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Abstract

In the ATLAS experiment, the results of three different track fitters are available
for converted photons: the default algorithm (or Global x? track fitter), the Gaus-
sian Sum Filter and the Dynamic Noise Adjustment. Each of these uses a different
method to take into account the bremsstrahlung effects. However, while the de-
fault x? fitter treats every track as pion and hence underestimates bremsstrahlung
effects for electrons, the other two algorithms implement dedicated strategies for
taking into account bremsstrahlung losses for electrons. The aim of this topic will
be to study and to compare the performance of these fitters for converted photons.
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1 Introduction

The photon conversion reconstruction in the ATLAS detector is an important tool for
different physics measurements involving electromagnetic decay products: having an ef-
ficient reconstruction of converted photons, in fact, enhances the efficiency of detection
of particles with di-photon final states, such as the Higgs boson.

Because of the fact that the interaction of the photons with the tracker is completely
dominated by e and e~ pair production!, for the reconstruction it is necessary to con-
sider, together with the electron scattering in the material, the effect due to bremsstrahlung.
The Global x? track fitter, the Gaussian Sum Filter (GSF) and the Dynamic Noise Ad-
gustment (DNA) are three different fitters developed to solve this problem and performed
now as part of the standard reconstruction software in the ATLAS experiment: however,
while the x? fitter is used as the default algorithm, the others are provided in addition
and should yield improved results.

In this topic, after a brief introduction about the physics behind the photon conver-
sion, the aim of the work will be to study and to compare the three fitters focusing the
attention on double-track conversions.

2 Photon conversions

For photons with energy above 1 GeV the cross section for the conversion process is
almost completely independent of the photon energy [1]. It may be written in the
following way

TA
g =
9XoN4y

(1)

where A is the atomic mass of the target given in g/mol, Ny = 6.022 x 10* is the
Avogadro’s number and Xj is the radiation length?.

On the other hand, the differential cross section for photon conversions, in terms of the
quantity z = % (electron energy over photon energy), is given by

do A 4

o=y (1= 5e =) 2)

1Since the photons which are relevant to physical measuremts have energies above 1 GeV, all the other
interaction between the photons and the tracker material, such as Compton and Rayleigh scattering,
can be ignored: at this energy, in fact, they have a cross section several order lower than the photon
conversion [1].

2For elements heavier than helium the radiation length may be approximated from the atomic mass
A and the atomic number Z by the following relation

716.4g cm™2A
Z(Z +1)In(287VZ)’
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Since the cross section is symmetric in x and 1—z, you have that the photon momentum
is not shared equally between the electron and the positron. It is therefore possible that
a fraction of the photon conversions is highly asymmetric and one, either the electron
or the positron, is produced with a very low energy: in particular, if this energy falls
below the threshold required to produce a reconstructable track in the ATLAS tracker,
the converted photon will have only one track reconstructed and it will be difficult to
distinguish a v from a single electron or positron.

2.1 Bremsstrahlung

In the reconstruction algorithm it is important to remember that, like heavy particles,
electrons and positrons also suffer a collisional energy loss when they go trough matter.
However, because of their small mass®, an additional energy loss mechanism comes into
play [2]: the emission of electromagnetic radiation arising from scattering in the electric
field of a nucleus or, better said, bremsstrahlung.

While at energies of a few MeV or less this process is still a relatively small factor, as the
energy is increased, the probability of bremsstrahlung quickly shoots up. Loss of energy
by radiation, at few 10’s of MeV, is comparable to or greater than the collision-ionization
loss and then, at energy above the critical energy®, the bremsstrahlung dominates com-
pletely: at this point you will observe, as consequence, the reduction of the electron
curvature radius as shown in Fig. 1.
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Figure 1: If an electron emits a photon at point C, its track will have a smaller curvature
radius after that point and it will hit layer S5 at point F instead of point G,
while the photon follows the tangent C-E-H [3].

