α|+1)(|µ|+1)δαµc

βbγ

− 1

2
(−1)|α|fγβα(−1)(|γ|+|β|)(|µ|+1)δβµc

αbγ

= −(−1)|µ|bµc
αLα + (−1)|µ|Lµ −

1

2
(−1)|α|+|µ|fγβαbµc

αcβbγ

+
1

2
fγβµc

βbγ −
1

2
(−1)|α||µ|fγµαc

αbγ

= −(−1)|µ|bµQ+ (−1)|µ|Lµ + λ̃µ

= −(−1)|µ|bµQ+ (−1)|µ| (Lµ + λµ) .

(4.62)

Then because of |Q| = 1

[bµ, Q] = bµQ− (−1)|µ|+1Qbµ = bµQ+ (−1)|µ|Qbµ = Lµ + λµ (4.63)

follows.

Remark 4.6. Since ρnat(x) leaves the ghost number invariant for all x ∈ g, it is sensible
to restrict ρnat to the Ck’s. We denote by ρknat the subrepresentation of ρnat on Ck.

Lemma 4.2. For all x ∈ g
[Q, ρnat(x)] = 0 (4.64)

holds or equivalently

ρk+1
nat (x)Qk = (−1)|x|Qkρknat(x) ∈ Hom

(
Ck, Ck+1

)
(4.65)

for all k ∈ Z and x homogeneous.

56



Proof. We proof the second claim for x = lµ. The assertion of the lemma follows by
linearity of ρnat. By Lemma 4.1

ρknat(lµ) = bµQ
k + (−1)|µ|Qk−1bµ (4.66)

holds. This implies

Qkρknat(lµ) = QkbµQ
k + (−1)|µ|QkQk−1︸ ︷︷ ︸

=0

bµ = QkbµQ
k. (4.67)

Analogously

ρk+1
nat (lµ)Qk = bµQ

k+1Qk︸ ︷︷ ︸
=0

+(−1)|µ|QkbµQ
k = (−1)|µ|QkbµQ

k. (4.68)

This implies the assertion.

The following assertions hold analogously to the Lie algebra case:

Lemma 4.3. Let g = g0⊕g1 be an n-dimensional Lie superalgebra with a d-dimensional
representation ρ on V and let (Ck, Qk)k∈Z be the corresponding cochain complex. We
look at the natural representation on Ck. The following holds:

1. ker
(
Qk
)

is stable under g.

2. im
(
Qk−1

)
is stable under g.

3. ρknat(g)
(
ker
(
Qk
))
⊆ im

(
Qk−1

)
.

Proof. The proof is along the lines of the proof of Lemma 3.3.

Lemma 4.4. Let g = g0⊕g1 be an n-dimensional Lie superalgebra with a d-dimensional
representation ρ on V and let (Ck, Qk)k∈Z be the corresponding cochain complex. Let
q be a subalgebra of g such that the natural representations ρknat of q on Ck are all
completely reducible. Then the cohomology H(g, V ) is identical to the one obtained from
the subcomplex (Ckq , Q

k
∣∣
Ckq

)k∈Z where Ckq is the subspace of elements in Ck which are

annihilated by ρknat(x) for all x ∈ q.

Proof. The proof is analogous to the proof of Lemma 3.4.

4.2 Example of gl(1|1)
Example 4.1. We want to determine the cohomology of g = gl(1|1) w.r.t the 2-
dimensional representation ρΛ : gl(1|1) → V = Cv0 + Cv1 (cf. Examples 2.2 and 2.1).
First, let us choose a basis {l1, l2, l3, l4} of g. We set

l1 = H, l2 = C, l3 = X and l4 = Y. (4.69)
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The elementary (anti)-commutation relations for g are given in Example 2.1. From those
we can determine the structure constants to be

f3
13 = −f3

31 = 1, f4
14 = −f4

41 = −1, and f2
34 = f2

43 = 1. (4.70)

All other 58 of the overall 43 = 64 structure constants vanish. The operator Q is thus
given by

Q = cαLα +
1

2
(−1)|α|fγβαc

αcβbγ

= c1L1 + c2L2 + c3L3 + c4L4 − c1c3b3 + c1c4b4 − c3c4b2.
(4.71)

We now choose a basis of the vector spaces Ck. We determine the dimension of Λk(g)
using Proposition 4.1 (with m = n = 2): We have dim

(
Λk(g)

)
= 0 for k < 0,

dim
(
Λ0(g)

