
Graphical User Interface for Conditions Database

Phillip Hamnett, University of Manchester, United Kingdom

September 8, 2011

Abstract

Here put a short abstract of what one can find in this document ....

1



Contents

1 Introduction 4

2 International Linear Collider 5
2.1 Purpose . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 ILC in Numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Basic Design of the ILC . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 International Large Detector 7
3.1 Main Components of ILD . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3.1.1 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . 7

4 Conditions Data 8
4.1 The Conditions Database . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.2 Errors in Conditions Data . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.3 Database Design and Object Structure . . . . . . . . . . . . . . . . . . . 9

5 Database Viewer 12
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.2 Working Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.3 Code Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

5.3.1 Using Qt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
5.4 Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
5.5 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5.5.1 Class: mainWindow . . . . . . . . . . . . . . . . . . . . . . . . . 14
5.5.2 Class: menuBar . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
5.5.3 Class: objectControl . . . . . . . . . . . . . . . . . . . . . . . . . 17
5.5.4 Class: objectGrid . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.5.5 Class: dbObject . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
5.5.6 Class: objectRect . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
5.5.7 Class: tagWindow . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.5.8 Class: taggingSystem . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.5.9 Class: dbHierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.5.10 Class: dbTreeView . . . . . . . . . . . . . . . . . . . . . . . . . . 31

5.6 Next Steps for dbViewer . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.1 Known Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
5.6.2 Unknown Bugs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.3 Missing Functionality . . . . . . . . . . . . . . . . . . . . . . . . . 32
5.6.4 Additional Features . . . . . . . . . . . . . . . . . . . . . . . . . . 32

6 Summary 33

2



List of Figures

1 International Linear Collider . . . . . . . . . . . . . . . . . . . . . . . . . 6
2 International Large Detector . . . . . . . . . . . . . . . . . . . . . . . . . 8
3 Time Projection Chamber . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4 Database Access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
5 Database Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
6 Structure of m allObjects . . . . . . . . . . . . . . . . . . . . . . . . . . 11
7 Layer and Tagged Object Example . . . . . . . . . . . . . . . . . . . . . 11
8 Class Hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

List of Tables

1 Table of Connections . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

3



1 Introduction

For 8 weeks, a program was written called dbViewer. This program is designed to allow
the user to view a conditions database stored in a MySQL database system. It is a
Graphical User Interface (GUI) that was written using the Qt libraries. The rest of
the code is written in C++, with the addition of the LCCD (Linear Collider Conditions
Database) libraries that were developed by the software group of the ILC. This document
will consist of a brief introduction to the International Linear Collider and International
Large Detector, followed by a discussion about what conditions data is, and how the
conditions database is arranged. Finally, the remainder of the document will focus on
the program I have written and describe all of its functionality for a developer. I have
not discussed each function line by line, as the code is well commented whenever the need
arises. I will try to make the program as easy to visualise as is possible, using Figures
and Tables to explain the more difficult concepts appropriately.

4



2 International Linear Collider

The International Linear Collider (ILC) is a proposed linear collider that will collide
particles of electrons and positrons at centre of mass energies between 200-500 GeV, with
a upgrade option to reach energies of up to 1 TeV.

2.1 Purpose

The ILC is designed to take precise measurements of new physics and has the potential
for discovering new physics. The precision of the ILC is would be much larger than that
of a circular hadronic detector such as the LHC because the initial state of the particles is
known precisely for an electron positron collider (compared to the LHC where the initial
parton states at the moment of collision are unknown). This means that you get much
cleaner results and therefore more accuracy in your measurements.

2.2 ILC in Numbers

For fun, here are some figures for the ILC:

• Collisions

– Electron/Positron bunches of 5 nanometers height.

– Each containing 20× 109 particles.

– Colliding 14× 103 times a second.

• Energy

– 250 GeV per electron or positron.

– Therefore
√

s = 500GeV

– Option to Upgrade to
√

s = 1TeV

• Approximately 31 km in length.

• 2 Detectors.

• 300 Laboratories.

• At least 1600 People working on design.

• Total cost of $6.62 Billion1

1This estimate is taken from 2007, does not include labour costs, and is not incredibly specific about
what it does include.