The probability density that the electrons keep their direction and a fraction z of their
energy is given by the Bethe-Heitler distribution f(z) (Fig. 2): it depends on the amount
of traversed material and is highly asymmetric, with a singularity at 2 — 1 and a long
tail extending to very small z [3].

3The emission probability varies as the inverse square of the particle mass.
4For each material it is possible to define a critical energy, E., through the following expression

(dE) B (dE)
dx radl E=E, dx coll

E=E.
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Figure 2: Bethe-Heider distribution of the fraction z of energy retained by the radiating
electron[3].

3 Track fitters

In the ATLAS experiment three different algorithms are performed for the track recon-
struction: the Global x? track fitter, the Gaussian Sum Filter (GSF) and the Dynamic
Noise Adjustment (DNA). Each of these takes into account the bremsstrahlung effect
in a different way. In particular, whereas the default algorithm can only estimate the
energy losses, the other algorithms try to take into account the variation in the curvature
radius during the reconstruction: it is for this reason that they are called brem fitter.
However, before discussing these bremsstrahlung fitters, it is useful to show, after the
Global x? track fitter, how the Kalman Filter (KF) works: both GSF and DNA are, in
fact, based on the latter.

3.1 The Global \? track fitter

The Global x? track fitter is the default algorithm used by the ATLAS experiment [4].
It only needs an initial estimate of the track parameter and, to consider the energy loss®
together with the scattering, it uses this particular x? form

r?neas egca (Sin elOC)szca (AE _ H)2
Coy ey (G Bl ) S B ST

meas _ Teas scat scat scat Eloss UEloss

where 7,,¢45 is a residual (the difference between a measurement and the track prediction
obtained by propagating the track through the magnetic field to a measurement), 0.,
and @t are the scattering angles at scattering layer (the difference in angle between

5Considering the energy losses is a way to take into account the bremsstrahlung effects.



the incoming and outgoing track), AFE is the fitted energy loss at a material layer and
AF is the expected energy loss obtained from the material description.

In this algorithm, after the residuals and their derivatives have been calculated, the track
parameters are updated using the update formula: this process continues until there is
no appreciable difference between the new and the old x?2.

3.2 Kalman Filtering

The Kalman Filter [3] is an iterative procedure used to determine the vector of track
parameter, y, and its covariance matrix, C, considering the measurement m and its
covariance matrix V' at each detector layer k. The procedure includes three steps:

1. extrapolate y and C from layer k — 1 to layer k
Yk-1 = Yy » Cr-1+ Qr—1 = Cf (4)

where (), is the covariance matrix of the system noise at layer k, which takes into
account things like multiple scattering and bremsstrahlung;

2. calculate Kalman gain K at layer k

3. do measurement update
Y =Yy + Ke(m —yy),  Cp=(1-Ky)Cp . (6)

It can be demonstrated that this procedure only works properly if both measurement
uncertainty V' and the process noise () are well described by Gaussian distribution: for
this reason, while it is useful in the case of measurement errors and multiple scattering,
it’s certainly not for bremsstrahlung.

3.2.1 Gaussian Sum Filter

The Gaussian Sum Filter [3] is a non-linear generalization of the KF. It approximates
the Bethe-Heitler distribution by a weighted mixture of several Gaussians in order to
take into account the asymmetry and the low-energy tail of the distribution (Fig. 3).
For every component a different KF' is executed and the results are merged together,
using the new weights calculated during the process, to obtain the track parameter vector
and its covariance matrix. In addition, since the number of the components grows at
every hit added, a reduction of components is performed at each step.

However, due to the less precise hit measurement in the TRT, the GSF fit is only
performed for tracks with silicon hits.
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Figure 3: Comparison between the Bethe-Heitler distribution, a single Gaussian distri-

bution of equivalent mean and r.m.s., a sum of several Gaussian used by the
GSF[3].

