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Abstract

The present study involves the Functional Data Analysis to visualize those princi-
pal features that affect the Borrmann curves using MATLAB. In order to get rid
of the noise, the smoothing using Roughness Penalty and the shift of the curves
were done. Using PCA has been found the first principal components that ensure
how the height and the width are the most representative landmarks. Finally the
Rotating Factors shows an other point of view and represents an important tool
to interpret the principal components and to make a qualitative analisys about
the curves.
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1 Introduction

The Functional Data Analysis (FDA) is a powerful tool to analyze the Borrmann curves
(Intensity I vs. incident angle θ) when the energy is varied. These curves exhibit the
tendency to have a peak of intensity with some width around the Bragg angle that in
principle could be adjusted like Gaussians. Ideally the curves have the peak centered in
the Bragg angle without dependency of the energy value. Experimentally it has been
found that the curves exhibit shifts in the position of the peak and also a lot of noise; it
has been also observed in the curves that there is an enhancement on the intensity peak
and a variable width.
In order to analyze the data in a proper way, it is desirable to convert the discrete
curves in a functional form and for this goal is very useful to express the data like
a linear combination of basis functions and then proceed to make a smooth of them.
The B-spline functions were chosen as a basis set because they are the best choice of
approximation system for non-periodic functional data.
The FDA does not only show the way to find the number of basis functions or the correct
smooth parameter, it is also a good method to shift the data. Once the smoothing and
alignment of the curves is done, the PCA (Principal Component Analysis) is a big branch
of the FDA which is used here to find and analyze the increment or decrement of the
peak or the width of the curves and to visualize the results.

2 Borrmann spectroscopy

The Borrmann effect occurs in the transmission case of X-ray diffraction (see Figure
1). In this geometry is possible to study in a more deep way the electric quadrupole
absorption that is not possible to see in the Bragg geometry.
This effect occurs under conditions of Laue diffraction when the crystal is many times
thicker than the absorption length. A single standing wave field forms parallel to the
crystal planes with nodes at the atomic planes and polarization parallel to the planes
(see Figure 1).

Figure 1: Borrmann Effect
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3 Functional Data Analysis

3.1 Turning Row Discrete Data into Smooth Functions

There are n incident angles for every E values of energy, so we have a (E × n) matrix
data R and the first aim is to express the data in terms of a linear combination of basis
functions. In fact the original data will be equal to the fit data Y plus some error:

R = Y + ε (1)

Where

Y = c′φ (2)

Here φ is the set of B-spline functions (Figure 2) with a size of (n×K) where K is the
number of basis functions and c is the K × n coefficient matrix.

Figure 2: B-spline K = 24

3.1.1 Smoothing Functional Data by Least Squares

The principal idea is to use the Least Squared Criterion (LSC) to minimize the difference
between our data R and the ideal smooth curve Y:

LSC = [R−Y]2 = (R−Y)′(R−Y) (3)

replacing (2) in (3) it can be

LSC = (R− c′φ)′(R− c′φ) (4)

Taking the first derivate of the Least Square Criterion equal to zero yields the equation:
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2φφ′c− 2φ′y = 0 (5)

ĉ that minimize the least squares solution is:

ĉ = (φ′φ)−1φ′R (6)

So,

Y = φĉ = φ(φ′φ)−1φ′R (7)

Choosing 24 B-spline funtions for n = 39 and E = 261 we find Y like:

Figure 3: Smooth LSC

3.1.2 Smoothing data with Roughness Penalty

There is explicitly two conflict goals in the curve estimation. On one hand is desirable
to ensure that the estimated curve gives a good fit to the data, while on the other hand
one does not wish to make the fit too good, because Y can be excessively wiggly. In
order to find the criterion, an attempt would be to use the derivatives.
Let’s define:

PEN2 =
∫
D2Y (8)

Now defining a new criterion that include PEN2

PENSSEλ = (Y −R)2 + λPEN2 (9)

Where λ is the smooth parameter.
From (2):

PEN2 = C′(
∫
D2φD2φ′)C ≡ C′RmatC (10)
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Replacing (10) in (9) and taking the first derivative equal to zero, the new ĉ obtained
is:

ĉ = (φ′φ+ λRmat)
−1φ′y (11)

Note that if λ is zero, ĉ becomes the same as the one found by LSC, and by increasing
λ the efect of the smoothing is more visible:

Smooth λ = 10−15 Smooth λ = 10−5

Smooth λ = 10−3 Smooth λ = 10−1

Figure 4: parameter λ

3.1.3 Choosing the Smoothing Parameter λ

In a next step a good criterion of the parameter λ has to be found. The Generalized
Cross-Validation GCV method is defined usually by:

GCV (λ) = (
n

n− df(λ)
)(

SSE

n− df(λ)
) (12)

where:

SSE =
n∑

[Rn −Yn]2 (13)
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and;
df(λ) = trace[φ(φ′φ+ λRmat)

−1φ′] ≡ trace[S] (14)

The aim now is to find the new parameter l related with λ by λ = 10−l which minimizes
the GCV. This parameter is actually diferent for every fixed energy data. In the figure
(4) are shown some examples of the GCV plot for four differents energy values. The
minimum value is indicated in color blue:

Energy 1 Energy 50

Energy 100 Energy 200

Figure 5: GCV curves

In the GCV plots it can be clearly seen that there is not a relevant difference for big l
values ( ≥ 6), this is the reason why in this case the smoothing with λ = 10−15 is very
similar to the one done with λ = 10−5 (see Fig.4). Taking the mean of all the l values
the best smooth parameter is λ = 10−6.24 is obtained.
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Figure 6: Smooth curves with λ = 10−6.24

3.1.4 Alignment: Newton Raphson Algorithm

In order to align the intensity peak of each curve the Newton Raphson algorithm has
been used.
To shift the smooth data one should take into account that this shift is not the same
for each curve. One way is to use the Landmark Registration, whish is a method to
identify one special feature using, in the most of the cases, derivatives and then proceed
to shift all the curves. In the present study this feature can be seen as the negative slope
in the first derivative, nevertheless it is more convenient to use an algorithm that works
generally and not only with one special feature or landmark. The Newton Raphson
algorithm is very useful for this purpose because allows to identify this shift without
taking into account the type of data we are working with.
The Newton Raphson algorithm is an iterative method and works as follows:

• Step 0

Beginning with some initial shift estimates δ
(0)
i , perhaps by aligning with respect

to some feature, or even δ
(0)
i = 0. But the better the initial estimation, the faster

and more reliably the algorithm would converges.

