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In this work we will study the cohomology of Lie algebras and Lie superalgebras,
especially of sl3(C) and gl(1]|1). A basic introduction to the theory of Lie (super)-algebras
and their representations will be given as well as to the concepts of cohomology.
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Overview

In this work we want to study the cohomology of Lie algebras and Lie superalgebras
and apply the results to several examples. Chapters [1| and |2] give an introduction to
the theory of Lie algebras and Lie superalgebras as well as to their representations.
The reader may skip these chapters if he or she feels sufficiently versed in that topic.
In these chapters we will also introduce those examples of Lie (super)algebras whose
cohomologies will study later on in the text. For a physical motivation see for example
[HT92].

In Chapters [3| and [4] we introduce the concept of cohomology in the cases of Lie
algebras and Lie superalgebras and calculate it for the examples of sl3(C) and gl(2]2).



1 Lie Algebras

In this chapter we will introduce the concept of Lie algebras and look at some elementary
properties. Furthermore we will group Lie algebras into different classes. Next, we will
look at representations of Lie algebras and will also classify them. The concepts shall
be illustrated with the help of the irreducible representations of sly(C). An elementary
introduction to the theory of Lie algebras can be found in [EW06].

1.1 Basics

Definition 1.1. A Lie algebra (g, [, -]) is a vector space g over a field K together with
a binary operation

[l:exg—g, (2,9) = [r,y],

called Lie bracket which satisfies:

1. (K-bilinearity)
[z + By, 2] = e[z, 2] + By, 2] (1.1)

and
[z, 03 + By] = alz,2] + B [z, (1.2)
for all scalars o, 5 € K and all z,y,z € g.

2. (Alternating on g)
[z,2] =0 (1.3)

for all z € g.

3. (Jacobi identity)

[z, [y, 2]] + [y, [z, 2] + [z, [#,9]] = 0 (14)
for all x,y, z € g.
In the following we will simply write g for the Lie algebra (g, [, ]).

In this text we will deal exclusively with (as vector spaces) finite-dimensional Lie
algebras, which does dot mean that some of the results are not true in a more general
setting.



Remark 1.1. (1) and (2) in the above Definition |1.1|imply the anti-symmetry of the
Lie bracket, i.e.

[l’,y] - - [y,l’]
for all x,y € g. Conversely, the implication that (2) follows from the antisymmetry is
only true for fields K with char(K) # 2. (Set z = y.) We will later in the super case
(cf. Definition use a generalisation of the antisymmetry for the definition of a Lie
superalgebra.

Remark 1.2. Let g be a Lie algebra with finite vector space dimension. Choose a basis
{l1,1la,...,1,} of g and we can evaluate the Lie bracket for pairs of basis vectors and
write the result again in terms of the basis vectors. This gives

U 1) =D fhily = fEly (1.5)
k=1

for 1 < 4,7 < n, which are the defining relations for the 1’3 (1 < i,j,k < n), called
structure constants. (In the second step of the above equation we used the Einstein
summation convention, which means we sum over indices appearing twice (one upper
and one lower index).)

Conversely, a Lie algebra is uniquely defined by giving a basis and the structure

constants.

Remark 1.3. It follows directly from the definition of a Lie algebra that the structure
constants satisfy the equations

fE=0 and ff=-fk (1.6)
for all 1 < 4,5,k <n and

I ffea+ fofia=0 (1.7)
forall 1 <a,b,c,e <n.

In the following we want to introduce an important class of Lie algebras, which is
defined starting from an associative algebra.

Definition 1.2. 1. An algebra over a field K is a K-vector space A together with a
binary operation
x: AxA— A, (a,b)— axb,

which is K-bilinear, i.e.
(Aa+pb)xc=X(a*xc)+pu(bxc) (1.8)

and
cx (Aa+pub) =X(cxa)+ p(cxd) (1.9)

for all scalars A\, u € K and all a,b,c € A. For the sake of simplicity we will simply
denote the Algebra as A.



2. If the operation * is in addition associative, i.e.
ax(bxc)=(axb)x*c (1.10)
for all a,b,c € A, then A is called an associative algebra over the field K.

3. If an algebra A has an element 1 such that 1xx =2 %1 =1 for all x € A, then
the algebra is called unital. (The element 1 is called multiplicative identity and is
unique if it exists.)

4. A map F : A — B between two algebras A and B over K is called homomorphism
of algebras if F' is K-linear, i.e. F(kx +vy) = kF(z) + F(y) for all k£ € K and
x,y € A and if F is multiplicative, i.e. F(zxy) = F(z)* F(y) for all z,y € A.

5. If an algebra homomorphism F : A — B between two unital algebras A and B
maps the identity 1 in A to the one in B, then F is called unital.

Remark 1.4. Let A be an associative algebra as in the above Definition Then A
together with the commutator [-,-] as Lie bracket defined by

[a,b] =axb—bxa (1.11)

for all a,b € A forms a Lie algebra. In particular, A together with the commutator forms
again an algebra, which however is not associative in general.

Remark 1.5. Let V be a vector space over K. The vector space End(V') of the endo-
morphisms of V' (i.e. the linear maps from V into itself) forms an associative algebra
together with function composition o as operation.

Definition 1.3. Let V' be a vector space over K. We denote by gl(V') the Lie algebra
formed by the associative algebra (c.f. Remark End(V) of endomorphisms of V
together with the commutator as defined in Remark

If in particular V' = K", we write gl(V') = gl,,(K) = gl(n).

Definition 1.4. A Lie algebra homomorphism ¢ is a K-linear map (i.e. a vector space
homomorphism)

p:g—h

of a Lie algebra (g, [ ] ) to another Lie algebra (h, [, ]h) (both over the same field K)

with

g

¢ ([2.];) = [ (@) 0 W), (L12)

for all z,y € g.
If in the above situation ¢ is a isomorphism of vector spaces, ¢ is called Lie algebra
isomorphism and g and § are called isomorphic.



Definition 1.5. A subspace b of a Lie algebra g, which is closed under the Lie bracket,
i.e.

[z,y] € b (1.13)
for all z,y € b is called Lie subalgebra of g. If § fulfils even

[z,y] € b (1.14)
for all x € g,y € b, then b is called an ideal in g.

Definition 1.6. Let i be an ideal of the lie algebra g. Then, as can be readily checked,
one can define a Lie algebra on the quotient space g/i by

[z +iy+i] = [z, y] +1i
for x,y € g, called quotient algebra.

Remark 1.6. Let ¢ : g — b be a Lie algebra homomorphism. Then ker(y) is an ideal
in g. Conversely to every ideal, we have the canonical projection g — g/i, which has i
as kernel. Hence ideals are exactly kernels of Lie algebra homomorphisms.

Definition 1.7. Let g be a Lie algebra. A universal enveloping algebra U(g) of g consists
of a unital associative algebra with the Lie algebra structure defined by the commutator
and a Lie algebra homomorphism ¢ : g — U(g) such that the following universal mapping
property holds: If A is an arbitrary unital associative algebra (which we view as a Lie
algebra with the commutator), then the Lie Algebra homomorphisms ¢ : g — A are
in bijection with the unital algebra homomorphisms F' : U(g) — A. This bijection is
by means of the homomorphism ¢ : g — U(g). In other words: To every Lie algebra
homomorphism v : g — A there is a unique algebra homomorphism F' : U(g) — A with

P =Fop.

Definition 1.8. Let V' be a vector space over the field K. Then the tensor algebra T'(V)
is defined by

TW%*%VW:K@V@W®VMNV®V®W@”W (1.15)

n=0

where V ® W denotes the tensor product space of the vector spaces V and W. With the
multiplication defined by
(x,y) » xRy (1.16)

for all x € V® for an i and all y € V®J for a j (and by bilinearity defined on all of
T(V)) T(V) becomes a Z-graded, unitary, associative algebra.

Remark 1.7. We can explicitly construct the universal enveloping algebra. Let I be
the two-sided ideal T'(g), generated by elements of the form



for z,y € g. Then U(g) is given by the quotient of the tensor algebra T'(g) by the ideal
I. (Since I is not homogeneous, U(g) does not carry an induced grading, in contrast to
the exterior algebra (cf. Remark [3.2).) One can show that ¢(g) does indeed have the
properties from Definition

Example 1.1. Let us look at the Lie algebra gl,,(K), i.e. the endomorphisms of K.
If we fix a vector space basis, then these correspond to the K-valued n x n-matrices,
where we identify the composition of endomorphisms wit matrix multiplication (and
accordingly for the commutator).

The traceless endomorphisms (n x n-matrices) form a subspace of gl,(K) and even a
subalgebra. If one restricts the Lie bracket of gl,(K) to this subalgebra, one gets the
Lie algebra of the traceless endomorphisms (n x n-matrices), called sl,,(K). These even
form an ideal in gl,,(K).

Example 1.2. Let us now look at the example of the Lie algebra sla(C), i.e. the Lie
algebra of the traceless complex 2 x 2-matrices. As basis we choose

1/1 0 0 1 00
m=5(p &) x=(0 ) ma v=(] )

The basis elements satisfy

[X,Y]=2H, [H,X]=X and [HY]=-Y.

(o)

and continue to use the commutator as Lie bracket, we get all of gl,(C). C fulfils the
additional relations

If we extend the basis by

[C,X] =[C,Y] = [C,H] = 0.

An element like C' which commutates with all other elements is called a central element.

1.2 Types of Lie Algebras

We shall have a look at some types of Lie algebras and their properties in a nutshell.
Definition 1.9. A Lie algebra g is called abelian if [x,y] = 0 for all z,y € g.

Definition 1.10. A Lie algebra g is called simple if it is not abelian and if {0} and g
are the only ideals in g.

Definition 1.11. Let gy and gz be Lie algebras. We define a Lie bracket on the direct
sum

g:=9g1Dgo (1.17)



of the vector spaces g1 and go via

[(xlva) ) (ylva)] = ([xhyl] ) [x27y2]) (1’18)

for z;,y; € g; (i = 1,2). The thus defined Lie algebra g := g1 @ g2 is called direct sum of
the lie algebras g; and go.

Definition 1.12. Let g be a Lie algebra over a field of characteristic 0. g is called
semisimple if g is isomorphic to a direct sum of simple Lie algebras, i.e.

g=g1®... Dok (1.19)
with g; (¢ = 1,...,n) simple. A Lie algebra g is hence semisimple if and only if there
exist simple ideals h; Cg (i =1,...k) withg=0b1 & ... D by.

Remark 1.8. Let g be a Lie algebra over a field K with char(K) = 0. Then the
following are equivalent:

1. g is semisimple.
2. g does not contain any non-trivial abelian ideals.
3. g does not contain any non-trivial solvable ideals (cf. Definition [1.15]).

We will later for the definition of semisimple in the case of Lie superalgebras (cf. Defi-
nition [2.11)) use a generalisation of property (3). Note that the above equivalence then
no longer holds.

Definition 1.13. Let g be a Lie algebra. We define the descending central series
C%g,Clg,... by
C’g=g (1.20)
and
C™*lg = [g,C™g (1.21)

form=1,2,....
A Lie algebra g is called nilpotent if its descending central series becomes zero, i.e.
there exists an N € N with
CNg = {0}

and thus
C"g={0}
for all n > N.

Definition 1.14. A Cartan subalgebra b of a Lie algebra g is a nilpotent Lie subalgebra
which is in addition self-normalising, i.e. [z,y] € h for all z € b implies y € b.
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Definition 1.15. Let g be a Lie algebra. We define the derived series Dg, D'g, ... by
Dlg=g (1.22)

and
D" lg = [D™g, D™y (1.23)

form=1,2,....
A Lie algebra g is called solvable if its derived series eventually becomes zero, i.e. there
isa N € N with
DVg = {0}

and thus
D"g = {0}
for all n > N.
A maximal solvable Lie subalgebra is called Borel algebra

1.3 Representations of Lie Algebras

In this section we will study representations of Lie algebras and will also classify them
into different types. We need these concepts from representation theory to be able to
define the cohomology of Lie algebras (cf. Chapter 3)).

Definition 1.16. Let g be a Lie algebra over a field K and let V be a vector space over
K. A representation of the Lie algebra g on V is a Lie algebra homomorphism

p:g—gl(V)

from g into the Lie algebra of endomorphisms on V. In the case of gl(V') = gl,,(K) (i.e.
V = K™) we speak of an n-dimensional representation of g.

Definition 1.17. The above Definition reads explicitly as

p([z,y]) = [p(x), p(y)] = p(x)p(y) — p(y)p(z) € gl(V) (1.24)

for all z,y € g. The vector space V together with the representation p is called g-module.
Equivalently one can define a g-module as a vector space V' together with a bilinear
map - : g x V — V such that

[yl v=2-(y-v) =y (z-v) (1.25)

for all z,y € g and all v € V. This is equivalent to the above definition via z-v = p(x)v.
“” is called action of g on V. (One often simply writes zv for x - v = p(x)v.)