3.2.2 Dynamic Noise Adjustment

For the DNA [3], a fit is performed to flag hits which may be associated with bremsstrahlung.
This fit tries to estimate the increase in curvature due to possible bremsstrahlung at the
current detector layer. If no bremsstrahlung was flagged, the track fitter reverts to the
default Kalman filtering procedure. Otherwise, the results of single parameter fit -the
estimated fraction of energy retained by the electron, z- is used to calculate the addi-
tional effective ”system noise” term, which is then fed to the Kalman filter.

The effective ”"system noise” variance calculation is illustrated by Fig. 4, which shows
how the Bethe-Heitler distribution is mapped onto the Gaussian distribution of unit
width. The deviation Az of estimated z from the medium z; is mapped onto a Gaus-
sian to find the corresponding deviation Az. The effective noise o is then calculated as
O'DNA(Z) = AZ/AQZ

This procedure is equivalent to representing the random variable z, distributed according
to the Bethe-Heitler probability density, in the form

z=zg+xopna(2) (7)

where z is a random variable with Gaussian probability distribution.

At the end the variance 0% 4 is added to the appropriate term of the Kalman covariance
matrix used during the fit, similarly to the treatment of any other source of system noise.
Also in this case, as in GSF algorithm, the fit is only performed for tracks with silicon
hits.
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Figure 4: Mapping of the probability distributions used to calculate the variance of the
effective noise term [3].

4 Samples and cuts

To study the different fitters, three different samples have been used: two MC samples
and a data sample. For the MC samples we have considered the DP and JF samples.
In both samples background has been simulated but while for the first one the fraction
of real photons is increased by a generator level filter, in order to have a large statistics
for real signal, the second one does not use it: JF contains a similar background to that
of data (Fig. 4) and, in particular, it has been possible to find that its background is
overestimated.

However, in order to have enough statistic for the analysis, we have considered different
kind of DP and JF, as shown in the table 4, for different p; range.

Then the following selection has been applied to obtain the sample of photon conversions
used in this study

Double-track conversions : since the photon momentum estimation becomes worse
when you lose an electron or positron track during the photon reconstruction (see
sec. 2), the idea is to consider only those photons with 2 reconstructed tracks after
the conversion.

Good eta range : photon candidates in the following ranges 0 < |n| < 1.37 and 1.52 <
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Figure 5: Purity (number of real reconstructed photons over all reconstructed photons) of
JF sample is shown for different p; regions (see sec. 3): because of background

overestimation, it is worse in JF than in data.

H DP \ JF \ pi range used (GeV) H
mclOb_7TeV_DP17 | mcl0b_7TeV_JF17 [20,45]
mcl0b_7TeV_DP35 | mclOb_7TeV_JF35 [45,85]
mcl0b_7TeV_DP70 | mcl0b_7TeV_JEF70 [85,200]
mcl0b_7TeV_DP140 | mc10b_7TeV_JF140 [200,400]
mcl0b_7TeV_DP280 | mcl10b_7TeV_JF240 [400,1000]

Table 1: Different samples used in the analysis for the different p; range.

In| < 2.37 have been considered in order to skip the crack region where you have
a degraded resolution because of the calorimetry geometry®.

Author : this variable is defined during the reconstruction step and gives information
about the algorithm used: those photons, reconstructed by the standard photon
reconstruction (author==4) or also as electrons (author==16), have been ana-
lyzed [5].

Photon and OQ cleaning : photons, that have been reconstructed using bad qual-
ity clusters or fake clusters originating from calorimeter problems, have been re-
jected [5].

Tight selection : the tight photon requirement are optimized to provide good rejection
of the my background (see Tab 2): in particular the cut thresholds are chosen
in order to provide an identification efficiency around 85% and to minimize the
corresponding fake rate [6].