5



2.3 Basic Design of the ILC

The electrons are created at a source and accelerated into a damping ring. They are ac-
celerated aroud the detector and are used at 150 GeV to create positrons at the positron
source. The electrons and protons are both stored in a damping ring before being ac-
celerated down the main linear accelerator. They cross in the middle of this accelerator
at a small angle (so that the particles don’t go down each others beamlines) and then
collisiosn are detected by two detectors operating on a push-pull system.

Figure 1: Conceptual design of the ILC

6



3 International Large Detector

The International Large Detector (ILD) is one of the two proposed detectors that are
to be used in the ILC. The ILD is designed to have very accurate tracking capabilities
and a highly granular calorimetry. This, coupled with the relatively clean collisions of
particles (compared to hadron colliders) should allow for the high accuracy required for
the precision measurements of new physics.

3.1 Main Components of ILD

The ILD, like most detectors, has an onion-like structure, which consists of the following
layers [1, page 2]:

• A multi-layer pixel-vertex detector (VTX).

• A system of strip and pixel detectors surrounding the VTX detector.

• A time projection chamber.

• A system of Silicon strip detectors.

• A highly segmented electromagnetic calorimeter.

• A highly segmented hadronic calorimeter.

• A superconducting magnet surrounding the calorimeters, giving an axial B-field of
3.5 Tesla.

• An iron yoke to catch the magnetic flux of the solenoid and act as a muon detector.

• A data acquisition system to maximise sensitivity.

These layers are shown in Figure 2.
No discussion will be made of any of the components except the time projection chamber,
as this is the area of focus in the summer studentship. For more information on the other
sections, see the ILC & ILD website or [1].

3.1.1 Time Projection Chamber

The time projection chamber (TPC) is the main system for tracking particle trajectories.
It is a large cylindrical space which is filled with a gas. An electric field runs parallel to
the length of the cylinder, and when a charged particle passes through the detector it
leaves an ionised track of gas particles. The electric field then pushes the electrons from
the ionised path towards the anode (and therefore the positive ions towards the cathode)
of the detector, where the electron signal is amplified and collected as a signal. This gives
precise measurements of the x and y coordinates. The z coordinate can be measured by
knowing the drift velocity of the electrons and knowing when the particle entered and
left the detector. This is shown in Figure 3.

7



Figure 2: The International Large Detector [2]

4 Conditions Data

Conditions data is anything which isn’t a direct measurement of the particles in the
detector. It is used in almost all detector components to varying degrees. An example
of its use in the TPC would be that in order to get the electron drift velocity, you would
need to know the conditions of the gas at that time, such as the pressure, temperature,
maybe the concentration etc. Another example would be pedestal values, so when a
charge is detected at the endplate, it has to be offset by this pedestal value because it is
possible for noise to create negative charge. So if we set the value of the noise to zero
then we would lose some information Therefore the pedestal offset value must be stored
and refernced at some point when you want the precise measurement of the charge.

4.1 The Conditions Database

The conditions data is stored in a conditions database. This database is a MySQL
database, and originally ATLAS wrote a program called ConditionsDBMySQL which
was used to access the information stored in this database. However ATLAS abandoned
this program at some stage, so the ILCSOFT group created the LCCD class, which
is an abstract layer designed to access the functionality of ConditionsDBMySQL. If a

8



Figure 3: Shows a particle passing through a TPC and the signal being detected at the
anode [3].

replacement to ConditionsDBMySQL is ever created, it will be easy for the LCCD class
to adapt to this. Figure 4 shows this.

4.2 Errors in Conditions Data

Database administrators need to be able to access the data to do integerity and error
checks to ensure that the database is consistent. Plus it is possible that people who
write their reconstruction code make mistakes, and if so they will want to check if the
mistake they made is in the conditions or not. For both of these things, it is currently
very difficult and tiresome to check by writing a script or code that does this for you. A
previous GUI existed that was designed to allow this kind of checking, but it was very
unstable. This lead to the need for a new GUI to be developed that was stable and allows
the user to check in an easy and user friendly way whether there code was correct and to
physically let them see the data that is stored in the conditions database.