In the following we want to justify the usage of the word module in this context.
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Definition 1.18. Let A be an associative algebra over the field K. A left A-module is
a K-vector space V together with a K-bilinear map

AxV =V, (a,v)— av
such that
ay (agv) = (a1 * az)v (1.26)

for all a1, as € A and v € V. (Analogously a right A-module is a vector space V' together
with a K-bilinear map
VxA—=V, (v,a)—va

such that
(vag) a; = v (az * ay) (1.27)

for all aj,a2 € Aand v € V)
A left/right A-module V' is called wunital if A is a unital associative algebra and the
identity element 1 in A satisfies v = v and vl = v for allv € V.,

The following holds:

Theorem 1.1. The representations of a Lie algebra g are in bijection with the unital
left modules of the universal enveloping algebra U(g) (with the bijection being ¢ < F

from Definition )
Proof. We use the notation from Definition [I.7] Let ¢ be a representation of a Lie
algebra g on the vector space V, i.e. ¢ : g — gl(V) is a Lie algebra homomorphism.
This homomorphism is in turn assigned a unique unital algebra homomorphism F' :
U(g) — gl(V). V hence becomes a unital left ¢/(g)-module via
w= F(u) v (1.28)
~——
€End(V)

for all w € U(g) and all v € V.
Conversely, let V' be a unital left ¢(g)-module. We then define

P(z) v=p(@) (1.29)
——
€End(V)

for x € g and v € V, which means v is a representation of g on the vector space V.
The two constructions are inverse to each other because of F' o ¢ = . O

We now know that representations of g are mapped in a 1-to-1 fashion to unital left
modules over U(g), which is why the name g-module in Definition is justified.

Example 1.3. Let g be a Lie algebra and p : g — gl(V') a representation of g on V.
With p(x)v = 0 for all z € g and v € V, p becomes a representation of g, the trivial
representation. If in this situation V = {0}, p is called the zero representation.
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Definition 1.19. Let g be a Lie algebra and p : g — gl(V') a representation of g on V.
If a subspace U C V is p(g)-invariant, i.e. p(x)u € U for all x € g and all u € U, we say
U is stable under g (or under the action of g on V). In this case U together with the
restriction of p(x) € End(V) to End(U) is called subrepresentation. If U C V', we speak
of a proper subrepresentation.

Definition 1.20. Let g be a Lie algebra and p : g — gl(V) a representation of g on
V. Then p is called irreducible if for all subspaces U C V, p(g)U C U implies U =V
or U = {0}. (With other words: V and {0} are the only p(g)-invariant subspaces of V.
With yet other words: If p has a proper subrepresentation, then this must already be
the zero representation.) If p is not irreducible, p is called reducible.

Definition 1.21. Let g be a Lie algebra and p : g — gl(V) a representation of g on
V and w : g — gl(WW) a representation of g on W. A linear map ¢ : V. — W is called
homomorphism of representations if

p(p(a)) = n(2)p () (1.30)

forallz € g,v € V.

If in the above situation ¢ is even an isomorphism of vector spaces, then the two
representations are called isomorphic. If V. = W, then an isomorphism from V to
W corresponds to a change of basis in V. We therefore also speak of equivalence of
representations.

Definition 1.22. Let g be a Lie algebra and p : g — gl(V') a representation of g on V.
If p is a direct sum of irreducible representations of g, p is called completely reducible
(also called semisimple sometimes). In particular every irreducible representation is fully
reducible.

A representation p : g — gl(V') is completely reducible if and only if there exists a
decomposition V =U; ® ... @ U of V into g-stable subspaces Uy, ..., Uy such that the
subrepresentations on them are irreducible.

Definition 1.23. Let g be a Lie algebra and p : g — gl(V) a representation of g on
V. If p can be decomposed into a non-trivial direct sum of (not necessarily irreducible)
representations, p is called decomposable. Else p is called indecomposable.

Definition 1.24. Let g be a Lie algebra and py : g — gl(V') a representation of g on V'
and pw : g — gl(WW) a representation of g on W.
The direct sum representation p = py @ pw : g — gl(V & W) is defined by

pl@)(v + w) = py (2)v + pw () (1.31)

forall x € g,v e V,w e W.
The tensor product representation m = py @ pw : g — gl(V ® W) is defined by

m(x)(v@w) = py(x)v@w+ v pw(z)w (1.32)

forallz e gveV,weW.
It is easy to see that these are indeed representations of g.
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Definition 1.25. Let g be a Lie algebra. Then ad : g — gl(g) defined by
ad(z)y = [z,y] (1.33)

for all z,y € g is a representation of g on g, the adjoint representation of g. (In the
expression gl(g), g is viewed as a vector space.) Moreover ad(z) € D'g for all x € g.

If g is n-dimensional and if we choose a basis {l1,...,[,} of g, then the representation
matrices of the basis elements can be given by the structure constants:
aw) = (%) 1.34
a ( 2) fzg kj=1,..n ( )

1.4 Examples

Example 1.4. Let us look at a classical example of a Lie algebra and its representations.
5l3(C) is the Lie algebra of the traceless complex 2 x 2-matrices with the commutator
as Lie bracket, as we have already studied in Example We can also choose another
often used basidl| namely

1/0 i 1/0 1 1/i 0
a1—2<i O>’ a2—2<_1 0) and a3—2(0 —i>' (1.35)

The following elementary commutation relations hold
[a1,a2] = —a3, [ag,a3] = —a; and [a3,a1] = —as (1.36)

or in short
[ai,aj] = _Eijkaka (137)

ij
are hence given by

where ¢, F = €ijk 1s the Levi-Civita symbol with three indices The structure constants

fl=—ei". (1.38)
The following holds:

Theorem 1.2. To every nmon-negative integer or half-integer number j, i.e. j € %Zzo
there is a (unique up to isomorphism) irreducible (2j + 1)-dimensional representation
p; of sla(C), i.e. a representation over a C-vector space V; of dimension 2j + 1 (here:
V; = C%H),

We can chose an orthonormal basis { %1) m=—5,—3+1,...,7— 1,j} of the repre-
sentation space V; such that:

. . . 1 —i
'The matrices ai,az2,as are related to the Pauli matrices o1 = (O ), oy = <(1) 01) and o3 =

1 0
1 0 . i . . . . .
0 _p) Viaai=—30 (¢ =1,2,3). The Pauli matrices fulfil the commutation relations [0, ;] =
2ie, ;" o

2In the whole text we will not make a distinction between upper and lower indices but for aesthetic
reasons we will write the indices always in a way that a sum according to the Einstein summation
convention is over an upper and a lower index.
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1. If we define
A; = pj(a;) € End(V;) (1.39)

fori=1,2,3 and
A? = AT+ A3 + A3 € End(V)), (1.40)

the basis vectors satisfy the eigenvalue equations

A%l =G+ 1), (1.41)

and ‘ '
A, = magh, (1.42)
2. W.r.t. to the basis {W;j,@ﬁzjﬂ,..., jfl,wg} of Vj the representations pj(a;)

have the following matrixz structure:

pi(a1)mm = %i <5m’,m+1 \/(] —m)(j+m+1)+ 0 m-1 \/(J +m) (j —m+ 1)) )
pj(a2)m’m = % <5m’,m+1 \/(] -m)([j+m+1)— O m—1 \/(] +m) (j —m+ 1)) )

Pj (a3)m’m = imdmm-
(1.43)

The Lie algebra sla(C) is of importance in physics since it is isomorphic to the com-
plexification su(2)c of the real Lie algebra su(2). su(2) is the Lie algebra of complex,
traceless, anti-hermitianf’| 2 x 2-matrices over R with the commutator as Lie bracket.

Example 1.5. We can also look at sly(C) with the basis {H, X, Y} from Example
With this basis we can again study irreducible representations of sly(C) of dimension

2§+ 1 for j € %Czo (these are of course isomorphic to the representations in the above
Example . The following holds:

Theorem 1.3. For all j € %Zzo there is a (unique up to isomorphism) irreducible
representation m; of sla(C) on a vector space V; of dimension 2j + 1 (this vector space
shall have the basis {v_j,v_jt1,...,vj}) and the following holds:

1. mij(H)vm = muy, for allm =—j,—j+1,...,7,
2. wi(X)vm = Um1 for allm = —j,...,5 =1 and 7(X)v; =0,
3. Wj(Y)Um = (m+])(j —m + 1)Um71 fOT allm = *‘7 + ]-a 7j and W(Y)’U*j =0.

Example 1.6. Let us also look at tensor product representations of sla(C). Let two rep-
resentations 7, and m;, on Vj; and V}, respectively be given as in the above Example[I.5]

3In particle physics one often adds a factor 4 in front of all the basis elements of the Lie algebra such
that the matrices are now hermitian instead of anti-hermitian.
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We can then look at the (2j; + 1)(2j2 + 1)-dimensional tensor product representation
T ,ga) = T @ Tjp on Vi, 4y ==V, @ Vj,, which is defined by

Tj1go) (0 @ V) = )y (2)v @ v + v @ 7, ()0 (1.44)
for all z € g,v € V};,v" € Vj,. One can show:

Theorem 1.4. The representation m
has the following decomposition:

j1.g2) = T © Mgy O V(j17j2) =V ®Vj of sl5(C)

T(irga) = Tlir—jel D Tlji—jal+1 D -+ D Tjy4ja- (1.45)

We thus see that 7(;, ;,) is in general not irreducible but can be decomposed into a
direct sum of irreducible components. In this decomposition all the irreducible repre-
sentations m; with j = |j1 — j2|,|j1 — j2| + 1,..., 51 + j2 appear. The change of basis
matrices, which are needed to get from the tensor product basis of V(;, ;,) to the basis in
which the representation matrices have a block diagonal structure where each block cor-
responds to a term in the above decomposition, are given in terms of the Clebsch—Gordan
coefficients.
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2 Lie Superalgebras

Analogously to Lie algebras we can introduce the more general notion of Lie superal-
gebras. Here we introduce a distinction between even and odd elements in the vector
space which is then made a Lie superalgebra. A detailed introduction to the theory of
Lie superalgebras is found in [Kac77]. An extensive summary of Lie superalgebra related
notions is given in [FSS96].

2.1 Basics

Definition 2.1. A super vector space V is a Zo-graded vector space, i.e. a vector space
V with a direct sum decomposition

V=V&V, (2.1)

where 0,1 € Zs.

An element in z € V is called homogeneous, if x € Vp or x € V. We write |z| for
the degree of a homogeneous element z, i.e. || =0 for x € V) and |z| = 1 for x € V;.
Elements in Vj are called even (or bosonic), those in V; odd (or fermionic).

We define the superdimension of V' as (dim (Vp) , dim (V7)).

Definition 2.2. A superalgebra A over a field K is a K-super vector space A = AgP Ay
together with a bilinear binary operation

s Ax A A,

such that
Ai * Aj g A/L'Jrj (22)

with 4,5 € Zo.
If the binary operation is in addition associative, then A is called an associative
superalgebra A over the field K.

Definition 2.3. A Lie superalgebra g over a field K is a superalgebra g = go @ g1 with a
binary operation [-, -], called Lie superbracket, which in satisfies the following conditions:

1. (Super anti-symmetry)

[1’,3/] - _(_1)\x\|y\ [y,m] (23)

for all homogeneous z,y € g.
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2. (Super Jacobi identity)
(=D 2, [y, 2] + ()W 2, 2,y + () [y, [z,2]] =0 (24)
for all homogeneous z,y, z € g.

Remark 2.1. The super anti-symmetry (1) in the above definition implies for a field
K with char(K) # 2 that
[z,2] =0 (2.5)

for all homogeneous x € g with |z| = 0.
The super Jacobi identity (2) implies for a field K with char(K) # 3 that

2, [, 2] = 0 (2.6)
for all homogeneous x € g.

Remark 2.2. Let g = go®g1 be a Lie superalgebra with finite vector space dimension. If
we choose a basis {l1,la,...,ln} of go and {lym+1,lm+2,- -, lmtn} of g1, we can evaluate
the Lie superbracket for pairs of basis vectors and write them again in terms of basis
vectors (as for Lie algebras). This gives

m+n

[li, 5] = Z fhile = fhle (2.7)
k=1

for 1 < 4,7 < m + n, which are the defining relations for the structure constants fl-’;
(1<i,j,k <m+n).

Also a Lie superalgebra is uniquely determined by choosing a basis and giving the
structure constants.

Remark 2.3. The following relations for the structure constants follow directly from
the defining relations of a Lie superalgebra:

kE _ il £k
fii = —(=1)FVIg5 (238)
forall1 <4,5,k<m+n,
(=)Wl g pey 4+ (—1)lellel g ey 4+ (1) Plpd £y = 0 (2.9)
forall1 <a,b,c,e <m-+n and
fi #0 = il +jl = |kl € Zo (2.10)

for all 1 <4,j,k <m + n. Here we wrote short

| = || = 0 for1<i<m
R B form+1<i<m+n °
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Remark 2.4. Given a Lie superalgebra g = gg @ g1, we can look at the restriction of
the Lie superbracket on the even part gg, which is sensible because of relation This
makes gg a Lie algebra, since the Lie superbracket simplifies to a Lie bracket. Hence a Lie
superalgebra is a generalisation of a Lie algebra where a Lie algebra is a Lie superalgebra
with dim(gy) = 0.

Remark 2.5. Analogously to Remark starting from an associative superalgebra
A = Ay @ Ay with binary operation *, we can define the supercommutator by

[z,y] =z sy — (—1)*¥y « o (2.11)

for all homogeneous elements x,y € A (defines [-, -] by linearity for all elements in A).
One readily checks that with this construction A becomes indeed a Lie superalgebra
with the supercommutator as Lie superbracket.

Remark 2.6. If one looks at the definition of the supercommutator in the above Re-
mark one realises that this is just the commutator for two even elements or one even
and one odd element. For two odd elements one has the anticommutator {-, -}, defined
for an associative algebra analogously to the commutator as {a,b} = a*b+bxa.