)
= 1 and dim

(
Λ1(g)

)
= 4. For k ≥ 2

dim
(

Λk(g)
)

=

k∑
f=0

(
1 + k − f
k + f

)(
2
f

)
k≥2
=

2∑
f=0

(
1 + k − f
k + f

)(
2
f

)
= (1 + k) + 2k + (k − 1)

= 4k

(4.72)

holds and thus

dim
(
Ck
)

= 2 dim
(

Λk(g)
)

=


0 for k < 0
2 for k = 0
8k for k ≥ 1

. (4.73)

We define
X(i) = X ∧X ∧ . . . ∧X︸ ︷︷ ︸

i times

∈ Λi(g) (4.74)

and analogously for Y . Then, a basis for Ck is given by the following vectors:

α
(k)
i,j := vj �X(i) ∧ Y (k−i) (4.75)

for i = 0, . . . , k, j = 0, 1, k ≥ 0,

β
(k)
i,j := vj �H ∧X(i) ∧ Y (k−i−1) (4.76)

for i = 0, . . . , k − 1, j = 0, 1, k ≥ 1,

γ
(k)
i,j := vj � C ∧X(i) ∧ Y (k−i−1) (4.77)

for i = 0, . . . , k − 1, j = 0, 1, k ≥ 1 and

δ
(k)
i,j := vj � C ∧H ∧X(i) ∧ Y (k−i−2) (4.78)
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for i = 0, . . . , k − 2, j = 0, 1, k ≥ 2. (This verifies in particular the dimension for-
mula (4.12).)

Next, we calculate the images under Q of the basis vectors of Ck. One gets:

Qα
(k)
i,0 = (λ+ k − 2i)β

(k+1)
i,0 + cγ

(k+1)
i,0 + α

(k+1)
i,1 ,

Qα
(k)
i,1 = − (λ+ k − 2i− 1)β

(k+1)
i,1 − cγ(k+1)

i,1 + cα
(k+1)
i+1,0

(4.79)

for i = 0, . . . , k, j = 0, 1, k ≥ 0,

Qβ
(k)
i,0 = cδ

(k+1)
i,0 + β

(k+1)
i,1 ,

Qβ
(k)
i,1 = −cδ(k+1)

i,1 + cβ
(k+1)
i+1,0

(4.80)

for i = 0, . . . , k − 1, j = 0, 1, k ≥ 1,

Qγ
(k)
i,0 = −(λ+ k − 2i− 1)δ

(k+1)
i,0 + γ

(k+1)
i,1 − α(k+1)

i+1,0 ,

Qγ
(k)
i,1 = (λ+ k − 2i− 2)δ

(k+1)
i,1 + cγ

(k+1)
i+1,0 + α

(k+1)
i+1,1

(4.81)

for i = 0, . . . , k − 1, j = 0, 1, k ≥ 1 and

Qδ
(k)
i,0 = δ

(k+1)
i,1 − β(k+1)

i+1,0 ,

Qδ
(k)
i,1 = cδ

(k+1)
i+1,0 + β

(k+1)
i+1,1

(4.82)

for i = 0, . . . , k − 2, j = 0, 1, k ≥ 2.
In the following we will only look at the generic case for k ≥ 2 where all of the above

basis vectors appear. The cases k = 0 and k = 1 are to be treated separately. We also
introduce

A
(k+1)
0 := span

{
Qα

(k)
0,0 , . . . , Qα

(k)
k,0

}
, A

(k+1)
1 := span

{
Qα

(k)
0,1 , . . . , Qα

(k)
k,1

}
,

B
(k+1)
0 := span

{
Qβ

(k)
0,0 , . . . , Qβ

(k)
k−1,0

}
, B

(k+1)
1 := span

{
Qβ

(k)
0,1 , . . . , Qβ

(k)
k−1,1

}
,

Γ
(k+1)
0 := span

{
Qγ

(k)
0,0 , . . . , Qγ

(k)
k−1,0

}
, Γ

(k+1)
1 := span

{
Qγ

(k)
0,1 , . . . , Qγ

(k)
k−1,1

}
,

∆
(k+1)
0 := span

{
Qδ

(k)
0,0 , . . . , Qδ

(k)
k−2,0

}
, and ∆

(k+1)
1 := span

{
Qδ

(k)
0,1 , . . . , Qδ

(k)
k−2,1

}
(4.83)

and A(k+1) = A
(k+1)
0 + A

(k+1)
1 , B(k+1) = B

(k+1)
0 + B

(k+1)
1 , Γ(k+1) = Γ

(k+1)
0 + Γ

(k+1)
1 as

well as ∆(k+1) = ∆
(k+1)
0 + ∆

(k+1)
1 .