4.3 Database Design and Object Structure

The database consists of folders, each of these folders can have many subfolders. Each
subfoilder can have many subfolders itself and so on. Eventually, you will reach a folder

9



Figure 4: This example shows how the information in the MySQL database is accessed.
You might start in MarlinTPC, which uses the LCCD Libraries, which in turn
uses ConditionsDBMySQL, this finally accesses the information in the database.

which has no subfolders and this folder will contain some objects. Objects are where all
the information related to a set of conditions is stored. Figures 5 and 6 show this.

Figure 5: This shows the structure of the MySQL database

For each object, there is specific information which is stored. The information we are
interested in is the start time, end time and layer number. The start and end time simply
refer to when the records for the data begin and end. But they layer is a slightly more
complicated idea: If an object is determined to be incorrect in some sense and the object
is modified, the modified object is given a new layer. This stops the original object being
deleted if it needs to be referred to later. An example of this is shown in Figure 7. When
modifying a object, you should tag the new layer in a way which explains to the user

10



Figure 6: Structure of m allObjects

what exactly has changed. Doing this tags all the objects with an exposed upper layer
so that if you look again at Figure 7 The red object is not highlighted because there is
no exposed upper layer, but all the others do have an exposed upper layer and so are
tagged.

Figure 7: This shows five objects in a folder. Four of these objects have been tagged
(green) and two of them are in the 2nd layer because they are modified.

11



5 Database Viewer

5.1 Introduction

The database viewer (dbViewer) is a graphical user interface (GUI) designed to allow
easy access to the conditions database and show in a clear and concise way the raw data.
Its use is for finding the mistakes from implementation of any code which accesses the
conditions database. It does this by allowing a comparison between the database values
and the results the user got (as a visual inspection by eye).

5.2 Working Example

5.3 Code Structure

The code is written in C++ and uses the Qt & LCCD/LCIO libraries. The code is
written in a modular way where possible to allow for easy additions to functionality.

5.3.1 Using Qt

Most of the code is written using Qt libraries (Version 4.4). There is a vast amount of
information online that will help in understanding how to use what is available [4]. But
there are two major points that should be emphasised:

1. Signals and Slots

2. Inheritance.

3. Coordinate Systems.

5.3.1.1 Signals and Slots Qt uses a system called signals and slots in order to connect
widgets and do things interactively. Some signals and slots are premade in the widget,
however most of them are custom made in a class which is derived from a widget (At
the very least, the class must at some level inherit from QObject, and must have the
Q OBJECT macro in the header file). A signal is emitted whenever the “emit” function
is used, or if a connection is made to a signal from another signal and this connection is
activated. A slot is a function which can be used simply as a normal function, but can also
be used to connect to a signal. The connection (using QObject::connect) is a function
that can be used to connect signals to other signals or slots. The positioning of the
connection is very important, because an incorrect position causes unexpected behavior.
If connecting class A and B via class C, then the connection should be in the constructor
of class C to insure it gets initialised. However, if you are making a connection within a
class, the connection needs to be made in the place just before the connection could be
triggered (Although this is uncertain). A good way to debug unusual interactive behavior
is simply to move the connection around until it works.

12



5.3.1.2 Inheritance In Qt, most classes have the option to inherit from others, with
most of them leading to the QObject class. It is very important that when using the
classes within Qt that you give each class the correct ‘parent’. This is because all the
functionality of the parent can then be passed to the child class too, and stops issues with
memory leaks etc. For instance, if you make a widget and within that widget you make
another widget (with the first as its parent), then if the parent widget is closed the child
widget is closed with it (as it should be). However if the 2nd widget does not inherit the
first then the first being closed will not close the second.

5.3.1.3 Coordinate Systems There are 4 coordinate systems that can be used in Qt,
each with varying purposes. Coordinates are important for deciding on te positioning of
widgets and for determining where a mouse click occurred. The four systems are:

5.3.1.3.1 Screen Coordinates This is perhaps the least useful of the coordinate sys-
tems. (0,0) is located in the top left corner of the monitor, and increases pixel by pixel
across your screen. This is particularily useless because its very rare that two people will
have the same monitors or screen resolutions.