Isolation cut : in the ATLAS experiment the calorimeter variables FtConeXX are cal-
culated by taking a simple sum of the calorimeter cell energies inside of a cone of

5Photons candidates are required to lie in the pseudorapidity region covered by the finely segmented
part of the first layer of the electromagnetic calorimeter [6].



a certain radius around the cluster barycenter, excluding a 5 x 7 grid of cells in
the center of the cone. There are (at least) two effects that modify this value in
unwanted ways that are important to take into account [5]:

e a photon or electron will leak some of its energy outside of this central core
and will cause the isolation energy to grow as a function of F;

e soft energy deposits from pile-up interactions will change the isolation energy
depending on the amount of activity in the current event (in-time pileup) as
well as previous events (out-of-time pileup).

On the base of different corrections used, different variables can be defined from
EtConeXX: however for the purpose of this analysis, according to the reference [7],
only the following cut has been used EtCone40<5 GeV.

Successful refit : a successful fit is required with the GSF and DNA to have a consistent
sample of conversions for all three track fitters.

At this point, while the data sample is ready for the analysis, for the MC other cuts have
been considered. However, whereas for the DP sample there has been only the request
of having photons from hard process (truthmatch cut), for the JF, using again this kind
of cut, different selections have been performed to obtain the following samples

e JF: it is the sample with the first cuts but without the truthmatch cut;
e JFwith: it is the JF sample with the truthmatch cut;

e background: it is the sample made of photon candidates not truth matched to real
photons.

H Category \ Description \ Name H

Acceptance In| < 2.37,1.37 < |n| < 1.52 excluded -
Hadronic leakage | - Ratio of F; in the first sampling Rhady
of the hadronic calorimeter to E

of the EM cluster(used over the range
In| < 0.8 and |n| > 1.37)

- Ratio of E; in all the hadronic Ry
calorimeter to E; of the EM cluster
0.8 < |n| < 1.37)

EM Middle layer | - Ratio in n of cell energies in R,
3 x T versus 7 x 7 cells
- Lateral width of the shower wWo
- Ratio in ¢ of cell energies in R,
3 x 3 and 3 x 7 cells
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H Category \ Description Name H

EM Strip layer | - Shower width for three strips W3
around maximum strip
- Total lateral shower width Wtot
- Fraction of energy outside Fgide

core of three central strips but
within seven strips

- Difference between the energy AE
associated with the second maximum in
the strip layer and the energy
reconstructed in the strip with the
minimal value found between the first
and second maxima

- Ratio of the energy difference Elatio
associated with the largest and second

largest energy deposits over the sum
of these energies

Table 2: Variables used for tight photon identification cuts [6].

4.1 Weights

In order to reproduce the same p; shape as in data, each event in the different samples
has been weighted: in particular the weights have been estimated as the ratio of the
data over MC events for every bin. However, because of the smaller statistics in the JF
samples, a different binning has been used for the JF and DP samples, as you can see
in Fig. 6.
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Figure 6: Weights of the different samples used.

However, since the fig. 6(b) and 6(c) reach big values in the first bins, both the plot have
been scaled by the quantity

MaxXvalue — MinXvalue
> bin BinContent x BinLength

before being used in the analysis.

5 Analysis

During the analysis, using the variables

ph_cl_E : energy reconstructed by the calorimeter, that can be use as reference since in
data you obviously do not know the true momentum,

ph_conv_p : momentum reconstructed by the ID using the default fitter,
ph_conv_GSF _p : momentum reconstructed by the ID using the GSF fitter,

ph_conv_DNA p : momentum reconstructed by the ID using the DNA fitter,

ph_cl E ph_cl_E and ph_cl_E
ph_conv_p’ ph_conv_GSF _p ph_conv_ DN A_p

and p; regions (see Tab. 3).

They play an important role to understand how the bremsstrahlung fitters work. The
distributions show a Gaussian core, due to the momentum resolution, and a long tail, due
to the bremsstrahlung: as the bremsstrahlung effect grows, in fact, there is a momentum
underestimation and, as consequence, an overestimation of the previous quantities.