Remark 2.7. Let V = Vy &V} be a K-super vector space. Then there is a natural way
of introducing a Zs-grading on the K-vector space End(V'). If we look at an arbitrary
endomorphism 7', this can uniquely be written as

T =Too+To1 + 110+ 7111

where for x; € V;, i € Zo:

Tij(zo + x1) = Tijz; € V5,
i.e. T;; maps elements in V; to elements in V; and elements in V1 to 0. Tpo and T7;
conserve the degree of a homogeneous element in V', whereas Ty, and Tjg reverse the
degree. We set Ty = Too + 111 and 11 = Tp1 + Th9. We can then define the subspaces
Endo(V) and End; (V) as

End(V), ={T;(T) e V|T € V}.
With the above considerations the following holds:
End(V) = End(V)p @ End(V);. (2.12)

Remark 2.8. Given a super vector space V = Vp @ Vi and the corresponding super
vector space End(V) = End(V)p @ End(V); as in Remark End(V) together with
the composition o as binary operation forms a superalgebra. In particular, as can be
easily checked, condition is satisfied.

Definition 2.4. We define analogously to Definition [1.3] starting from an associative
superalgebra End(V') = End(V')o @ End(V'); the Lie superalgebra gl(Vp, V1) by using the
supercommutator defined in Remark

If in particular Vj = K™ and V) = K" (i.e. V has superdimension (m,n)), we write
gl(Vo, V1) = gl(m|n).
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Example 2.1. A very simple Lie superalgebra which is not a Lie algebra is gl(1[1),
in the following viewed over the field C. The underlying vector space V = Vy & V1 is

2-dimensional with 1 = C <(1)) and V; = C (2) An arbitrary complex 2 x 2-matrix

can be decomposed as follows:

(e 0)=G o) (o)

a,b,c,d € C. The first matrix forms the even part, hence lies in gl(1|1)g and the second
matrix defines the odd part and lies in gl(1|1);. We can choose

1 0 1/1 0
C_(O 1> and H_2<0 _1>

as basis for the even subspace gl(1|1)y and

01 0 0
X_(O O) and Y_<1 0)

as basis for the odd subspace gl(1]1);.
If we write the supercommutator explicitly as commutator [-, -] and anti-commutator
{-,-}, we have the following elementary (anti)-commutation relations

[HvH] = [HvC] = [C,C] =0,
(H,X]= X, [HY]=-Y, [C,X]=][C,Y]=0,
{X,Y}:C and {X,X}:{Y,Y}:O.

We cab further decompose g by setting g_1) := CY, g() := go = CC + CH and
g(l) := CX. Then

{1,900} Co0) and  {g1),0-1} = {80), 90} =0 (2.13)

hold, which makes g = g(_1) ® g(0) @ 9(1) @ Z-graded algebra. One says g is of type L
(In general a Lie superalgebra g = 9(—1) © 9(0) D 9(1), which is a Z-graded algebra with
that decomposition is called Lie superalgebra of type I.)

Definition 2.5. A Lie superalgebra homomorphism ¢ is a K-linear map
p:g—bh

from a Lie superalgebra <g =go Do, -]g> to a Lie superalgebra <h =bho @ by, [, ]h>
(both over the same field K) with

¢ ([2.];) = [ (@) 0 W), (2.14)

for all x,y € g and
©(gi) € bi (2.15)
for i € Zs.
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Definition 2.6. A Zs-graded subspace h = hy ® b1 of a Lie superalgebra g = go P g1
with by C go and h; C g1, which is closed under the Lie superbracket, i.e.

[z,y] € b (2.16)

for all x,y € b is called subalgebra of g. If h satisfies even

[z,yl € b (2.17)

for all x € g,y € b, then b is called an ideal in g.

Definition 2.7. Let i = ig @ i; be an ideal in the Lie superalgebra g = go @ g1. Then
analogously to the case of Lie algebras we can define a Lie superalgebra on the quotient

space g/i = go/io @ g1/i1 by
— =
:(Q/i)o :(G/ih

[z +iy+i] = [2,9] +1,
the quotient algebra.

Remark 2.9. Let ¢ : g — b be a Lie superalgebra homomorphism. Then ker(p) is an
ideal in g. Conversely, to every ideal there is the canonical projection g — g/i, which has
i as kernel. Hence ideals are exactly the kernels of Lie superalgebra homomorphisms.

Definition 2.8. We define and construct the universal enveloping algebra for Lie super-
algebras analogously to Definition and Remark for Lie algebras by replacing the
commutator by the supercommutator and look at representations and homomorphisms
of Lie superalgebras accordingly.

2.2 Types of Lie Superalgebras

Definition 2.9. A Lie superalgebra g = go @ g1 is called simple if {0} and g are the
only ideals in g.

Definition 2.10. The terms direct sum, nilpotent, Cartan subalgebra and solvable for
Lie superalgebras are defined formally identically to the case of ordinary Lie algebras
(cf. Definitions [1.11] [1.13] [L.14] and [1.15)).

Definition 2.11. A Lie superalgebra g = go @ g1 is called semisimple if it has no
non-trivial solvable ideals g.

Remark 2.10. We should remark that in contrast to Lie algebras (cf. Remark [1.8)
semisimplicity of a Lie superalgebra does not imply that the Lie superalgebra can be
written as a direct sum of simple Lie superalgebras.

21



2.3 Representations of Lie Superalgebras

Definition 2.12. Let g = go®g1 be a Lie superalgebra over the field K. Let V = V& V)
be a K-super vector space and gl(Vp, V1) the canonical endomorphism Lie superalgebra.
A Lie superalgebra homomorphism

p:g—gl(Vo, V1)

is called representation of the Lie superalgebra g. V together with the representation
p on V is again called g-module and the action of g on V is given by - : g x V — V|
x-v=p(x)v.

If in particular gl(Vp, Vi) = gl(m|n) (i.e. Vo = K™ and Vi = K"), we speak of a
(m,n)-dimensional representation of g.

Remark 2.11. We have seen in Remark that the even part gg of a Lie superalgebra
becomes an ordinary Lie algebra with the restriction of the Lie superbracket to it. Fur-
thermore, because of [go,g1] C g1 we can view the odd part g; as go-module with the
representation p : go — End (g1) defined by

p(x)y = [z,y] (2.18)
for all x € go,y € g1.

Definition 2.13. The terms subrepresentation, irreducible, homomorphism of repre-
sentations, completely reducible, decomposable, direct sum representation and adjoint
representation for representations of Lie superalgebras are defined formally identically
to the case of ordinary Lie algebras (cf. Definitions [1.19} (1.20} [1.21} {1.22} [1.23} [1.24] and
1.25)).

Definition 2.14. Let V = Vi @ V3 and W = Wy @ W1 be super vector spaces. Then
the tensor product space V ® W becomes a super vector space with the Zs-grading

(Ve W), := (Vo Wy) @ (V4 @ W),

(VeoWw), :=WVheW)ae (Vi@ W) (2.19)

and is called the tensor product super vector space.

Definition 2.15. Let g = go @ g1 be a Lie superalgebra and py : g — gl(Vp, V1) a
representation g of V.= Vy @ Vi and pw : g — gl(Wy, W1) a representation of g on
W =Wy ® Wi.

The tensor product representation @ = py @ pw : g — gl((Ve@W),, (Ve W),) on
V ® W is defined by

() (v @ w) = py()v @ w + (—1)""lv @ p (z)w (2.20)

for all x € g and homogeneous v € V,w € W. This indeed defines a representation of g
on the super vector space V @ W.
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2.4 Examples

Example 2.2. In the following we want to study the (irreducible) representations of

g = gl(1]1) (cf. Example [2.1)).
First, there is a 1-dimensional atypical representation py of gon V =V, = C! = C
(V1 = {0}). It is given by

pA(H) =X and  pr(C) = pa(X) =pA(Y) =0 (2.21)
with A € C = End(C!).
We now construct a 2-dimensional typical representation py, A = (A, ¢), of g on the

vector space V = Cvg + Cuvy, where vg,v1 € V are linearly independent. Let the action
of go be given by

H - Vo = )\’Uo (2.22)
and

C vy =cuv (2.23)
with ¢, A € C, ¢ # 0. X shall act trivially on vy, i.e.

X vy =0. (2.24)
Further let v; be defined by

v = Y - V0. (225)

The representation is now already uniquely determined. The representation matrices
w.r.t. the basis {vg,v1} of V are:

pa(H) = (3 AL), pa(C) = (8 2) pa(X) = <8 S) and pA(Y)—<(1) 8).
(2.26)

It is clear that V; = Cvg and V; = Cuy.
Proposition 2.1. py is irreducible if and only if ¢ # 0.

Proof. Let ¢ = 0. Then all the representation matrices pj(z) for z € g have lower
triangular form since this is the case for the representation matrices of all basis elements.
Then Cu; is a pa(g)-invariant subspace.

Let conversely ¢ # 0. Because of pp(Y)vg = v1 and pp(X)v1 = cvy it is easy to show
that there is no non-trivial , i.e. 1-dimensional, p (g)-invariant subspace of V. O

For ¢ = 0 the representation ppx = p(y o) is hence reducible. It is however not decom-
posable since for this to be true also a complement of Cv; would have to be stable under
g. (There would have to be a basis of V' w.r.t. which all the representation matrices
of elements in g are diagonal.) But because of pj(Y)vg = v; this is not possible. But
we can say pA = p(y,0) consists of two atypical representations p) and py—1, which are
connected via the action of Y. This can be illustrated in the following diagram:

Y
P(A0) : pPA————=Pr-1
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Further representations p/, which are isomorphic to pp can be found by looking at an
arbitrary automorphism ¢ : V' — V and choosing p/, such that

¢(pa(@)v) = py(2)p(v) (2.27)
for all x € g,v € V, i.e. one chooses
Ph(@)o =@ (pa (2)) ¢~ (v). (2.28)

W.r.t. a basis this corresponds to a similarity transformation of the representation
matrix, i.e.
P (z) = SppS~1 (2.29)

with S € GL2(C). (The same similarity transformation is obtained by leaving the
representation pp unchanged and conducting an appropriate change of basis on V.)

With S = <(1) (1)) we obtain
/ _(A=1 0 / _[(c O / (0 0 / _ (0 ¢
= (231 0) o= (5 ). o= (] ) manm= (7 5).
(2.30)
and hence X and Y have changed their roles or with S = <(1) (1)> one obtains
1 _ A—=1 0 i _(c 0 " o 00 " . 0 1
(2.31)

Let us compare the representations pp and py for ¢ = 0. It is clear that the represen-
tations are not isomorphic any more for ¢ = 0. For p, we get analogously as for pa the
following diagram:

/

Px0) P

Pr—1

Let us finally look at the tensor product representation p%h Ay 1= PAL @ pp, Of V@
V where Ay = (A,c1), Ao = (A2,c2). The representation is calculated according to
Definition If we choose the standard basis {vy ® vg, vo ® v1,v] ® vg,v; @ v1} for
V ® V, the representation matrices have the form

A1+ Ao 0 0 0
0 A+ —1 0 0
® _
P ) =1 g 0 A Ao — 1 0 ’
0 0 0 A+ X —2
Lo (2.32)
c1 + ¢y 0 0 0
0 c1+c 0 0
® _ 1+
Phiae(C) = 0 0 c1+ce 0
0 0 0 c1+ ¢
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as well as

0 Cy C1 0
0 0 0 ¢

& _ 1

P =10 0 0 e
0 0 0 O

(2.33)

00 0 O
10 0 O

(9 —

pAl,AQ(Y)_ 1 O O O
01 -1 0

Proposition 2.2. Forc; +c #0 pffl Ay = POa,er) ® P(raes) @8 decomposable and

~

P(Ae1) @ Prasea) = P(Ai+rz,cr+e2) D PO+Aa—1,c1+c2)- (2.34)

Proof. To show the assertion we have to find an appropriate basis of V' ® V such that
the representation matrices are in 2 x 2-block diagonal form. To find such a basis, we
look at the following chains starting from the vectors which are annihilated by X and
Y:

0 vo ® Vo 0
| b
v @ V1 + V1 ® Vo €190 @ V1 — C2U1 Q@ Vg
| b
0 v ®@u ———>0

We choose the vectors appearing above (after normalisation) as new basis, i.e.

C2

Vg ® V1 —

C1
V1 @ Vo, V1 QU1 p -
c1 + ¢ c1+ ¢

{vo & g, vg ® v1 + v1 Y Vg,

This gives the representation matrices

0 cg+c O 0
0O 0 0 0

(29 —

P =10 0 0 o te
0O 0 0 0

(2.35)

0000
100 0

& —

M) =10 0 0 o
0010

p?h A, (H) and p%l’ A, (C) stay obviously unchanged. The assertion can now be read
off. O
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Forci4+c2 =0 ,0%1 A, 18 indecomposable. We can however again view it as consisting
of the atypical representations py_s, 2 times py_1 and p) where we set A = A1 + A2. The

structure is shown in the following diagram:
P
2N
Pr—1 Pr-1
K /
2

A
Pr—
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3 Lie Algebra Cohomology

In this chapter we want to deal with the cohomology of Lie algebras. For this we define
starting from a Lie algebra an operator ) on a suitable vector space with Q% = 0.

An introduction to the theory of Lie algebras and the corresponding cohomology is
given in [Kna8§].

In this chapter and in the following one we will only study the case of the field K = C,
which in particular means it has characteristic zero.