5.3.1.3.2 Item Coordinates The item coordinates are used in conjunction with the
QGraphicsItem class (and its subclasses). All QGraphicsItems contain a bounding rect-
angle which is the smallest rectangle that can be placed around the object which totally
encompasses the object. The item coordinates start from the top left of this rectangle
and increase in x and y as you go right and down respectively. Namely, this means they
are the coordinates of the item itself, which might be useful if you want an item to do
different things if you click on different points on it.

5.3.1.3.3 Scene Coordinates The scene coordinates are used in conjunction with the
QGraphicsScene class. A QGraphicsScene is filled with QGraphicsItems

5.3.1.3.4 View Coordinates The View comes from the QGraphicsView class. It is
populated with a Scene of Items and allows the user to scroll across the Scene.

All of the coordinate systems can be converted to each other with the mapXtoY functions
that can be foudn throughout the QGraphics class range.

5.4 Connections

Table 1 is a table of all the connections that exist within the program.

13



5.5 Class Hierarchy

The following classes comprise the working sections of the code:

• mainWindow

• menuBar

• objectControl

• objectGrid

• dbObject

• objectRect

• objectTagging

• dbHierarchy

• dbTreeView

• taggingSystem

The class hierarchy is shown in Figure 8.
A detailed description of each class will follow.

5.5.1 Class: mainWindow

The mainWindow class contains the following:

• Public Members:

– mainWindow(QWidget *parent = 0)

5.5.1.1 Public Members

5.5.1.1.1 mainWindow(QWidget *parent = 0) This is the default constructor and
the only function in the mainWindow class. Within this class an instance of the ob-
jectControl and menuBar classes are instantiated, with both of the classes inheriting the
QWidget that is mainWindow. The class is put into a layout with the menuBar class at
(0,0) and the objectControl class at (1,0). This means that the menuBar class goes at the
top of the page and the objectControl class goes directly beneath it. Finally, connections
are made between the menuBar class and the objectControl class so that what happens
in the menuBar class can be transferred to functions in the objectControl class.

14



Figure 8: The class hierarchy showing where each class is created and with what features

5.5.2 Class: menuBar

The menuBar class contains the following:

• Private Members:

– QAction *m quitAct, *m openDBAct, *m closeDBAct, *m resizeAct, *m clearAct,
*m docAct

– QMenu *m fileMenu, *m viewMenu, *m helpMenu

• Public Members:

– menuBar(QWidget *parent)

• Signals:

– clearView()

– docView()

– openFile()

15



– closeFile()

– resizeGrid()

• Connections:

– connect(m quitAct, SIGNAL(triggered()), qApp, SLOT(quit()));

– connect(m openDBAct, SIGNAL(triggered()), this, SIGNAL(openFile()));

– connect(m closeDBAct, SIGNAL(triggered()), this, SIGNAL(closeFile()));

– connect(m clearAct, SIGNAL(triggered()), this, SIGNAL(clearView()));

– connect(m resizeAct, SIGNAL(triggered()), this, SIGNAL(resizeGrid()));

– connect(m docAct, SIGNAL(triggered()), this, SIGNAL(docView()));

5.5.2.1 Private Members All of the private members of the menu function come in
one of two types, they are either a QAction, or a QMenu class.

5.5.2.1.1 QAction *m ACTIONNAME The QAction class is designed to allow the
user to associate an action with a widget (such as clicking on a button, for instance).
QAction is derived from QObject directly. Each of the QAction names listed does the
action you would associate with its name, but for completeness I will list it here explicitly:

• QAction *m quitAct - Quits the program.

• QAction *m openDBAct - Opens a new database.

• QAction *m closeDBAct - Closes the currently open database.

• QAction *m resizeAct - Resizes the current grid view. (NOT FULLY IMPLE-
MENTED)

• QAction *m clearAct - Clears the current grid view.

• QAction *m docAct - Opens the in-program help documentation. (NOT FULLY
IMPLEMENTED)

5.5.2.1.2 QMenu *m MENUNAME The QMenu items are the menus in which the
actions must be placed. These correspond to the “File”, “View” and “Help” menu options
at the top of the program.