Let first c 6= 0. One easily checks that in this case ∆(k+1) is a subspace of B(k+1)

and Γ(k+1) a subspace of A(k+1) + B(k+1). Moreover, A(k+1) and B(k+1) are linearly
independent. Hence dim

(
im
(
Qk
))

= dim
(
A(k+1)

)
+ dim

(
B(k+1)

)
= 4k + 2 and

dim
(
Hk
)

= dim
(

ker
(
Qk
))
− dim

(
im
(
Qk−1

))
= dim(Ck)− dim

(
im
(
Qk
))
− dim

(
im
(
Qk−1

))
= 8k − (4k + 2)− (4 (k − 1) + 2)

= 0.

(4.84)
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for k ≥ 3. Similarly one gets dim
(
H0
)

= dim
(
H1
)

= dim
(
H2
)

= 0. The cohomology
is trivial.

Let c = 0. In this case

A
(k+1)
0 = span

{
(λ+ k − 2i)β

(k+1)
i,0 + α

(k+1)
i,1

∣∣∣ i = 0, . . . , k
}
,

A
(k+1)
1 = span

{
(λ+ k − 2i− 1)β

(k+1)
i,1

∣∣∣ i = 0, . . . , k
} (4.85)

and

B
(k+1)
0 = span

{
β

(k+1)
i,1

∣∣∣ i = 0, . . . , k − 1
}
,

B
(k+1)
1 = {0}

(4.86)

and

Γ
(k+1)
0 = span

{
−(λ+ k − 2i− 1)δ

(k+1)
i,0 + γ

(k+1)
i,1 − α(k+1)

i+1,0

∣∣∣ i = 0, . . . , k − 1
}
,

Γ
(k+1)
1 = span

{
(λ+ k − 2i− 2)δ

(k+1)
i,1 + α

(k+1)
i+1,1

∣∣∣ i = 0, . . . , k − 1
} (4.87)

and

∆
(k+1)
0 = span

{
δ

(k+1)
i,1 − β(k+1)

i+1,0

∣∣∣ i = 0, . . . , k − 2
}
,

∆
(k+1)
1 = span

{
β

(k+1)
i,1

∣∣∣ i = 1, . . . , k − 1
}
.

(4.88)

Obviously ∆
(k+1)
1 ⊂ B(k+1)

0 and

B
(k+1)
0 +A

(k+1)
1 = B

(k+1)
0 + span

{
(λ− k − 1)β

(k+1)
i,1

}
.

In addition A
(k+1)
0 , Γ

(k+1)
1 and ∆

(k+1)
0 are linearly dependent. More precisely, for i =

0, . . . , k − 2(
(λ+ k − 2i− 2) δ

(k+1)
i,1 + α

(k+1)
i+1,1

)
︸ ︷︷ ︸

∈Γ
(k+1)
1 for i=0,...,k−1

=

= (λ+ k − 2 (i+ 1))β
(k+1)
i+1,0 + α

(k+1)
i+1,1︸ ︷︷ ︸

∈A(k+1)
0 for i=−1,0,...,k−1

+ (λ+ k − 2i− 2)
(
δ

(k+1)
i,1 − β(k+1)

i+1,0

)
︸ ︷︷ ︸

∈∆
(k+1)
0 for i=0,...,k−2

,
(4.89)

which implies

A
(k+1)
0 + Γ

(k+1)
1 + ∆

(k+1)
0 = A

(k+1)
0 + ∆

(k+1)
0 + span

{
(λ− k) δ

(k+1)
i,1 + α

(k+1)
i+1,1

}
. (4.90)

Thus we have

im
(
Qk
)

= A
(k+1)
0 + ∆

(k+1)
0 + span

{
(λ− k) δ

(k+1)
i,1 + α

(k+1)
i+1,1

}
+

+Γ
(k+1)
0 +B

(k+1)
0 + span

{
(λ− k − 1)β

(k+1)
i,1

}
.