3.1 Basics

Given a finite-dimensional Lie algebra g with basis {l1,...,[,} and structure constants
(n
moment and which is spanned by the vacuum state |0) and the vectors which arise when
applying the operators b; € End(A(g)) and ¢/ € End(A(g)) (1 < 4,7 < n) and arbitrary
products of those on |0). The b;’s and ¢’’s have to fulfil the conditions

1<i,4,k< n} We will study a vector space, which we shall call A(g) for the

A YA 1 fori:j
{b;,d} = ¢! ._{ 0 fori ] (3.1)
and o
{bi,bj} = {CZ,CJ} =0 (3.2)

for all 1 <+¢,7 <n. In addition
b;|0) =0 (3.3)

shall hold for all 1 < i < n, i.e. the b;’s annihilate the vacuum. The elements in A(g)
are called (fermionic) ghost fields. The b;’s are called annihilation operators, the ¢/’s are
called creation operators.

In particular, ¢/¢/ = 0 holds, which is why it is easy to see that dim(A(g)) = 2. A
basis of A(g) is given by

0),c"[0),...,c™|0),cte™[0), et e 0) ..., " e |0), ..., Pt |0) )
— -~

n n n n

0 1 2 n

(We explicitly assume all these vectors to be linearly independent.)
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We also see now that there is a natural way of making the vector space A(g) a graded
(i.e. Z-graded) vector space by setting

A°%(g) = span {|0)},

Al(g) = span {cl 0),...,c" |0)} ,
(3.4)

A™(g) = span {6102 LAY}
(For i € Z\ {0,1,...,n} is A’(g) = {0}.) Then dim(G;) = (?) with the convention

(ZL) =0forieZ\{0,1,...,n}. In addition

=P r) @A’ g eA(g)e...eA(g)
iE€EZ
and .
dim(A Z dim( A’ Z dim( A’ = Z (?) =27
€L =0
hold.

The index i of A’(g) is called ghost number. We define the ghost number operator U
by

U=> cb=ch. (3.5)
=1
Then
Uz =ix (3.6)

holds for all z € A(g) as is easily checked.
We can also define the above vector space A(g) rigorously. It also explains the origin
of the name A(g).

Definition 3.1. Let V be a vector space over the field K. Further, let for k € N

® V=V®. . .8V (3.7)
k— fold
be the k-fold tensor product of V with itself (with the convention T°(V) = K and
TYV)=V).
Let the subspace J*(V) C T*(V) be given by
JEV) = span{v; @ ... Q@ug |v1,...,vp € V, 3,5 € {1,... )k} v, =v;}, (3.8)

i.e. J¥(V) is spanned by elementary tensors having two equal factors. To each k € N
the exterior power is defined as the quotient space

AF(VY =TRVv) ) JRV). (3.9)
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Definition 3.2. The direct sum
o0
J(V) = J*V) (3.10)
k=0
is a two-sided, homogeneous ideal in the tensor algebra

T(V) = é (V). (3.11)
k=0

(Alternatively one can define J(V') as the ideal in T'(V'), generated by all the elements of
the form v ® v with v € V.) The exterior algebra (or Grassmann algebra) of the vector
space V is the quotient algebra

A(V) = T(V)/J(V). (3.12)

Viewed as a vector space it is isomorphic to
Prrv) =P rEv) I v). (3.13)
k=0 k=0

Definition 3.3. The product of two elements a,b € A(V) in the exterior algebra is
written as a A b and
aNb=a®b+ J(V). (3.14)

Remark 3.1. By definition of J(V') the exterior product is alternating on elements in
V =TYV)=AYV), ie. we have
rAx=0 (3.15)

for all x € V. This implies the anticommutativity, i.e.
TANy=—-yAzx (3.16)

for all z,y € V. (For char(K) # 2 from the anticommutativity of a K-bilinear map it
follows that is is alternating. Therefore for char(K) # 2 we can define the ideal J(V) as
the ideal in T'(V') generated by the elements of the form z ® y +y ® x with z,y € V. In
the super case we will use a generalisation of this definition of J(V).)

More generally the exterior product is anticommutative graded, i.e.

aNb=(-1)"bAra (3.17)
for all a € AF(V),b e AY(V).

Remark 3.2. As we have already seen, the exterior algebra can be decomposed into a
direct sum of components of different degrees. A*(V) is the subspace of degree k and is
generated by all exterior products v; Avag A. .. Avy consisting of k factors v; € V. (These
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products are called k-multivectors. It follows that every element in A(V') can be written
as a sum of multivectors.) If dim(V') = n and {ey,...,e,} is a basis of V, then

{eilA...Aeik\lgz’l<...<ik§n}

is a basis of A¥(V) (and A*(V) = {0} for k > n). Then
dim (Ak (V)) - (Z) (3.18)

dim (A (V)) = 2", (3.19)

holds and

The exterior algebra together with the exterior product has the structure of a Z-graded
algebra. In particular
AF(V) AAP(V) C ARFTP(V) (3.20)

holds. (The exterior algebra has a grading which is inherited from the tensor algebra
because it is formed as the quotient by a homogeneous ideal. For the universal enveloping
algebra (cf. Remark this was not the case.)

Let us return to our original description. We identify the vector space we had simply
called A(g) with the vector space A(g) by the above construction via

R0 =1y AL A (3.21)

i

for i1,... ik € {1,...,n}. (Here |0) =1 € K is the empty exterior product.)
This corresponds to the following definitions for the creation and annihilation opera-
tors:

Creation Operators: Let lo, Alo, A .. Alo, € A¥(g) withaj € {1,...,n}fork=1,...,k
and assume that none of the o;’s appear twice since otherwise the state vanishes.
Define for i € {1,...,n}:

i Nag Ao Ny if aj # i for all j (3.22)
if aj =1 for a j. ‘

Annihilation operators: Let Iy, Alay A ... Aly, € A¥(g) with a; € {1,...,n} for k =
1,...,k and assume that none of the «;’s appears twice since otherwise the state
vanishes. Define for i € {1,...,n}:

bi(lal/\---/\lak):

D ey Ay Ao A Aoy, ifaj =i foraj (3.23)
0 if oj # @ for all j.

Herefrom we can conversely derive the relations for the creation and annihilation
operators ((3.1] 3.3]) by using the properties of the exterior product:
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Proposition 3.1. Let ¢ and b; (i =1,...,n) be defined as above. The the creation and
annihilation operators are well-defined as linear operators in End(A(g)) and

{bi, '} = o] (3.24)
as well as o
{b;,b;} ={c",d} =0 (3.25)
hold for alli,j € {1,...,n}.
Proof. The proof is left to the reader. O

The next theorem shows that the Lie algebra g and the vector space A(g) are intimately
related namely that A(g) can be made a (non-trivial) g-module.

Theorem 3.1. The Lie algebra g has a representation m on A(g) given by
Ao i=7(la) = —f15¢7by = f3,¢°by € End(A(g)). (3.26)
In particular
D As] = 150, (3.27)

Proof. The map 7 is defined on the basis vectors of g and hence defines a unique linear
map 7 : g — End(A(g)) = gl(A(g)). We have to show that this map respects the Lie
bracket (here: the commutator) on g and gl(A(g)). Obviously, this follows from

[Aas Ag] = fgg)‘va

which is what we will show in the following.
We have

Ao, Ag] = [—f&’uc"by, —fgpcpbo] = Zufgp (b, by — Pbyct'by,) . (3.28)
By application of the anticommutation relations (3.1]) and (3.2)) one gets

Mo Al = £2, 18, (¢ (08 + cb,) by — ¢ (5% + cbg) by)
= X 15, (cbgdf + clePbiby — c’b, 6k — cPelbyb,)
= gufgucuba - gufgpcpbu
= (fayuf,gy - f,BV;L gy) Cubav

where we have renamed some indices which are summed over in the last step. By
application of the Jacobi identity (cf. (1.7)) in Remark |1.3])

foutav + Fuatgy + fasfiw =0

(3.29)

we finally get
[Aas )\6] = gﬁfﬁycuba = &/,Bfgpcubo' = f&/,@)‘w (3.30)
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Let us look at the Lie algebra g and an arbitrary representation p of g on a vector
space V' (write L, := p(ln) € End(V)). Furthermore we have the representation 7 of g
on the vector space A(g) (with Ao, = 7(lo) € End(A(g)))-

The vector space C, on which we want to define the cohomology be defined as C' =
V ® A(g). Then C becomes a graded vector space by

n

C=VeAg=V® (@AZ@) =P (ve ) = (3.31)
=0 1=0

=0

where we put C* = V ® A¥(g) (i € Z). (In particular C* = V ® {0} = {0} for i €
Z\{0,1,...,n}.) C inherits the grading from A(g), thus it is ordered by ghost number.
In the following we will define a (linear) operator @ on C' with the property

Q?*=0 (3.32)

and
v e U,Q]=Q, (3.33)

where Iy is the identity operator on V' and U is the ghost number operator (cf. (3.5))
on A(g). The second property implies that @) raises the ghost number by one 1, i.e.

Q(CY c ¢ttt (3.34)

fori€0,1,...,n. We put ‘
Q' = Qloi - (3.35)

Graphically this is written as a sequence:
) 0 Lot &YYo &) (3.36)
The condition @? = 0 then implies that
im (Q"") Cker (Q') . (3.37)

If im (Qifl) = ker (Qi), the above sequence is an eract sequence (in the category of
vector spaces and linear maps).
In general one defines:

Definition 3.4. Let (Ck) be a sequence of K-vector spaces and let

keZ
dr . oF —» oFt! (3.38)

be a K-vector space homomorphism for all & € Z (called coboundary operator) with
d**todk =0 for all k € Z. We then call

_ k 1k . Hk k+1
c_(c ok o )kez (3.39)
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Figure 3.1: The k-th position of the cochain complex (C’k, Qk)kel'

a cochain complex. The situation is depicted in Figure An element in C* is called
k-cochain. If for a cochain ¢ € C* it holds that d* (¢p) = 0, then ¢ is called a cocycle.
If there exists a ¢ € CF~! with d*"!(y)) = ¢ then ¢ is called a coboundary. Let
Z*(C) = ker(d*) denote the subspace of all cocycles and B¥(C) = im(d*~1) the subspace
of all coboundaries.

We define the k-th cohomological space of the cochain complex C as

H*(C) = z%(C)/B*(C). (3.40)

An element of the cohomological space H¥(C) is called cohomology class. A cochain
complex is called ezact at position k if Z¥(C) = B*(C) (iff. H*(C) = {0}). A cochain
complex is called exact if it is exact at every position. In this case we say the cohomology
is trivial.

We now want to measure how inexact the cochain complex (C’i, Qi)i ¢z, is at position
1. For this we look at the i-th cohomological space

H' =ker (Q")/im (Q"") (3.41)

and determine its vector space dimension.
We call H(g,V) := (Hi)iez the cohomology of g with coefficients in V.

Remark 3.3. We already know that A’(g) = {0} and thus C* = {0} for i € Z\
{1,2,...,n}. Hence H* = {0}/{0} = {0} for i € Z\ {1,2,...,n} and therefore
(Cini)iez is exact at the corresponding positions i. We thus only have to study
HO H',... H"

The following theorem shows how one can define an operator () which fulfils the

conditions (3.32) and (3.32)).
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Theorem 3.2. The operator QQ defined on C as

1
Q= p(ly) @+ 5IV ® c7(la)
) (3.42)
= LOé ® Ca — 5 ;/BIV ® Cacﬁbry,

fulfils
Q*=0
and

Iy ®U,Q] = Q.

Proof. For readability we omit the tensor product sign and Iy and we will ignore the
order of the factors of the tensor product. We have

1 1
[Uv Q] = [Laca - §f250acﬁbw U] - La[caa U] - 5 zﬁ[cacﬁb% U] (3'43)
Furthermore
U, ] = [Pbs, ] = ¢ [bg, ] + [®, ] bs = 5§‘ccﬂ = (3.44)
N—— \_\,0_/
By =
12

and analogously one can show
(@b, U] = *cPb,. (3.45)

This proves the second claim.
The first claim is more difficult to show. We have

1 1
Q? = <Lac°‘ - 2fgﬁcacﬁb7> <L#c” -5 [:Vc“c”bp>

1 1 .
= LaLch‘cﬁ — §f;7ﬂ (cacﬁbvc“ + c“cacﬁm) L,+ ngﬁ [jl,co‘cﬁb,yc“c”bp . (3.46)

=:(1) =:(2) =:(3)

We rewrite (2) and get

(2) =

1
Pby et + c“cacﬂbw) L,= 5]2’5 <cacﬁbyc" + (_1)20040/30%7) L,

hau'
Q2
isy
/N /N ~—

f;ﬁ cacﬁbwc" + P (5’7‘ - bw“)) L,
125 (W — P - W) L,

1 1 1
= _flee*fL, = 5cacﬁ[Lo“LB] = 5C%BL&Lﬁ - §cac6LBLa

(3.47)

RN =N

1 1 1 1
= §cac’3LaL5 — §cﬁcaLaL5 = icacﬁLaLﬁ» + icacﬁLaLB = cO‘CBLaLg
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Hence (1) and (2) cancel.
To show that (3) = 0 we first observe that from the Jacobi identity
f5nFas + Faffs + fasl3s =0

follows that

0= (325 + Flafs + fanfss) P,
= fgvfgécacﬁcvbs + J“g(}“}"g(;co‘cﬁcvb6 + fggf,i(;cacﬁchE
= fgwcﬁc'yffu;co‘bE + ffysacwcc“fg(gcﬁhE + fgﬁcacﬁf§507b5
= 370507)\5 + fgaﬁco‘)\g + fgﬁco‘cﬁ)\(;
= 3¢ Ao, Mg
and thus
P Aoy Ag] = 0.
On the other hand
P, A} = cacﬁ)\a)\g + co‘cﬁx\g)\a
= cacﬁ)\a)\g + cﬂco‘)\a)\ﬁ
= cacﬁ)\a)\g — co‘cﬁz\a)\g
= 0,
which also shows
cacﬂ)\a)\g =0.