5.5.2.2 Public Members

5.5.2.2.1 menuBar(QWidget *parent) The constructor is where everything is put
together in the class to make the menu bar. A QMenuBar class is declared. All the private
members are initialised. The addAction function is used to put the correct QActions into
the correct QMenu lists. The addMenu function puts the QMenus in the QMenuBar.
Connections are set at the end of the constructor.

16



5.5.2.3 Signals The signals are all designed to connect the menuBar class to other
classes in the program.

5.5.2.4 Connections These all connect the trigger from the QAction (that is, when a
button from the class is clicked, the QAction class has emits the triggered() signal) to
the signals that have been created for the menuBar class. These signals that belong to
the menuBar class can then be picked up by other classes so that the functionality can
be implemented.

5.5.3 Class: objectControl

This is the main control class for the program. Most other classes are either created here
or connected through here in some sense.
The objectControl class contains the following:

• Private Members:

– QList<objectRect*> m objectList

– objectGrid *m grid

– tagWindow *m tags

– dbHierarchy *m tree

– QLineEdit *m hostLine, *m databasenameLine, *m loginLine, *m passwordLine,
*m portLine, *m directoryLine

– std::vector< std::vector< dbObject > > m allObjects

• Public Members:

– objectControl(QWidget *parent)

– void sendAllToGridTest()

– void newTestObject(double xCo, double yCo, double xLength, double yLength,
std::vector<dbObject> testObject, QColor colour)

• Signals:

– clearSignal()

– sendObjectShapesTest(QList<objectRect*>)

• Private Slots:

– docView()

– clear()

– openFile()

– openFile(std::string directory)

– closeFile()

– resizeGrid()

17



5.5.3.1 Private Members

5.5.3.1.1 QList<objectRect*> m objectList A QList is a list of contain from the
Qt library that works very similarily to the STL container “List”. This list is filled with
pointers to the objectRect class, which is discussed in detail in Section 5.5.6. m objectList
is the entire collection of rectangles that will be displayed in the viewer.

5.5.3.1.2 objectGrid *m grid This declares an instance of the grid. The grid is de-
scribed in detail in Section 5.5.4. Briefly, the grid the the QGraphicsView custom class
designed to let the user view and interact with the QGraphicsScene (See Section 5.3.1.3).

5.5.3.1.3 tagWindow *m tags This declares an instance of the tagging window and
system. The tagging window and system are described in Section 5.5.7 and 5.5.8 respec-
tively. This creates the widget which can be seen in the bottom left part of the GUI and
eventually is used to control the tags and highlighting.

5.5.3.1.4 dbHierarchy *m tree The dbHierarchy class is very similar to the tagWin-
dow class in that it is the widget which will store the database tree view when a database
is opened. Further references to this can be found by looking at Section 5.5.9 and 5.5.10.

5.5.3.1.5 QLineEdit *m LINEEDITNAME The QLineEdit class is a class which al-
lows the user to input information on a line (normally in a dialog window, see QDialog
class in the reference documentation for more information). Each of the QLineEdits
corresponds to something which must be input to make a connection to the database.

5.5.3.1.6 std::vector< std::vector< dbObject > > m allObjects This is a vector of
vector of the dbObject class. The dbObject class is designed to contain all the information
associated with the conditions at a single instance, detailed documentation for this can
be found in Section 5.5.5. The top level vector contains each object that is stored in
the folder you are currently in. The vector within that vector stores each instance of the
object. This is all shown in Figure 6.

5.5.3.2 Public Members

5.5.3.2.1 objectControl(QWidget *parent) This is the constructor for the objectCon-
trol class. In here m grid, m tags, and m tree are initialised. A QGridLayout is created
and the 3 widgets are placed in to it with an appropriate layout. Connections between
the various classes are also created at the end of the constructor.