At this point, once you have these distributions, it is possible to perform a fit (see Fig. 7)

the quantities have been defined for different 7

12



Py TEZION
DP/data | JF/JFwith
7 region 25-35 GeV | 25-35 GeV
DP /data | JF/JFwith ||| 3545 GeV | 35-45 GeV
006 000 45-55 GeV | 45-55 GeV
' ' 55-70 GeV | 55-400 GeV
0.6-1.37 | 0.6-1.37
70-85 GeV
1.52-1.81 | 1.52-1.81
181-2.37 | 1.81-2.37 || 35100 GeV
— — 100-125 GeV
125-150 GeV
150-400 GeV

Table 3: n and p; regions: while for eta the same regions have been selected for all the
samples, four p; ranges have been chosen for JF and JFwith because of the
smaller statistics.

using the Crystal Ball function” to measure the number of conversion candidates in the
tail® over all the conversion candidates for every p; and eta region : it is, in fact, one of
the parametrization which gives good enough results to compare different samples and
algorithms when the bremsstrahlung effect is present?.

"The Crystal Ball function is made of a Gaussian core and a power-law low-end tail, after a threshold,
and, together with its derivative, it is continuous. It is given by

f(x;acB.nes, Tep,00B) =

_ (1*5203)2 -
e *cs  for ¥ > —acp
nbe- nep \"OF -leepl® ( nep z—zcp) P for £=Zcsm
) —lecpl” . _ z—z o=z .
(IacB|> ¢ (\acgl lacs| oce ) 0 . S Tacs

where nbc is a normalization factor, Zop is the peak of the Gaussian, U%B is the variance of the
Gaussian, agp is the distance between the peak of the Gaussian and the starting point of the tail
in oop unit and nep is the parameter that describes the power-law of the tail [8].

8Starting point of the tail is given by Zcp — acp - ocB.

9Tt is possible also to consider the number of conversion candidates in the core of the Gaussian over all
the conversion candidates with the core defined as the region between Tcp —20¢p and Teg —20¢B:
in the analysis this method has been used to check the results and, as expected, no difference has
been found.
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Figure 7: Fit performed for the DP sample in the p; range [25,35|GeV and 7 range [0,0.6].

Resolution

Before studying the behaviour of the E/p distribution, it is informative to look at the

resolution, defined as Ap =

Etr_p

Etr

, in a MC sample in order to have a general idea about

how the different algorithms work, for every p; and eta bin: in particular the mean of
the distribution of Ap and its error have been estimated for real photons using the DP

sample (Fig.

8).
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Figure 8: Resolution versus |n| for different p; regions (DP sample).

Both the GSF and the DNA show better behaviour, that is a mean closer to zero, than
the default track fit: however, while the GSF is performing better at high n and p;, the
DNA is performing better at low values.

In addition to evaluating the behaviour of the track fitters on the MC, studying E/p
will allows for a comparison of the track fitters using data.

Background

Using JF, JFwith and background, it is possible to get an idea of the effect of background
on the E/p distribution. In particular if you look at Fig. 9 you observe the shift of the
peak, the increase of the sigma and, also, of the conversion candidates in the tail.
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The same thing happens if you consider other p; and eta regions.

A RooPiot of "VEoverP™ ARooPlot of "VEoverP™ I "ARooPlot of "VEoverP™ 0|
= aha_CB = 0.6747 20051 P Sipha_CB = 0.8056 7 0.06 = 3 e CB= 12092028
S nca- 201012 o] nica= 3200037 e
< nbc= 125835 e e = 1051=32 3
et pealk _CB = 1.0108::0.0029 E1a00— peal_CB = 1.0061- 00021 £ A
& F sigma_c8 = 00601 00023 i - sigma_CB = 0.0446- 00016 g
F 1000 100
= = E
Le 50— “E
i -
onl w0
5 E £
E w0 o
200| L
200 20
el o : ‘ g ,
1 2 3 4 5 0o 2 3 4 5 % E [ BT s 4 5
VEoverp VEoverp Veover

(a) JF sample (b) JFwith sample (c) background sample

Figure 9: JF, JFwith and background for p; € [25,35] GeV and for |n| € [0,0.6].