A short calculation shows
Ao, '] = fgﬁcﬂ.

Together this means

4-(3) = fzﬂfﬁ,jcacﬁbyc“c”bp =N, = <f5505 + c“)\a) A

= P, Ag] + 2P ANg = 0,

which concludes the proof.

3.2 Example of sl;(C)

(3.48)

(3.49)

(3.50)

(3.51)

(3.52)

(3.53)

(3.54)

In this section we will deal with the cohomology of the Lie algebra slo(C). We will step
by step develop more elaborate concepts (cf. [Tan95b, Tan95a]) to make the calculation

of the cohomology easier.

35



Example 3.1. We want to study the cohomology of the Lie algebra g = sla(C) (cf.
example [1.4). We choose the basis {a1,a2,a3} and look at the irreducible (25 + 1)-
dimensional representations p; on V.
We first look at the simplest case j = 0. This is in fact the trivial representation on
Vo =C!=C,ie.
pola;) =0 e C*! (3.55)
for i = 1,2,3. The Grassmann algebra A(g) has independently of the representation
dimension 2" = 23 = 8 where n = 3 is the dimension of the Lie algebra. The vector
space C' is hence

C=Vo®A(g) = C Ag) = Alg) (3.56)
and decomposes into its graded components
C=C"qCl'aC?a 3 (3.57)
with

C° = span {|0)}
C' = span {c'(0),c*|0),c*|0)}

3.598
C? = span {c'¢?(0),c'c |0), 2 0) } (3.58)

C" = span {c'c?c*|0)} .

The operator @ is of the form
) a 1 YT a fB 1 Y o pB
Q=Lo®c —5O[ﬁv®ccbvz—ifaﬁccbW (3.59)
and with f, = —¢ aﬁ'y one calculates

Q = by + A3by + Acltbs. (3.60)

Theorem 3.3. The cohomology of slo(C) w.r.t. the representation po is trivial except
for the beginning at i = 0 and the end at i = 3 with dim(H") = dim(H3) = 1. The
situation is as depicted in Table[3.1]

i [ [2[i[0[1]2[34[5] |
(dim(@) [ [0]O1[3[3]1[0]0] ]
dim (ker (Q°)) [ ---[0]0[1[0]3][1[0]O0]---
dim (im (@) | --- oo Jo[o[3]o][0]O]:--
[ dim(#") [.-[oJoftfoJoft1fofo]- ]

Table 3.1: Cohomology of sly(C) w.r.t. po.
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Proof. With the above preparations the calculation of the cocycles and cochains is now
simple. We have dim (im (Q_l)) = 0. Further

Q10) =0, (3.61)

which implies dim (im (Q”)) = 0 and dim (ker (Q°)) = dim(C?) — dim (im (Q°)) =
1-0=1. From

QL 0) =23 0), Q2|0) =30y, Qc0) = cle?|0) (3.62)
follows dim (im (Ql)) = 3 and dim (ker (Ql)) =3—3=0 and from
Qcl?10) = QA3 |0) = Qe 10) = 0 (3.63)

follows that dim (im (QQ)) = 0 and dim (ker (Qz)) = 3—0 = 3. Clearly dim (ker (Q3)) =
1-0=1. O

In the same way we can calculate the cohomology for representations with higher 7,
eg. j= % It can be shown however (cf. Example ) that for all other representations

with 5 > 0 the cohomology is trivial. For j = 5 we have the situation depicted in
Table 3.2

i |- [2]-1]0]1[2[3]4[5] |

CGm©) [ [0 o0[2[6[¢]2[00]

dim (ker (Q")) [ --- oo Jo[2]4][2][0]0]:--

dim (im (@ 1)) [ --- oo Jo[2]4][2][0]0]:--

| dim(H?) [--[ofofoJofofoJofoOf-|

Table 3.2: Cohomology of slx(C) w.r.t. pL-

Let us now look at the example of sly(C) with the finite-dimensional irreducible rep-
resentation p; we just dealt with from another perspective and see how the cohomology
can be obtained without much calculation. First some preliminary considerations:

Let g be an arbitrary n-dimensional Lie algebra and p a d-dimensional representation
onV, ie. dim (V) =d. Let {l1,...,l,} be abasis of g and f the correbpondmg structure
constants. We have seen (cf. Theorem |3 .) that by 7(ly) = f c b —fa ﬁcﬁ b, we can
define a representation of g on A(g). Correspondingly, by (p (x))( a) = (p(z)v)®a
and (7 (x)) (v®a) =v® (m(x)a) for x € g, v € V and a € A(g) representations p and 7
on C =V ® A(g) are defined.

Definition 3.5. We define the natural representation pnat of g on C' as
Pnat () (v @ a) = (p(x) + 7(x)) (v@a) = (p(z)v) ®a+v & (w(x)a) . (3.64)

Lemma 3.1. It holds
{Qv Iy ® bu} = pnat(lu)- (365)
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Proof. For better readability we omit again the tensor product sign and Iy and set

Ly := p(la) as well as A\, := 7(l,). It holds

{Q, b} = {Lac™ — §f;/ﬂc C/Bb%bu} = Laf{c®, bu} — §fc7yﬂ{c Cﬁbvvbu}
:Lﬁu—§;&—ﬁcm+%&m>zﬁfj%£m
=Ly+ A= pnat(lu)-

For (!) we used
{e*, by} =0,
on the one hand and
{c“cﬁb«,, bu} = cacﬁbybu + b#co‘cﬁb7 = —co‘c’Bbub7 + bﬂco‘cﬁb,Y

= —5500‘67 + co‘bucﬁbw + buco‘cﬁb7

= =60y + 00cPby — be®cPh + b2y

= —650%7 + (52‘05137

on the other hand.

(3.66)

(3.67)

(3.68)

O

Remark 3.4. Obviously pnat(x) leaves the ghost number invariant for all x € g. It is
therefore sensible to restrict pua; to CF. We denote by pF,, the subrepresentation ppa

on CF.

Lemma 3.2. It holds
[Pnat($)v Q] =0

for all x € g or equivalently
phil (@)Q" = Q*pluc(@) € Hom (CF, CF4)

forallk € Z.

(3.69)

(3.70)

Proof. We prove the second assertion for x = [,,. The assertion of the lemma then follows
by linearity of pnat. (We again use the simplified notation as is the proof of Lemma )

By Lemma [3.1] we have
pﬁat(lu) = Qk_lb,u + bqu'

This implies

Q" phas(ly) = Q" Q" by + Q",Q" = Q*b,Q".

=0

Analogously

PR (1)@ = QFb.QF + b, Q"1 QF = Qb Q"

=0

This proves the assertion.

38

(3.71)

(3.72)

(3.73)



Proposition 3.2. Let W be a subspace of C*, which is stable under the natural repre-
sentation pﬁat of g, i.e. it forms a g-module w.r.t. the restriction of pﬁat on W. Then
U :=Q(W) C C*! is also stable under pFil.

nat

Proof. Let W be in C* with pk, (g)W C W. Then the following holds:
i (U = ol (@)Q'W = Q ol (@)W C Q"W = U. (3.74)
O

Proposition 3.3. Let the restriction of p&,, on a subspace W of C* be an irreducible
subrepresentation of dimension d of g. Then U := Q(W) carries again a d-dimensional

irreducible representation of g, namely the restriction of p]fljtl on U or U ={0}.

Proof. Let {wy,...,wy} be a basis of W. Then {uq,...,uqs} with u; := Quw; for i =
1,...,d is a spanning set of Q(W). W.lo.g. we can choose the basis of W such that
{ur,...,w} (0 <1 <d)isabasisof U and w41 = ... = ug = 0. Then pyat(la)wi = ¢] Jw;

for uniquely determined cfa (1<i,j<dl<a<n). Then

Pt la)us = pii (1a)Qus = Qpky(la)ws = Qcl yw; = ] u;. (3.75)

P hence fulfils on U the same defining relations as p¥,, on W. We have uj,; = ... =
ug = 0 but on the other hand the w;’s with ¢ > [ + 1 obey the relation 0 = pkﬂ(la)ui =

¢ . nat
#7auj = Zé‘:l Cg,auj, which means that cfja =0fori+1<i<dand1<j <[ This
means nothing else but that span {u;;1,...,uq} forms a p¥,,-invariant subspace of .
Since the restriction of p¥,, on W is irreducible, | = 0 or [ = d follows. O]

We now want to apply the concepts we just learned to the calculation of the cohomol-
ogy of g = sly(C).

Example 3.2. We first look at the representation 7(l,) = — ;ﬁcﬁb7 = fgacﬁba, on
A(g). Clearly, this representation is not irreducible since we have just seen that the
spaces A¥(g) for k = 0, 1,2, 3 are stable under it (7 does not change the ghost number).
However, it can be easily seen that the representations on the components Ak(g) are
irreducible. In addition we already know all the irreducible representations of g =
sla(C) (cf. Theorem . Hence, because of dim (A (g)) = dim (A®(g)) = 1 and
dim (A! (g)) = dim (A“(g)) = 3 we have

Ty D D7 D 7. (3.76)

Here, 7; denotes the (2j + 1)-dimensional representation of sly(C) from Example
(One could also take the representations p; from Example which are of course
equivalent.)

Further, we are given the representation m; of sly(C) on V' = Vj, for which we want
to calculate the cohomology. We can then look at the natural representation p¥,. on
C* = V ® A¥(g), which is equivalent to the representation mj ® m with [ = 0,1. This
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c* Y ct Cc? c3
dim (C*) | 25 +1 3(25 + 1) 3(25 + 1) 25 +1
j=0 (0) (1) (1) (0)
j="Y2 || (Y2) (1/2) @ (3/2) (1/2) @ (3/2) (1/2)
j=1 U) [G=De@eaeU+) | -Dae@Hel+1) ]| ()

Table 3.3: Trreducible representations of sly(C) on C?, ..., C? starting from a (25 + 1)-
dimensional irreducible representation on V; where C* = V; @ A* (sl (C)).

representation decomposes according to Theorem again into a sum of irreducible
representations of sly(C). The situation is depicted in Table We have written (j)
for m; and the corresponding representation space.

We have seen in Proposition that Q¥ maps a subrepresentation of pf,, on a cor-
responding representation space W C C* again to a subspace U C C**! which itself
carries a subrepresentation of pﬁ:{tl. Because of the uniqueness of the irreducible repre-
sentations of sla(C) (cf. Theorem and Proposition when applying the operator
Q on C* and looking at a subspace which carries an irreducible representation (j) of
5l3(C), this subspace can only be mapped to a subspace which itself carries such a
representation (j) or to {0}. This enables us to determine the cohomology using the
decomposition of C* in several irreducible sly(C)-modules.

Let us first have a look at the case j = 0. Here, C? carries a representation (0). Since
the corresponding subspace cannot be mapped to (0) in C!, @ has to map it to {0}.
This gives the sequence

{0} %5 (0) 2 {03,

which however is not exact. If we in contrast look at C' and C?, the following exact
sequence is possible:
Q° Q' Q*
{0} — (1) — (1) — {0}

Here we assumed that in the second step (1) is in fact mapped to (1), although this
does not have to be the case since (1) could have also been mapped to {0}, which would
not give an exact sequence any more. (The following arguments will be based on the
assumption that the cohomology is as exact as possible.)

At C® we have the same problem as at the beginning at C° and we get the following
inexact sequence:

{0} = (0) % (o).

As a conclusion we have (where we omitted {0} at the beginning and the end of each
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sequence))

which is exactly the cohomology calculated above.
In the case of j = % we get

which is exact at every position.
In the generic case for j > 1 we get

which is also exact.