5.5.3.2.2 void sendAllToGridTest() This function simply emits the signal sendOb-
jectShapesTest(m objectList)

18



5.5.3.2.3 void newTestObject(double xCo, double yCo, double xLength, double
yLength, std::vector<dbObject> testObject, QColor colour) This function creates
an objectRect class and appends it to the m objectList member. xCo and yCo are the
x and y coordinates in the Scene coordinate system and xLength and yLength are the
extensions to the object. For instance, if xCo = yCo = 0 and xLength = yLength =
10, then a 10x10 pixel square is formed at the origin of the QGraphicsScene. testObject
contains the information that is associated with the rectangle that is being made and
colour simply contains the colour of the rectangle which is necessary for tagging later.

5.5.3.2.4 void clear() This clear function goes through all members which store in-
formation related to the database objects and clears them. It then emits the signal
clearSignal() (Section 5.5.3.3.1).

5.5.3.3 Signals

5.5.3.3.1 clearSignal() This signal is connected to the objectGrid class to the slot
called clear(). Therefore the emittance of this signal clears the grid of any rectangles and
gives it a blank background. It does NOT get rid of the objects and information stored
in the objectControl class such as m allObjects.

5.5.3.3.2 sendObjectShapesTest(QList<objectRect*>) This signal is connected to
the objectGrid class to the slot called addObjectShapesTest(). The emittance of this
signal leads to a function where the rectangles created in the objectList member are
physically placed onto the QGraphicsView.

5.5.3.4 Private Slots

5.5.3.4.1 docView() The signal that links to this slot is docView() in menuBar class.
This slot currently creates a QMesssageBox and informs the user that at some point
help documentaiton will be added. This is missing functionality which will be referred to
further in Section 5.6.3.1.

5.5.3.4.2 openFile() This is a very large function which begins by calling the clear()
function. A dialog window is created using QDialog and it is populated with QLabels and
the member functions QLineEdit. You can fill the QLineEdit with the relevant informa-
tion, and if you click on cancel, nothing will happen, but if you click on OK an attempt
will be made to connect to the database (using the connections created inside this func-
tion). Beware that if you input the incorrect information into the QLineEdit boxes there
is no error handling for dealing with incorrect database names and the program will have
a segmentation fault. The LCCD libraries are used to make a connection to the database
through CondtionsDBMySQL [5]. This will not be discussed in detail, please see the
associated reference for further information. This function is not very modular, and this
could be improved in future versions of the code. When the LCCD libraries are opened,
the code iterates through all instances of all the objects and stores them in m allObjects.

19



By looking at the start and end time of all the objects we can work out a relative scale
on which we can draw the rectangles. At the end of the function the objectRect class
instances are initialised and the signal sendObjectShapesTest(m objectList) is emitted.

5.5.3.4.3 openFile(std::string directory) This works in much the same way as the slot
above with the main difference being that this way of opening a folder is through the
dbHierarchy class. Therefore a dialog window is not required because we already know
the database and have already opened it. We are only changing the folder, which is the
argument “directory”. This function will then close the connection and reopen it with
the new directory.

5.5.3.4.4 closeFile() This closes the database by clearing all the members of object-
Control and clearing the objectGrid class. It also clears anything which is stored in the
tags window.

5.5.3.4.5 resizeGrid() The functionality for this slot is not written yet, but its purpose
will be to resize the grid so that objects can be seen which are normally not visible.

5.5.4 Class: objectGrid

This class inherits from QGraphicsView. This is where the obejcts are shown and where
you can interactively click on the objects in order to see the information stored within
them.
The class contains the following:

• Private Members:

– void addBackground()

– double resizeFactor(double dMaxValue)

– QGraphicsItemGroup *backgroundGroup

– QGraphicsItem *displayObject

– QList<double> dimensionList

– QList<QRectF*> mObjectShapes

– double dMinValue

– double dMaxValue

– QList<objectRect*> m testGraphicsItems

• Protected Members:

– QPointF CurrentCenterPoint

– QPoint LastPanPoint

– void SetCenter(const QPointF & centerPoint)

20



– QPointF GetCenter()

– virtual void mouseDoubleClickEvent(QMouseEvent* event)

– virtual void wheelEvent(QWheelEvent* event)

– virtual void resizeEvent(QResizeEvent* event)

– QGraphicsScene *Scene

• Public Members:

– objectGrid(QWidget* parent = NULL)