(4.91)
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The first line is linearly independent from the second one (as is readily checked) and we
can determine their contribution to the dimension of im

(
Qk
)

separately. One gets

dim
(
A

(k+1)
0 + ∆

(k+1)
0 + span

{
(λ− k) δ

(k+1)
i,1 + α

(k+1)
i+1,1

})
=

= (k + 1) + (k − 1) +

{
0, if λ = n
1, if λ 6= n

(4.92)

and

dim
(

Γ
(k+1)
0 +B

(k+1)
0 + span

{
(λ− k − 1)β

(k+1)
i,1

})
=

= k + k +

{
0, if λ = n+ 1
1, if λ 6= n+ 1

(4.93)

and thus

dim
(

im
(
Qk
))

=

{
4k + 1, if λ = n or λ = n+ 1
4k + 2, if λ 6= n and λ 6= n+ 1

(4.94)

This implies

dim
(
Hk
)

= dim
(

ker
(
Qk
))
− dim

(
im
(
Qk−1

))
= dim(Ck)− dim

(
im
(
Qk
))
− dim

(
im
(
Qk−1

))
=


2, if λ = k
1, if λ = k − 1 or λ = k + 1
0, else

(4.95)

for k ≥ 3. Finally one calculates the special cases

dim
(
H0
)

=

{
1, if λ = 1
0, if λ 6= 1

(4.96)

and

dim
(
H1
)

=


2, if λ = 1
1, if λ = 2
0 else

. (4.97)

dim
(
H2
)

is as in equation (4.95). We can summarise our findings:

Theorem 4.3. The cohomology of gl(1|1) w.r.t. ρΛ is trivial except for c = 0 and
λ ∈ Z≥1. In that case

dim
(
Hk
)

=


2, if k = λ
1, if k = λ± 1
0 else

. (4.98)

Example 4.2. We want to calculate the cohomology of gl(1|1) w.r.t. the representation
ρΛ using Lemma 4.4. For this we look at the subalgebra q = gl(1|1)0 = CH + CC.
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We must first show that the natural representation ρknat of q on the Ck is completely
reducible. We have

ρnat(H) = L1 + λ1 = L1 − c3b3 + c4b4. (4.99)

It is clear that ρnat(H) is diagonal in the basis of Ck we used in the previous example
since the two latter terms count the number of Y ’s minus the number of X’s. ρnat(C)
is simply the multiplication operator by c, i.e. also diagonal (w.r.t. every basis) with
eigenvalue c. Hence in particular ρknat is completely reducible as representation restricted
to q. We can thus apply Lemma 4.4.

We are looking for the vectors w in the Ck’s for which ρnat(q)w = 0. Obviously if
c 6= 0 this is only the zero vector and hence the cohomology is trivial. So, let c = 0 in
the following. Then ρnat(C) = 0 and it suffices to look at ρnat(H). One finds

ρknat(H)α
(k)
i,0 = (λ+ k − 2i)α

(k)
i,0 for i = 0, . . . , k,

ρknat(H)α
(k)
i,1 = (λ+ k − 2i− 1)α

(k)
i,1 for i = 0, . . . , k,

ρknat(H)β
(k)
i,0 = (λ+ k − 2i− 1)β

(k)
i,0 for i = 0, . . . , k − 1,

ρknat(H)β
(k)
i,1 = (λ+ k − 2i− 2)β

(k)
i,1 for i = 0, . . . , k − 1,

ρknat(H)γ
(k)
i,0 = (λ+ k − 2i− 1) γ

(k)
i,0 for i = 0, . . . , k − 1,

ρknat(H)γ
(k)
i,1 = (λ+ k − 2i− 2) γ

(k)
i,1 for i = 0, . . . , k − 1,

ρknat(H)δ
(k)
i,0 = (λ+ k − 2i− 2) δ

(k)
i,0 for i = 0, . . . , k − 2,

ρknat(H)δ
(k)
i,1 = (λ+ k − 2i− 3) δ

(k)
i,1 for i = 0, . . . , k − 2.

(4.100)

We also see now that for λ /∈ Z the cohomology can only be trivial since there are no
vectors which are annihilated by the action of all of q. Let λ ∈ Z be arbitrary but fixed.
Using the above equations we determine the vectors which lie in Cq. These are