Another way of simplifying the calculation of the cohomology arises when instead of
looking at the whole Lie algebra we only need to deal with a subalgebra. The following
lemma holds:

Lemma 3.3. Let g be a n-dimensional Lie algebra with a d-dimensional representation
ponV and let (C’k, Qk)kez be the corresponding cochain complex. We look at the natural
representation on C*. The following holds:

1. ker (Qk) is stable under g.
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2. im (Qkil) is stable under g.
5. (@) (er (Q¥)) Cim (+1).
Proof. (1): Let w € ker (Qk) Then by Lemma
QF prag(x)w = Pt (2)Q"w = 0. (3.77)
(2): Let w € im (Qk_l), ie. w= Q" for av e C*1. Then again by Lemma
Pl (@) = phoy (0)Q 0 = Qo € im (@) (3.78)
(3): Let w € ker (Q*) and z = ol; € g (o’ € C for i = 1,...,n). Then by Lemma
P (x)w = (Qk_laibi + aibiQk) w = Q" lalbyw € im (Qk_1> . (3.79)
O

We then have:

Lemma 3.4. Let g be an n-dimensional Lie algebra with a d-dimensional representation
p onV and (C*, Q¥)rez the corresponding cochain complex. Let q be a subalgebra of
g such that the natural representations pk,, of q on C* are all completely reducible.
Then the cohomology of H(g,V) is identical to the cohomology one obtains from the

subcomplex (Cé“, QF |C§) rez

are annihilated by pk .(z) for all x € q.

where Cgf denotes the subspace of the elements of C* which

Proof. The subspace Cé“ is trivially stable under q. Since the representation pF, of
q on C* is completely reducible, we can find a g-stable subspace C* of C* such that
Ck =Cta C*. Then Q* (CF) € Cit! and QF (6’“) C CkH since pftl(2)QFw =

Q*pk . (x)w = 0 holds for w € Cff. The cochain complex (C*, Q¥)rez is hence a direct

and (6’“, Qk‘5k> .
keZ keZ
By the above Lemma (1 and 2) ker (Qk) and im (Qk_l) are stable under g, hence
also under g. We can again choose a g-stable complement T* of im (Qkil) in ker (Qk)
Then by Lemma (3) ko (2)TF = T*Nim (QF~') = {0} for all 2 € q. Hence T" C Bé".
This way every element in the cohomological space H k(C) = ker (Qk) /im (Qk_l) is
represented by an element in T% C Bé“.

sum of the cochain complexes (Cé“, Qk‘ck>
q

Example 3.3. Let us look again at the cohomology of sly(C) w.r.t. the (25 + 1)-
dimensional representation 7; on V; with basis {v_j,v_j41,...,v;}. The element H
(from the basis in Example in g generates a subalgebra q := CH. We set |1 = H,
lo = X and l3 =Y. The structure constants of sla(C)are then given by

f213:2:—f312a f122 :1:—f221 and f133:_1:—f§’1- (3.80)
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This gives
A= —flg = —ba+ s, (3.81)

The natural representation pk, of ¢ on C* = V; @ A¥(g) is hence given by

Pt (H) (v @ a) = i (H)vm @ a + vy @ Aia

= MU ® a + U @ (—c*ba + b3 a (3.82)
for m € {—j,—j+1,...,5} and a € A¥(g). If a is a k-multivector, i.e. of the form
v1 Avg A ... ANvg with v; € V, then the operator in front of the a simply counts the
number of Y’s minus the number of X’s in the expression a. Since every element in
AF(g) can be written as a sum of k-multivectors, we can in particular find a basis in
A*(g) of eigenvectors of (—c?by + ¢3b3). The basis of V; is already chosen such that 7;(H)
is diagonal on it and hence ppat(H) is overall dlagonahsable on C* = V; @ A¥(g). Hence
the restriction of p¥,, on q = CH is in particular completely redumble and Lemma
can be applied. We are now looking for the elements in C* which are annihilated by
pnat (H). These define the subspace C’gf .
Let first j = 0. Then m;(H)vg = 0 (Vp = span{vp}) and one finds:

€0 = span {10 @ [0}}

C’; = span {vp ® H},

C’g =span{vy ® X ANY},
Cg’:span{v()@H/\X/\Y}.

(3.83)

The operator ) has the form
Q=miH)@c +mj(X)@+m;(Y)®+ Iy, ® (-2 by — c'c®by + c'Pb3) (3.84)
w.r.t. the basis l; = H, ls = X and I3 =Y of sl3(C) and for j =0
Q=1Iy, (20 Aoy + ctctby — ¢ c3b3) (3.85)

holds. One then readily calculates

QCY = {0},

QCL =

ac? = {0} (3.86)
QC3 = {0},

which again gives the cohomology dim (H k) =1 for £k = 0,3 and dim (H k) = 0 for
ke Z\ {0, 3}
For j € Z>0 obviously all C’k {0} and hence the cohomology must be trivial.
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For j € Z~q one easily finds:

Cé) = span {vg ® |0)},

C; =span{v_1 @Y, 00 ® H,v; ® X},
C’g:span{v,1®H/\Y,vo®X/\Y,vl®H/\X},
C’g’zspan{vo@)H/\X/\Y}.

One then calculates

Qoo ®]0)) =1 @ X +j(j+ 11 @Y

and
Qo1 ®Y) =1 X ANY,
QuueH)=—u@HANX —ji+1)v_1@HAY —200 @ X NY,
QueaX)=—jG+1DpeXAY
and
Q1 ®HAY)=—-vy@ HAXANY,
Qo X NY) =0,
QueaX)=7j0+1vweHAXAY
and

Quu@HANXAY)=0.
With this one sees:

L
2,
=1,
0

I

(3.87)

(3.88)

(3.89)

(3.90)

(3.91)

(3.92)

One calculates that this corresponds to the trivial cohomology as can be seen in Ta-
ble We therefore have proven by the use of Lemma [3.4] what we made plausible in
Example namely that the cohomology of sly(C) for irreducible representations with

j # 0 is trivial.
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K [

1
[ dim(Cy) |- [0
dim (ker (Q'] ) |-+ |0
.10

0

i i (1)
[dim () [ ]

0
1
0
0
000

Table 3.4: Cohomology of q = span { H} on the subcomplex (C’é“, Qk}ck>k , for j € Z~o.
1/ ke
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4 Lie Superalgebra Cohomology

We will now generalise the concept of cohomology to be able to apply it to Lie super-
algebras. Some care is needed when dealing with the Zs-grading. There are several
conventions as to the definition of the generalised exterior algebra. We will use the
definition as in [HT92] rather as the one in [Tan95b, Tan95al.

4.1 Basics

Analogously to the case of ordinary Lie algebras we want to define a cohomology for
a finite-dimensional Lie superalgebra g = go @ g1. Let {l1,l2,...,L,} be a basis of go

and {lm+1,lm+2, .-, lmin} a basis of g;. Further, let {f{;’ 1<i,j,k<m+ n} be the

structure constants w.r.t. that basis.
In the following we will again construct a ghost vector space A(g). We do so by
generalising the notion of exterior algebra.

Definition 4.1. Let V = Vi @ V; be a super vector space. Let T(V) be again the
tensor algebra of V. We look at the two-sided, homogeneous ideal J(V) C T'(V') which
is generated by the elements of the form

with x,y € V homogeneous.
The (generalised) exterior Algebra (or Grassmann algebra) of the super vector space
V' is given by
AV):=T(V)/J(V). (4.1)

Alternatively we can again decompose
o
(V)= TH(V). (4.2)
k=0

in its graded components T%(V) = ®f:1 V and define the subspace J*(V) C T*(V) on
them by

JE(V) ::span{aETk(V))Eli,jE{1,...,k}5|v1,...vk€VoUV1:a:v1®...

®vi®...®vj®...®uk—(—1)(""i‘+1)(|”3‘|+1)v1®...®vj®...®vi®...®vk}.

(4.3)
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Then -
=P 7Fw). (4.4)
k=0

With the (generalised) exterior power, the quotient space
AR(V) =THV) [ T5 (V) (4.5)

A(V) is again as a vector space isomorphic to

é/\k( @T’f )/ JE(V (4.6)
k=0

Definition 4.2. The product of two elements a,b € A(V') in the (generalised) exterior
algebra is again written as a A b. We have

aNb=a®b+ J(V). (4.7)

Remark 4.1. By definition of J(V') the exterior product is itself supercommutative on
elements in V = TH(V) = AL(V), i.e

2 Ay = (= D)D) A (4.8)

holds for all x € V. However Elements in V' of degree 0 are assigned the degree 1 in the
exterior algebra and elements in V' of degree 1 accordingly the degree 0.

Definition 4.3. As mentioned above we can again define a Zy-grading on A(V), i.e.
A(V) can be made a super vector space. The homogeneous elements in A(V') are of the
form v; Awvs A... A vg with the v; € V homogeneous. The degree of such an element is
defined by

||1)1 VAN WANAN Uk” = (|111’ + 1) + ... (|Uk| + 1) € 7. (49)
Here, |-| denotes the original Zs-grading in V' = 1V, @ V; and-to avoid confusion— ||-|| de-
notes the degree of an element in A(V'). Especially ||v|| = |v|+1 holds for a homogeneous

v € V where on the left side we consider v € AL(V) = V.
Remark 4.2. With the above definition formula (4.8]) reads:
Ay = (=D)I=lvlig Ay, (4.10)

Remark 4.3. The exterior algebra can be decomposed again into a direct sum of com-
ponents of different degrees (w.r.t. a Z-grading). Here, A¥(V) is the subspace of degree
k and is spanned by all exterior products v1 Ava A ... A v consisting of k factors v; € V,
called k-multivectors. The exterior algebra together with the exterior product has the
structure of a Z-graded algebra, which implies

AF(V) AAP(V) C ARTP(V). (4.11)

In contrast to the case of an n-dimensional (ordinary) vector space where the vector
space A(V) was finite-, i.e. 2"-dimensional, A(V') is infinite-dimensional for a super
vector space with V; # {0}. This is due to the fact that (assuming char(K) # 2) terms
of the form = A x vanish only for x € V; but not for z € V.
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The following statement holds:

Proposition 4.1. The dimension d(k) of the vector space A¥(V) where V = Vo @ V; is
a super vector space with dim(Vp) = m and dim(Vy) = n obeys:

M;m,n):i@)<n+::;—1>:§(;zb><n+g—l>. i

f=0

Outline of proof. To prove the above assertion we have to determine which k-multi-
vectors one can write down and use some combinatorics formulae. O

Let us now look at A(g) for the Lie superalgebra g = go @ g1 mentioned at the
beginning of the section. As a reminder: {i1,ls,...,l,} be a basis of gy and a basis of
g1 be given by {lm+1,lm+t2, - lmin}. Let {lej) 1<4,j,k<m+ n} be the structure
constants w.r.t. that basis.

We express A(g) again by a vacuum state |0) with span {|0)} = A%(g) (|0) corresponds
to the empty exterior product, which we set 1 € K') and an appropriate choice of creation
and annihilation operators..

For this, let the creation operators ¢ (i =1,...,m +n) be defined by:

Fermionic Case (|i| =0, ||l;|| = 1): Let lo; Alay A ... Aly, € A¥(g) be given with «; €
{1,...,m+n} for j =1,...,k where none of the a;’s with |a;| = 0 (i.e. ||lo,| =1)
appears twice since otherwise the state vanishes anyway. Then set for ¢ with |i| = O:

Li Nay N oo o Ny, if o # 0 for all j

c UalA...Alak)::{ . if 0 = 1 for one . (4.13)

Bosonic Case (|i| = 1, ||l;|| = 0): Let lo, Alay A .. Ala, € A¥(g) be given with a; €
{1,...,m+n} for j =1,..., k. Then set for i with |;| = 1:

oy Ao ANlay) =V + L1 Ay Ao Alay,s (4.14)
where n; is the number of j € {1,...,k} with a;j = 1.

The annihilation operators are defined analogously by:

Fermionic Case (|i| =0, ||l;| = 1): Let lo; Alay A ... Ala, € A¥(g) be given with «; €
{1,....m+n}for j =1,...,k where none of the a;’s with |o;| = 0 (i.e. ||lo,|| = 1)
appears twice since otherwise the state vanishes anyway. Then set for ¢ with |i| = 0:

bi (loy Ao Nloy) =

_ (mlealtetlag =ty Al Ay A Ay, o =i foraj
N 0 if aj # 1 for all j.
(4.15)
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Bosonic Case (|i| = 1, ||l;|| = 0): Let lo, Alay A ... Ala, € A¥(g) be given with a; €
{1,...,m+n} for j =1,..., k. Then set for ¢ with |i| = 1:

bi (lag A v o Nlay) = VMilag Avvlay_y Nagy Aee Ny, (4.16)

where n; is again the number of [ € {1,...,k} with oy =7 and j is (e.g.) the first
position for which a; = i.

For the creation and annihilation operators follows:

Proposition 4.2. Let ¢’ and b; (i = 1,...,m+n) be defined as above. Then the creation
and annihilation operators are well-defined as linear operators in End(A(g)) and obey

bicd — (—1)HDWHD g, — 57 (4.17)

as well as ‘ ‘ o . . o
bib; — (—1)(‘Z‘+1)(|J|+1)bjbi = — (=1)IHDUIHD G = o (4.18)

foralli,j € {1,....,m+n}.
Proof. The proof is left to the reader. O

The ghost creation and annihilation operators for |i| = 0 are called fermionic creation
operators and annihilation operators as they anticommute with themselves and each
other. In contrast, the creation and annihilation operators for |i| = 1 commute, which
is why we call them bosonic creation operators and annihilation operators. A fermionic
and a bosonic creation or annihilation operator commute with each other.

Definition 4.4. We again introduce a Zs-grading on End(A(g)) by defining
'] = |bi] = |i| + 1. (4.19)

This means bosonic creation and annihilation operators have degree 0 and the fermionic
ones have degree 1, as one would expect. Products of creation and annihilation operators
have as degree the sum of the degrees of their factors. Hence, we can make End(A(g))
a Lie superalgebra gl(A(g)) by using the supercommutator

[A,B] = AB — (—1)lIBIBA
for A, B € End(A(g)) as Lie superbracket.