• Step 1

Estimate the average µ̂ of the smooth curves.

8



where

µ̂ =
1

E

E∑
i=1

Yi (15)

• Step υ

for υ=1,2,... Modify the estimation δ
(υ−1)
i on the previous iteration by:

δ
(υ)
i = δ

(υ−1)
i − α

( ∂
∂δi

)REGSSE

( ∂2

∂δ2i
)REGSSE

(16)

where REGSSE (the global registration criterion) is the global sum of squared
vertical discrepancies between the shifted curves and the sample mean curve. The
REGSSE is defined as:

REGSSE =
N∑
i=1

∫
[Yi(t + δi)− µ̂(t)]2dt (17)

It follows that the first and the second derivative of the global criterion are:

∂

∂δi
REGSSE = 2

∫
[Yi(t + δi)− µ̂(t)]DYi(t)dt (18)

∂2

∂δ2i
REGSSE = 2

∫
[Yi(t + δi)− µ̂(t)]D2Yi(t)dt+ 2

∫
[DYi(t)]

2dt (19)

and α is a step-size parameter that can sometimes simply be set to one. It is usual to
drop the first term in (18) since it vanishes at the minimizing values, and the convergence
without this term tends to be more realiable when current estimates are subtantially far
from the minimizing values.
Taking α = 1, δ

(0)
i = 0 and dropping the first term of (19), one can compare the not

aligned data with the aligned one:
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Not aligment curves Aligment curves

Figure 7: Not alignment and alignment curves respectively

and finally the 3D plot of the smooth and align data is obtained (Figure 8).

Figure 8: 3D plot of alignment curves

3.2 Principal Components Analysis (PCA)

The aim of this study is to investigate the characterization of the PCA in terms of the
eigen-analysis of the variance-covariance function or operator. Subtracting the mean
µ̂(t) from the smoothed and aligned data Y. The mean square criterion for finding the
first principal component weight vector can be written as:
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maxξ′Vξ (20)

Or the equivalent eigenvector problem:

Vξ = ρξ (21)

where V is the variance-covariance matrix, defined as

V = N−1Y′Y (22)

where N is the number of curves (in our case E) and ξ are the principal components
which we are searching for.
Solving the eigenvector problem the principal components could be obtained.
One way to visualize it is plotting components as pertubations of the mean.

µ̂± 0.2Cξi (23)

where
C2 = n−1‖µ̂− µ̄‖2 (24)

and
µ̄ = n−1

∫
µ̂(t)dt (25)

The plots of the effect of adding and subtracting to the mean the three principal com-
ponents are shown in Figure 9.

Principal component 1 Principal component 2
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Principal component 3

Figure 9: Principal components

Here we can note that the first principal component shows the effect of the differences
in height between curves, and taking in account that is the first component we can
conclude that is the most representative effect in the curves. This change in the height
of the peaks is because of the absorption level of the atoms in the crystal.
The second principal component, which represents the second one most significative gives
informations about the possible shift in the curves and the third components represents
the difference in the width of the curves.

3.2.1 Rotating Factors: VARIMAX

The principal components ξ can be viewed as defining orthonormal set of K functions
for expanding the curves to minimize a summed integrated squared error criterion:

E∑
i=1

‖Yi − Ŷi‖2 (26)

where

Ŷi =
K∑
k=1

fikξk (27)

and

fik = Yiξk (28)

This does not mean, however, that there aren’t other orthonormal sets that will do just
as well, for example:

ψ = Tξ (29)

where T is the rotation matrix.
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From a geometrical perspective, the vector of functions ψ is a rigid rotation of ξ. In
order to find this new set of rotated components we attempt to use VARIMAX method
that maximize the diagonal elements of ψ. Using VARIMAX in Matlab has been found
the three first rotate factors, that are showing as perturbations of the mean (see Figure
9).

Rotate Factor 1 Rotate Factor 2

Rotate Factor 3

Figure 10: Rotating Factors

The principal aim to find them is that sometimes the rotating factors are easier to
interpret. For example, it can be clearly seen that the first rotating factors indicate
change in the height and width.
Principal Component analysis is a great tool to identify different characteristics of one
type of data usually hidden by the noise; As an example, in the present study it has
been found the effect of the height, the width and the shift separately and it was also
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possible to find that the most representative effect is the changes in height because it
was found in the first Principal Component.

4 Conclutions

After the Smothing and the Shifting of the data have been done, it is possible to find
the correct curve ( intensity I vs. energy E) taking the maximum values of each primary
curves (intensity I vs. angle θ) (see Figure 11).

Figure 11: Intensity vs. energy. In blue the smooth and shifted data; in magenta the
original data.

Using the PCA and the rotating factors it was possible to find that the most important
features in the smooth and shift data are: the variable height and width of the primary
curves (intensity I vs. angle θ).
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5 Matlab code

5.1 Declaration
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5.2 Parameter λ

5.3 Smoothing: Roughness Penalty
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5.4 Shift

5.5 PCA
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