α
(k)
i,0 for k = |λ| , |λ|+ 2, . . . and i =

λ

2
+
k

2
,

α
(k)
i,1 for k = |λ− 1| , |λ− 1|+ 2, . . . and i =

λ

2
+
k − 1

2
,

β
(k)
i,0 for k = |λ|+ 1, |λ|+ 3, . . . and i =

λ

2
+
k − 1

2
,

β
(k)
i,1 for k = |λ− 1|+ 1, |λ− 1|+ 3 . . . and i =

λ

2
+
k − 2

2
,

γ
(k)
i,0 for k = |λ|+ 1, |λ|+ 3, . . . and i =

λ

2
+
k − 1

2
,

γ
(k)
i,1 for k = |λ− 1|+ 1, |λ− 1|+ 3 . . . and i =

λ

2
+
k − 2

2
,

δ
(k)
i,0 for k = |λ|+ 2, |λ|+ 4, . . . and i =

λ

2
+
k − 2

2
,

δ
(k)
i,1 for k = |λ− 1|+ 2, |λ− 1|+ 4, . . . and i =

λ

2
+
k − 3

2
.

(4.101)
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Obviously we have to distinguish between the cases λ ≥ 1 and λ ≤ 0. The dimensions
of the Ckq ’s can be easily read off and are listed in Table 4.1. We want to determine the

λ ≥ 1
k · · · λ− 3 λ− 2 λ− 1 λ λ+ 1 λ+ 2 · · ·

dim(Ckq ) · · · 0 0 1 3 4 4 · · ·

λ ≤ 0
k · · · |λ| − 3 |λ| − 2 |λ| − 1 |λ| |λ|+ 1 |λ|+ 2 · · ·

dim(Ckq ) · · · 0 0 0 1 4 4 · · ·

Table 4.1: Dimension of the Ckq ’s.

cohomology now. For this, we investigate how Q acts on vectors in Ckq . We first look at
the case λ ≥ 1. One gets:

(k = λ− 1):

Qα
(λ−1)
λ−1,1 = 0, (4.102)

(k = λ):

Qα
(λ)
λ,0 = α

(λ+1)
λ,1 ,

Qβ
(λ)
λ−1,1 = 0,

Qα
(λ)
λ−1,1 = α

(λ+1)
λ,1 ,

(4.103)

(k ≥ λ+ 1, k − λ =: 2r + 1 odd):

Qα
(λ+2r+1)
λ+r,1 = 0

Qβ
(λ+2r+1)
λ+r,0 = β

(λ+2r+2)
λ+r,1 ,

Qγ
(λ+2r+1)
λ+r,0 = γ

(λ+2r+2)
λ+r,1 − α(λ+2r+2)

λ+r+1,0 ,

Qδ
(λ+2r+1)
λ+r−1,1 = β

(λ+2r+2)
λ+r,1 ,

(4.104)

(k ≥ λ+ 2, k − λ =: 2r even):

Qα
(λ+2r)
λ+r,0 = α

(λ+2r+1)
λ+r,1 ,

Qβ
(λ+2r)
λ+r−1,1 = 0,

Qγ
(λ+2r)
λ+r−1,1 = α

(λ+2r+1)
λ+r,1 ,

Qδ
(λ+2r)
λ+r−1,0 = δ

(λ+2r+1)
λ+r−1,1 − β

(λ+2r+1)
λ+r,1 .

(4.105)

We can then without further ado read off the dimensions of the images and hence of the
kernels of Qk which leads to the cohomology shown in Table 4.2.

Let us finally look at the case λ ≤ 0: We have to repeat the above steps for Ckq with
k = |λ| , |λ|+ 1, . . . and one gets the cohomology in Table 4.3.

The results are of course identical to those in Theorem 4.3.
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k · · · λ− 2 λ− 1 λ λ+ 1 λ+ 2 λ+ 3 · · ·
dim(Ckq ) · · · 0 1 3 4 4 4 · · ·

dim
(

ker
(
Qk
∣∣
Ckq

))
· · · 0 1 2 2 2 2 · · ·

dim
(

im
(
Qk−1

∣∣
Ckq

))
· · · 0 0 0 1 2 2 · · ·

dim(Hk) · · · 0 1 2 1 0 0 · · ·

Table 4.2: Cohomology for λ ≥ 1.

k · · · |λ| − 2 |λ| − 1 |λ| |λ|+ 1 |λ|+ 2 |λ|+ 3 · · ·
dim(Ckq ) · · · 0 0 1 3 4 4 · · ·

dim
(

ker
(
Qk
∣∣
Ckq

))
· · · 0 0 0 1 2 2 · · ·

dim
(

im
(
Qk−1

∣∣
Ckq

))
· · · 0 0 0 1 2 2 · · ·

dim(Hk) · · · 0 0 0 0 0 0 · · ·

Table 4.3: Cohomology for λ ≤ 0.
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