Remark 4.4. With the help of the super commutator the relations in Proposition [£.2]

can be cast in the elegant form ' '
[bi, ] = o] (4.20)

and

[bi, b;] = [, ¢] = 0. (4.21)

Also in the super case A(g) can be made a (non-trivial) g-module:
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Theorem 4.1. The Lie superalgebra g = go + g1 has a representation © on A(g) defined

by
Ao =7 (la) := f],c°by € End(A(g). (4.22)

In particular: o B
s gl = £, (4.23)

Proof. We have seen that End(A(g)) can be made a Lie superalgebra namely gl(A(g)).
For the map 7 : g — gl(A(g)) to be a homomorphism of Lie superalgebras we have to
show that even elements in g are mapped to even elements in gl(A(g)) and odd ones to
odd ones, and that the map respects the Lie superbracket. The first assertion is obvious
since |5| + || = |af for fga # 0 and thus ‘cﬂbw‘ = |cﬁ‘ + by =18l +14+ 7| +1 =
la| +1+1=|al
Next, we look at
Aoy Aul
= [fgacﬁbw £, byl
= [2. 1% (Cﬁbvcvbp _ (_1)(\B|+1+|vl+1)(\V\+1+|p|+1)vapcﬂbv)
= f3u 10 <cﬁ <55 4 (—1)(”'“)('”‘“)0”1)7) by—
— (=D)UBIHIDIIPD <5§ + (—1)(|B‘+1)(|p‘+1)cﬁbp> b'y)
= 2,15 (550% + (~1) (DD Berp b
_ (_1)(|B\+\’V\)(|V|+\pl)5gcl/b7 + (—1)(|m+h‘)(|“|+‘p|)(—1)(W'H)(""H)c”cﬁl)pby)
= [2. 1% ((gcﬁbp + (=) (DD B v

— (—1)(B D+ 5B e,
— (= 1) B (1) U0 (1) (8D ()0 pH) o8y

—(=1)(+D)(Iwl+1)

= Fufb (8567, = (=1l )

(4.24)
By renaming indices we get
D Al = (fha by — (1)L g5 72, ) ¢, (4.25)
The Jacobi identity (2.9)) can be cast in the form
f[li’/a 15)}1, - (_1)|a||“|fgufﬁa = a,ufgy (426)
and thus o B
N M) = £2,55,b0 = FE A0 (4.27)
O
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It is easy to derive another representation 7 from the representation 7 above.

Corollary 4.1. The Lie superalgebra g = go + g1 has a representation m on A(g) given

by
Ao = 7(la) = (—1) 3 Pb, € End(A(g) . (4.28)

In particular
s Al = £ (4.29)

Proof. We show that m respects the Lie superbracket. We have
Pa: gl = (1) (1), Xg] = (D)7, (1.30)
= (_1)‘7‘]025;‘7 =[5\ ’
O]
Now, let p be a representation of g on the super vector space V = V5 @ V;. We set
C=VoAg) @A) V.
This vector space is graded by

C=VoAg@®AgoV=Ve (éA’@)) o <éAi(g)> 2V

=0 =0

(4.31)

n

(Ve eA(goV)=C,

i=0 =0

where C' = V ® A(g) ® A'(g)® V (i € Z) and Ct=Ve{0}a{0}®V = {0} for
1€7Z\{0,1,...,n}. C is a super vector space by defining a Zs-grading on V' ® A(g) and
A(g)®V according to Definition[2.14] i.e. via [v ® a| = |v|+]|al| and |a ® v| = ||a||+]|v] for
v €V and a € A(V) both homogeneous and then putting Co = (VA(9))od (Alg) @V )o
and C1 = (V ® Ag))1 @ (A(g) @ V).

We look at the subspace U of C' spanned by the elements of the form

v@a— (-1)lelg gy

with v € V and a € A(V) both homogeneous and form the vector space C' as the quotient
space of C by U, i.e. N
C=C/U.

The vector space C' is graded by C' = @}, C* where C* = CH/U" and U* = UNC*. We

write an element (i.e. an equivalence class) in C as
vOa=v®a+Ue€C. (4.32)

Then by definition
vea=(—1)llklg . (4.33)
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C and the C%’s are again super vector spaces by setting
lv©Oal =la®v|:=|a® v (4.34)
for v € V and a € A(V) both homogeneous, which is well-defined.

Remark 4.5. We have dim(C?) = 2dim(V ® Ai(g)) = 2dim(V) dim(C?) and dim U; =
$ dim(C?) and thus '
dim(C") = dim(V') dim(A(g)), (4.35)

as in the case of ordinary Lie algebras. Our construction of C' from V and A(g) is how-
ever more complicated to account for the correct (anti)-commutation relations between
operators on V and operators on g(cf. Proposition [4.3]).

We can now look at the vector space End(C') of linear operators on C = Cy @ C;. This
can be made a super vector space End(C) = End(C)o ® End(C); in a canonical way (cf.
Remark and with the supercommutator it becomes a Lie superalgebra gl(C).

We can embed the operators on V' and on A(g) in a natural way into C' by defining

Tvoa)=(Tv)®a (4.36)
forveV,ae A(g) and T € End(V) as well as
S(a®v)=(Sa)Ov (4.37)

forveV,ae A(g) and S € End(A(g)). The degree of T and S as elements in End(V)
and End(A(g)) respectively corresponds, as can be readily checked, to their degree in
End(C).

Proposition 4.3. For arbitrary T € End(V) and S € End(A(g)) we have with the above
embedding
[T,S] =0, (4.38)

where [-,-] is the Lie superbracket, i.e. the supercommutator on End(C).

Proof. Let T € End(V) and S € End(A(g)) be w.l.o.g. homogeneous. C' is generated by

elements of the form v ® a with v € V' and a € A(g) both homogeneous. We have
TS(v®a)) = (-D)PelTs(a 0 v) = ()Pl T(Se @ v)

pllisal—pylllel oy © Sa) = (=1)PI8ITy © Sa

1)TelSal(—1)|v] [S|Sa ® Tv = (—=1)/TISHTllall+llellg (o & Tv) (4.39)

1) Telllall (1) TUSIHT el +ollell g (Ty @ a)

DITISIST (v © a),

where we used the relation |Tw| = |T'| 4+ |v| and analogously for Sa several times. The

assertion follows by linearity of the Lie superbracket. O
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In particular we have the relations
[¢,L;] = 'Ly — (1)L =0 (4.40)

and analogously for [b;, L;].
We define the ghost number operator U on A(g) by

m+n . .
U= cb=cl (4.41)
i=1
and again have
Ua =ia (4.42)

for all a € A%(g). Moreover we can look at the embedding in End(C'). We have
Uwvoa)=1ilvea) (4.43)

for a € Ai(g) (iff. vOa € CY).
We can again define an operator ) on C', which generates a cohomology similar to the
case of Lie algebras. We have:

Theorem 4.2. The operator Q defined on C as
o Lo fe% 1 la| Y o 1 la| ¢y B
Q=c La—|—§c Ao = C La+§(—1) N = La+§(—1) faac® by, (4.44)

with Lo := p(ly) fulfils

Q=0
and
[U,Q] = Q.
The second term in the operator ) has exactly the opposite sign compared to [HT92].
However, there the commutation relation [bi, c ] = —¢7 holds and not [bi, c ] =6/ asin

this text. By mapping ¢! — —c! and leaving the b;’s unchanged one can switch between
the two conventions. This gives exactly the difference in signs.

Proof. The second assertion is shown analogously to the case of Lie algebras (cf. proof
of Theorem [3.2). To prove the first assertion we look at:

Q% = c“LocLF + %(fl)m‘fga (C“Lucacﬂb,y + cacﬁbﬂ,c“LN) +
=:(1)
1
4

=:(2)

(—1)‘O‘H'“lfgafﬁucacﬁbyc”c”bp :

(4.45)
+

=:(3)
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We have

(2) = %(—I)Mfga <c“LMco‘cﬁb7 + cacﬁbwc"LM>
= %(_1)\0¢|ng (c“Luco‘cBb,Y + %P (55 + (—1)(‘7‘“)('“'“)0%7) L#>
= %(—U“”fga (c“L#cOfcﬁb7 + ok PL, + (—1)(M“)<‘#‘+1>cacﬂcﬂb7Lu)
= %(_1)‘a|fga (C“I/Hco‘cﬁl)7 + &LYLCQCBLH + (—1)‘7|+ICQCBC“LMZ),Y>

1
= 5(—1)‘0"ng (MJr e P L+ (—1)ler AT W)

N~

=1

—_

1
— *(—1)‘a|fgacacﬁLH _ 5(—1)'”“60‘06 (L, Lo

1

= —(~1)deac? (LBLa _ (_1)\a||6|LaLﬁ)

1

= 7(_1)\0460405[/6[/& _ 5(—1)‘0‘|("B|+1)CO‘CBLO¢LB
1 1

= _(-)APe L, L — §caLacﬁL5

N = DN \)

[\

1 1
= —icaLaCﬁLB — icaLaCBL/j

= _(1)7
(4.46)
which means (1) and (2) cancel.
The Jacobi identity holds:
(=)0l g £l + (DIIPgS g5 + ()PP p5s = 0 (4.47)
and hence
0= ((_1)|vllalfgvfé(S + (_1)|allﬁ\f$af§5 + (_1)|B\|v|fgﬁf§5> (—=1)Bllel e ey,
— (—1)|7|(|5‘+1)f§7f§505c7cab5 + (—1)‘a|(‘7‘+1)f$af§5c70ac5bg
+ (—1)W‘("’“H)fgﬁf%c‘“cﬂﬁbs )
= (—1)|7|(|*3‘+1)f370507x5 + (_1)|a|(|7|+1)ff3acvcaxé + (_1)Iﬁ\(|a\+1)fgﬂcacﬁxé ’
= 3(_1)(|04|-5-1)\,3\f;éyﬁcacﬂxY
= 3(—1)(el+DIBl a8 [meﬁ} '
Thus we have
(—1)(el+DIBl o8 (X(jﬁ - (f1)laHﬂIXﬁXQ) = 0. (4.49)
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On the other hand
(—1) (D18l o B (Xaxﬁ + (—1)|°‘||B|X5Xa)
(_1)(|a|+1)\ﬂlcacﬂxaxﬂ + (_1)\6lcacﬁxﬁxa
(_1)(|a|+1)\ﬂlcacﬁXQX5 + (—1)‘a|cﬁcaXaX6 (4.50)
= (_1)(|a|+1)\ﬂlcacBXaXB _ (_1)(|a|+1)\ﬁ\cacﬁ}\“axﬁ
0

which implies

(—1)(elFDIBlacf ) g = 0. (4.51)
A short calculation shows ~
[/\a,c“} = (4.52)
We have
4-(3) = (—1)‘O‘H'“‘fgaf,f’ucacﬁbwc“c”bp — (_1)|a\+|u|caxacuxu

= (—1)lal+ll o (fgacﬁ . (_1)|a\<|u|+1)cuxa> A

= (~1)lBlcacB [Xﬁyxa} + (—1)(el Dl ey X, (4.53)
=0
—(—1)(al+DIBl B [Xa,Xg] —0,

which completes the proof. O

This enables us to define a cohomology for Lie superalgebras. This is done formally
identical to the case of ordinary Lie algebras, i.e.

Q" = Qles (4.54)
and
H' =ker (Q")/im (") (4.55)
as well as '
H(g,V):=(H'),z (4.56)

which we call the cohomology of the Lie superalgebra g = go & g1 with coefficients in V.
In the following we want to define again some useful concepts, which simplify the
calculation of the cohomology.

Definition 4.5. We define the natural representation pyat of g on C via
pnat(ly) = Ly + Ay € End(C). (4.57)
Lemma 4.1. The following holds:

[buv Q] = Lu + )‘u = pnat(lp)- (458)
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Proof. We look at
1
Qb,, = < Lo + 2( Dl 3 e > by = “Lab, + 5(-1)'&‘ [ byby (4.59)

We now have
“Laby, = (—1)‘“'““‘“)00‘6“1)& - (_1)|a\(|u|+1)(_1)(|a\+1)(lul+1) (buca _ 5a) Le,

. (4.60)
= —(—1)|“|b#cO‘La + (_1)\M\Lu
and
Py, = (=1) DD By p — (—1) (WD) o <bucﬂ _ 55) b,
= (=1) (1B D) (ul+1) (buc® — &%) b, — (_1)(\v\+\ﬁ|)(|u|+1)5gcocb,y (4.61)

= (=1)(WHBIHHD AR+ D 2 efp, — (_1)(\v\+\6|+|a\+1)(|u|+1)5505(%
- (_1)(Iv\+|5|)(\u\+1)556ab7'

This implies
Qb, = _(_1)Iu|b Lo + (1 )|M|L + 2( )Ialf’Y (_1)(Iv\+|BI+\a|+1)(lul+1)bucacﬂby

2( )IaIfV (-1 )|7|+|BI+\01|+1)(\M+1)5& b,

2( )IaIfV (-1 )Ivl+|5l)(\u\+1)5ﬂ b,

= _(_1)|u|b Ly + (_1)|N|L _ %(—1)'”'*‘“‘fgabuc%ﬁb7
+ fgu &b, — 5( 1)|0<Hu\fv ap

= —(=D)Mp,Q + (-1 L, + X,

—(—1)|M|buQ + (=1l (Ly =+ Au) -

(4.62)

Then because of |Q] =1
[0, Q = b,Q — (—1)MH1Qb, = ,Q + (-1)MQb, = L, + \, (4.63)
follows. O

Remark 4.6. Since ppat () leaves the ghost number invariant for all z € g, it is sensible
to restrict pnat to the C*’s. We denote by p¥.. the subrepresentation of pya; on CF.

Lemma 4.2. Forallxz € g
[Q: pnat(-%')] =0 (4.64)

holds or equivalently
A @)QF = (~1) QP ok, (2) € Hom (CF, 1) (4.65)

for all k € Z and x homogeneous.
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Proof. We proof the second claim for x = [,. The assertion of the lemma follows by
linearity of ppat. By Lemma

Phac(ln) = b, QF + (=1 QF b, (4.66)

holds. This implies
QFpl (1) = Q"0 Q% + (=) QFQ 1 b, = Qb Q" (4.67)

=0
Analogously
Pl (1,)QF = b, Q"M QY +(— 1)@, Q" = (1) Qb Q" (4.68)
=0

This implies the assertion. ]

The following assertions hold analogously to the Lie algebra case:

Lemma 4.3. Let g = goP g1 be an n-dimensional Lie superalgebra with o d-dimensional
representation p on' V. and let (C*, Q¥)rez be the corresponding cochain complex. We
look at the natural representation on C*. The following holds:

1. ker (Qk) 1s stable under g.
2. im (Qk_l) is stable under g.
3. phalo) (Ker (Q4)) Cim (QF1).
Proof. The proof is along the lines of the proof of Lemma (3.3 O

Lemma 4.4. Let g = goP g1 be an n-dimensional Lie superalgebra with o d-dimensional
representation p on V and let (C*,Q)rez be the corresponding cochain complex. Let
q be a subalgebra of g such that the natural representations pF,, of q on C* are all
completely reducible. Then the cohomology H(g,V') is identical to the one obtained from
the subcomplex (Cé“, Qk‘céc)kez where Cclf is the subspace of elements in C* which are

annihilated by pk ,(z) for all x € q.