5.1 Fraction of the conversion candidates in the tail VS p; regions

For each sample the fraction of the conversion candidates in the tail has been determined
in bins of n and p; and is shown in Fig. 5.1
[l € [0,0.6]

frac_region_eta(0)
Entries 9
Mean  101.7

¢ 6 RMS _ 70.55
*om

B
4
o

+

frac_reglon_eta{0)

Entries. 4

Mean 84.41

i RMS __ 79.06

#frac/#all
°
<
#fraciall
]
Q

0.6/

°
@
T[T T
RA EARAERARR;
At

°
o
e
o
s

t

=
<
T T

‘ 04"
e == b The default point is
— g coverad by the GSF
03 T ’ 03 et
By gty o F
02t 0.2
B
Oy s i | T, PR P! RS, U QPSPPI WS |
N 50 100 150 200 250 300 350 400 50 100 150 200 250 300 350 400
pt pt
(a) DP sample
frac_region_eta(0)
Entries
=038 — Mean 9691
o [RMs  ses1 =081
go7 e 2L
E So7t
056 L
0.6
05 | E

(¢) JFwith sample (d) data sample

16



| € [0.6,1.37]

[frac_region_eta(1)

Entries 9

=08 Mean 101
2 e [RMS 7314
s F e
§°-7,

08

05t

E+
oaf,
B ++¢+
W,
0t T
Ev ™
0 oo s0 00 250300 380 o
p
(e) DP sample
Entries 4
= 0. Mean 625
£

05— + %

M;ﬂf

0437*

i
02| |
E 1
i T
O30 w2 300 3% o
p
(g) JFwith sample
0| € [1.52,1.81]

0. ;M"a; Iﬂzg
=08 oan  102.
% F P RMS 718
Sor|- =

06

“5;4(‘ #h ==

sy T

Clma s

Eret,
03[
.

02

ok 50 100 150 200 250 300 350 400

pt
(i) DP sample

—os Mo 7591
% RMS 73.’13
5“.7

0.6

0.5

0.4

0.3]

0.2

0. 50 100 150 200 250 300 350 0

-7y

(k) JFwith sample

Entries a

= 0.8, Mean 74.46
g ; mﬂl.ﬁz
n_g;ﬁ
n.sf—
DA:*‘#
; |
i !
o.z%—'
045 50 100 150 200 250 300 350 400
pt
(f) JF sample
frac_region_eta(1)
= 0.8, IE;:t;II:S 91, Gg
g ) ; \&es:za

|
]
I
02
0156~ ""fo0 50 200 250 300 350 400
pt
(h) data sample
frac_region_eta(2)
o Entries. 4
=09 Mean 90.88
& s RMS 8215
Sg0c e
£ |
0.7 ?
wift |
ELl
05 !
04
03
02
O150 " 100 150 200 250 300 350 400
pt
(j) JF sample
frac_region_eta(2)
1 Entries 9
(— e Mean 102
£
£ =
095
08
07t
o8, %
o5
04
03
Fn | | | | | |
z 50 100 150 200 250 300

17

350 400
pt

(1) data sample



n| € [1.81,2.37]

o

i = IT [E
o7 == g0 |
# The default point is < ii }
06 covered by the GSF 07
£ point £ +
085 Tt 06
el e
0.4 05—
0.3 va-
0z 0ar
0_1: 0_‘: L L | I 1 L 1
UL s oo im0 a0 o304
(m) DP sample (n) JF sample
= 0. = 0.8 =
£ C ot 2L o
g 07 = g 07 I
E | Ee I
08! }i it 08}t b+
1 pra ]
o5t + ] 05— = + %
i g e
0.4f 0.4— i
31 £
£ Vi E
03" 03—
0a- 02
ﬂ.l: L 1 | I 1 L It 0_1:
50 100 150 200 250 300 350 ;[ 0 50 100 150 200 250 300 350 :I 0
(o) JFwith sample (p) data sample

Figure 10: Fra ction of the conversion candidates in the tail VS p; for the different
samples studied and for the different 7 region.