Proof. The proof is analogous to the proof of Lemma [3.4 O

4.2 Example of gl(1|1)

Example 4.1. We want to determine the cohomology of g = gl(1|1) w.r.t the 2-
dimensional representation pp : gl(1]1) — V = Cuvp + Cuv; (cf. Examples and [2.1)).
First, let us choose a basis {l1,12,13,l4} of g. We set

ll :H’ ZQZC, l3=X and 1421/. (4.69)
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The elementary (anti)-commutation relations for g are given in Example From those
we can determine the structure constants to be

f133 = _f??l =1, ffl4 = —fzﬁ =—1, and f§4 = ff:a =1 (4-70)

All other 58 of the overall 43 = 64 structure constants vanish. The operator @ is thus
given by

1
Q=c"Lo+ 5(_1)|a\fgaca0/5by

=c'Li+ ALy + C3L3 +cALy— clc3b3 + clctby — Actb,.

(4.71)

We now choose a basis of the vector spaces C*. We determine the dimension of A¥(g)
using Proposition (with m = n = 2): We have dim (Ak(g)) = 0 for £k < 0,
dim (A%(g)) = 1 and dim (A'(g)) = 4. For k > 2

dim (Ak(g)) = Zk: <H,;f_}f) (;) = ZQ: (1 Zi; f) <J2‘>

F=0 J=0 (4.72)
=(14+k)+2k+(k—-1)
= 4k
holds and thus
0 fork<O
dim (ck) — 2dim (Ak(g) —{ 2 fork=0 . (4.73)
8k for k>1
We define ‘ ‘
XD =XAXA...AX eA(g) (4.74)

i times
and analogously for Y. Then, a basis for C* is given by the following vectors:
o) = ;0 XD Ay ED (4.75)

fori=0,...,k, j=0,1,k >0,

51(,];) =0, © H A x@ A yk—i=1) (4.76)
fori=0,....,k—1,j=0,1,k>1,

1 =00 0 A XD Ay E=icD (4.77)
fori=0,....,k—1,5=0,1, k> 1 and
5" = v, 0 CAHAXD Ay t-iz2) (4.78)

7:7j
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fori = 0,...,k—2, j = 0,1, k > 2. (This verifies in particular the dimension for-

mula (E12).)

Next, we calculate the images under Q of the basis vectors of C*. One gets:

Qo (k=25 + i 4ok

Qa(kl) =—A\+k—2i— )B(kﬂ) ny.(]?l) + ca (T{lo) (4.79)
fori=0,...,k j=0,1, k>0,
Qﬁ 0 _ 5k+1 +B(k+1
) (4.80)
QB = —edlit + esl1Y
fori=0,....k—1,j=01,k>1,
Q) = =+ k=2 = D3+ el s
A = A+ k—2i - 2)5% ) + cvf_'ﬁt) + a1y
fori=0,...,k—1,j=0,1,k>1and
Qd(k) _ 5ng+1) B B§k+1)7
’ L0 (4.82)

(k) (k+1) | o(k+1)
Q(Sz 1 = 51+1 0 + Bz+1 1

fori=0,....,k—2,j=0,1, k> 2.
In the following we will only look at the generic case for k > 2 where all of the above

basis vectors appear. The cases k = 0 and k = 1 are to be treated separately. We also
introduce

A(kH) = span {an FRT Qa(k)} A(k+1) = span {an IEERE 7Qa(k)} ’
B(k:+1) — span {Qﬁo ”.’Qﬂk 10} B(k+1 = span {Q,8017-"7Q/6k; 1 1}
F(k+1) = Span{Q'Yooa---aQ'Y 0} k+ : _Span{Q’YOl"“’nyk* }7
A .= span {Q5(()kgv Q8 20} and - A = span {Qdékl"”’Qék‘ 2 1}
(4.83)
and AR+ — A(()kH) n Agkﬂ), Bk+1) — Bék:+1) + B§k+1)7 rk+1) — Pék-}—l) + ng—i-l) as

well as A+ = A[()kH) + Agkﬂ).

Let first ¢ # 0. One easily checks that in this case A+ is a subspace of Bk +1)
and T* D 4 subspace of AKTD + BEHD - Moreover, A®*TD and B*+D are linearly
independent. Hence dim (im (Q")) = dim (A(k“)) + dim (B**+Y) = 4k + 2 and

(1) = e (0)) - o (0
= dim(C*) — dim (im (Q*) ) - dim (im (Q*1)) (4.84)
=8k —(4k+2)—(4(k—1)+2)
— 0.
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for k > 3. Similarly one gets dim (HO) = dim (Hl) = dim (Hz) = 0. The cohomology
is trivial.
Let ¢ = 0. In this case

Aékﬂ) = span { (A + k — 29) B(kH agﬁﬂ)‘ t=0,..., k?} )

A¥D = span { A+k—2i -1 ]i=0,. k} (4‘85)

and
BV = span { 87| = 0,... k-1, (4.86)

B = {0}

and
Fék+1) _ span{—()\+k: _ 9 — 1)6(k+1) NI (k+1) ag_]f{lo)‘z’ =0,...,k— 1} .
P _ oan { (A+k —2i =26 + aﬁgll) i=0,... k- 1} (4.87)

and
AL = span { 65 g <0, k2], (Ls8)

A = span{@(]iﬂ) p=1. k- 1} '
Obviously AY“H) - B(()kﬂ) and
B 4 AFTD = B | gpan {(A —k— 1)51'(ﬁ+1)} ‘

In addition A(kﬂ) (kﬂ) and Aékﬂ) are linearly dependent. More precisely, for ¢ =
0,....,k—2

<()\ +k—2i—2) 650 4 gfg}g) _

/

~~

er* ™ for i=0,... k-1

(4.89)
= Ak =2(+ 1) 8517 + ol Y + (vt k20 - 2) (857 - 881D),

-~

A for i=—1,0,... k—1 Al gor =0, k—2

which implies

AFHD T 4 A = Af 4 AP o span { (- 1) 85TV + D (490)
Thus we have

(Qk) k+1) +A(k+1) +Span{()\ k) 5(k+1) +a(iJ1r11)}+ )

IR CRY +Span{()\ b 1)6(k+1 } (4.91)
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The first line is linearly independent from the second one (as is readily checked) and we
can determine their contribution to the dimension of im (Qk) separately. One gets

dim (A5 + AT - span {1 = k) 65T + 0l TV} ) =

0, if A=n (4.92)
—(k:+1)+(k1)+{ 1, ifA£n
and
dim (F(()kH) + B(()kH) + span {(/\ —k— 1)5§ﬁ+1)}) =
P O PR (4.93)
- 1, fA#n+1
and thus
.. W\ _ ) 4k+1, if A=norA=n+1
dm%m%Q))_{4k+z A £nand A £n+ 1 (4.94)
This implies
dim (Hk) = dim (ker (Qk)) — dim (irn <Qk*1))
= dim(C*) — dim (im (Qk)> — dim (im (Qk_1>) (4.95)
92, if A=k '
=< 1, fA=k—-1lorA=k+1
0, else
for k£ > 3. Finally one calculates the special cases
oy [ 1, ifA=1
dim (H) = { 0. ifA£1 (4.96)
and
2, ifa=1
dim (H') =¢ 1, ifA=2 . (4.97)
0 else

dim (H 2) is as in equation 1} We can summarise our findings:

Theorem 4.3. The cohomology of gl(1|1) w.r.t. pp is trivial except for ¢ = 0 and
A € Z>1. In that case
2, ifk=\
mm@#): 1, ifk=XA+1 . (4.98)
0 else

Example 4.2. We want to calculate the cohomology of gl(1|1) w.r.t. the representation
pa using Lemma [£.4] For this we look at the subalgebra q = gl(1|1)o = CH + CC.
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We must first show that the natural representation p¥.. of q on the C* is completely
reducible. We have
puat(H) = L1 + \; = L1 — b3 + c*by. (4.99)

It is clear that puai(H) is diagonal in the basis of C* we used in the previous example
since the two latter terms count the number of Y’s minus the number of X’s. ppat(C)
is simply the multiplication operator by ¢, i.e. also diagonal (w.r.t. every basis) with
eigenvalue c. Hence in particular p¥, is completely reducible as representation restricted
to q. We can thus apply Lemma

We are looking for the vectors w in the C*’s for which puat(q)w = 0. Obviously if
¢ # 0 this is only the zero vector and hence the cohomology is trivial. So, let ¢ = 0 in
the following. Then ppat(C) = 0 and it suffices to look at pna(H). One finds

Pﬁat(H)a%) A+ k- 2i) aio) fori=0,...,k,

phpH)al) = A+ k—2i-1)al?) fori=0,... .k

Pﬁat(H)ﬂl% A+Fk—2i— 1)[31-(]8) fori=0,...,k

P H)BY = A+ k=20 —2) ) fori=0,... k-1,

P () = A+ k=20~ 1)3) fori=0,... k1 (4.100)
Pﬁat(H)’n(ﬁ A+ k—2i—2) fyz(ﬁ) fori=0,...,k

Pﬁat(H)(sz(fB A+EkE—-2i-2) 5%) fori=0,...,k

o (6™ = A+ k—2i-3)6% fori=0,... .k

)

We also see now that for A ¢ Z the cohomology can only be trivial since there are no
vectors which are annihilated by the action of all of q. Let A\ € Z be arbitrary but fixed.
Using the above equations we determine the vectors which lie in Cy. These are

a,%) fOfk:!)\|,|)\\+2,...andi:g+g,

a%(',kl) fork=!>\—1|a\)\—1|+2,...andi:%-k%’

ﬁz‘(,%) forkr:’)\|+1,|>\|+37...andz’:%+%7

”Bl(,kl) fork:|)‘*1|+1a|)\*1’+3...andz_é+$

7 for k= |\ +1,]A +3,... andi= 5+% (4.101)
%’(ﬁ) fork=|)\—1|+1a|>\—1|—|—3...andi:%jL%,

54 for k= |\ +2, A +4,. andi= 2+ 2

o) fork={A—1[+2,]A—1]+4,... andi:%-k?.
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Obviously we have to distinguish between the cases A > 1 and A < 0. The dimensions
of the C’c]f ’s can be easily read off and are listed in Table We want to determine the

\ > 1 k A=3 [ A=2 [ A-T1 [ X[ A4+1 ] x+2
— | dim(Gy) 0 0 1 3 4 1
" <0 k e TIA =3 A =2 A =L [A[TIA[+1] A +2
— [dim(@) -] 0 0 0 1 4 4

Table 4.1: Dimension of the Cf’s.

cohomology now. For this, we investigate how @) acts on vectors in C’c’f . We first look at
the case A > 1. One gets:

(E=Xx—-1):
A—1
QoMM =0, (4.102)
(k= M):
N _ (A+1)
an,o =Qy1
A
Q8 =0, (4.103)
(M) (A+1)
Qa,\q,l AL
(E>X+1,k—X=:2r+1 odd):
(AF2r41)
Q )\Jrrlr =0
(A (A
0 5,\+J:~20T+1 /B/\++T21r+2 7 Lo
(A 2r+1) (A +2r+2) (A+2r+2) ( ’ )
Q V47,0 Ar,1 Y4410 0
0 5/\>\+2r1+ 11 B}\)\+21r+2
+r +, ’
(E>X+2, k—\=:2r even):
A+2r) _ (MH2r+1)
Q A—i—rg - a)\—i-r,lr )
A2r)
Qﬁ;&t T1 1=0 (4.105)
A+2r) (A+2r41) )
Q )\Jrr Tll _Oé)\JrrlT ’
(A+2r) A+2r+1) (A+2r+1)
Q5A+r r1 0= 5§\+7’ T1 1 5/\+r 1r

We can then without further ado read off the dimensions of the images and hence of the
kernels of Q* which leads to the cohomology shown in Table

Let us finally look at the case A < 0: We have to repeat the above steps for C’c’f with
k=|Al,|A| +1,... and one gets the cohomology in Table

The results are of course identical to those in Theorem
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|k [ [A—2[A—T1[A[A+1[A+2][A+3] -
| dim(C) [--] 0 [ 1 [3] 4 | 4 | 4 [
dim (ker (@[ )) o | 1 f2f 2 | 2 [ 2 |-
dim (im (@Y )) [ [ o | o Jo] 1 [ 2 | 2 |-
| dim(H") [ o0 [ 1 [2] t [ 0 [ 0 [-
Table 4.2: Cohomology for A > 1.
K BRI R
| dim(CF) [---] o | o 1] 3 | 4 4
dim <ker (Qk‘c§)) 0 0 0 1 9 9
dim <im (Q’f—l\céc)) 0 0o | o 1 2 2
Cdim(A") [T o[ o0 o] 0 0] 9

Table 4.3: Cohomology for A < 0.
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