In agreement with what has been observed for the resolution using the DP sample, the
GSF and DNA provide a better estimate of the momentum of the conversion than the
default fit: in fact, after refitting the tracks with the GSF and the DNA, the fraction of
conversions in the tail of E/p distribution is significantly reduced in all  and p; regions.
In a few instances, the default fit seems to display a smaller fraction of conversions in the
tail. These cases can be traced back to badly fitted E/p distributions, as demonstrated
in Fig. 10(d).
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Figure 11: Examples of bad fit: because of the bad fit performance less conversion can-
didates in the tail are measured and, as consequence, the y? algorithm seems
better than the others.
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Also for the DNA algorithm you can see the same fit problem in Fig. 10(1) (data sample):
in this case the fit is so bad that only the tail is performed and, as result, you can see
the fraction of the tail near 100% (Fig. 12).
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Figure 12: Example of bad fit for DNA algorithm.

Anyway, as observed in the study of the resolution, it is possible to observe again how
the GSF seems work better than DNA for high 1 and p; regions and the contrary for
the low values.

In addition, studying the behaviour of E'/p on JF samples, the following effect is observed
when comparing samples with and without background: the fraction of the conversion
candidates in the tail is bigger in the sample with background than the other(Fig. 10(b)-
Fig 10(c),Fig. 10(f)-Fig 10(g),Fig. 10(j)-Fig 10(k),Fig. 10(n)-Fig 10(0)).

5.2 Fraction of the conversion candidates in the tail VS eta regions

As additional cross check, another kind of analysis has been used: integrating over py,
the fraction of the conversions in the tail has been measured as function of 1 as shown
in Fig. 13
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Figure 13: Fraction of the conversion candidates in the tail vs ) for the different samples.

The same results of the previous section can be observed: the DNA and GSF are better
than the default algorithm, but it is hard to demonstrate that one of them is better than
the other, and the JF sample is shifted because of the presence of background.

5.3 Crystal Ball peak and sigma for different p; regions

Two other quantities are of interest:

e Crystal ball peak vs p; (Fig. 14(a));

e Crystal ball sigma vs p; (Fig. 14(b)).
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Figure 14: Peak position and Gaussian sigma of the Crystal Ball fits to the different £ /p
distributions observed on data. The same trend as shown here is also visible

for the simulation samples.



Since the distribution peak should be near 1, it is possible to use consistency with 1 as
measure of fit performance for the different p, region; the sigma VS p; plot, instead, can
be used to have an idea about the resolution.

While the previous results showed a better performance of the bremsstrahlung fitters
compared to the default fit, without allowing to favour one of the bremsstrahlung fitters,
the GSF shows a better performance with respect to the peak position.

The sigma plot, instead, shows that the resolution gets worse with increasing p; for all
fitters: while the GSF Gaussian core is the widest, the default algorithm core is the
narrowest.

6 Conclusion

During this analysis the performance of the bremsstrahlung refits for converted photons
was studied using the quantities ’energy measured by the calorimeter over momentum
estimated by the ID using the different bremsstrahlung fitters’.

A better performance has been found for the GSF and DNA compared to the default
ATLAS algorithm. In particular it has also been found that the GSF fitter is better
than DNA for high p; and high n and the contrary for low p; and n but, looking only at
the peak of the fit for different p, regions, it seems that GSF is the best bremsstrahlung
fitter.

The bremsstrahlung refits could find application in the following areas:

e improvement of the H — 77 mass resolution combining calorimeter and tracker
measurement of the energy and using the bremsstrahlung refitted conversion for
the mass reconstruction;

e the bremsstrahlung fitter could improve the mass resolution through the pointing;

e use improved E/p distribution in the purity estimation for converted photons.
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