– void setSceneRectTest(int x, int y, int w, int h)

• Public Slots:

– void clear()

– void slot highlightTaggedObjects(std::string tagName)

– void addObjectShapesTest(QList<objectRect*> testGraphicsItems)

5.5.4.1 Private Members

5.5.4.1.1 void addBackground() The addBackground function starts with a check to
see if objects already exist in the list m testGraphicsItems. If no object exists then the
background simply consists of the x and y axis lines and white space. However, if objects
do exist, then as well as an x and y axis line, we get a grid of black lines that are created
to make it easy to tell which layer each objectRect is on. Also the x axis is given a
timestamp that scales such that 50 timestamps appear in total from the start to end
time of the earliest and latest objects respectively. The fact that there are 50 timestamps
shown is arbitrary and can be changed easily.

5.5.4.1.2 QGraphicsItemGroup *backgroundGroup This is just a convenience class
provided by Qt that allows the programmer to group together lots of items into one single
item. Therefore saving time when adding the items to the QGraphicsScene.

5.5.4.1.3 double dMinValue

5.5.4.1.4 double dMaxValue

5.5.4.1.5 QList<objectRect*> m testGraphicsItems This is a list of the rectangles
which contain the information within each folder.

5.5.4.2 Protected Members

5.5.4.2.1 QPointF CurrentCenterPoint

21



5.5.4.2.2 QPoint LastPanPoint

5.5.4.2.3 void SetCenter(const QPointF & centerPoint)

5.5.4.2.4 QPointF GetCenter()

5.5.4.2.5 virtual void mouseDoubleClickEvent(QMouseEvent* event) The virtual
void mouse events are very important because they are what allows a program to be in-
teractive. The mouseDoubleClickEvent function is perhaps the most important, because
this is activated when the mouse does a double click anywhere within the QGraphicsView.
The position of the mouse at the moment that the event occurs is recorded and the con-
tains() function checks if one of the objectRect items is stored at the position of the mouse
event. If it is then a function is called within the objectRect class called openTable(). If
the position of the mouse at the momet that the event occurs is not over an objectRect,
then nothing happens.

5.5.4.2.6 virtual void wheelEvent(QWheelEvent* event) This makes the mouse wheel
into a zooming device, and makes the view zoom in and out when you rotate the mouse
wheel. This was written by a previous summer student and works so I have left this
function well alone whilst it works.

5.5.4.2.7 virtual void resizeEvent(QResizeEvent* event)

5.5.4.2.8 QGraphicsScene *Scene The QGraphicsScene is where the QGraphicsItems
are placed before the scene is uploaded into the view.

5.5.4.3 Public Members

5.5.4.3.1 objectGrid(QWidget* parent = NULL) This is the constructor and this is
where the Scene is added to the view. After it is added the addBackground() function is
called.

5.5.4.3.2 void setSceneRectTest(int x, int y, int w, int h)

5.5.4.4 Public Slots

5.5.4.4.1 void clear() This function clears the grid of any rectangles stored in it. It
does this by removing the items from the Scene. Then it clears the list of m testGraphicsItems.
The Scene is updated and then the addBackground() function is called.

5.5.4.4.2 void slot highlightTaggedObjects(std::string tagName) This slot is con-
nected to the taggingWindow class via the objectControl class. It is used to make the
rectangles in the view change colour if a tag is chosen.

22



5.5.4.4.3 void addObjectShapesTest(QList<objectRect*> testGraphicsItems) This
adds all the items to the scene and then updates the scene and view.

5.5.5 Class: dbObject

• Private Members:

– int noInts, noFloats, noDoubles

– std::vector< int > intValue

– std::vector<float> floatValue

– std::vector<double> doubleValue

– std::vector<std::string> stringValue

– lcio::LCTime startTime, endTime

– std::string TypeName, argument1, argument2, tag

• Public Members:

– dbObject()

– dbObject(int p noInts, int p noFloats, int p noDoubles, lcio::LCTime p startTime,
lcio::LCTime p endTime)

– ˜dbObject()

– void clear()

– void setnoInts(int x)

– void setnoFloats(int x)

– void setnoDoubles(int x)

– void setintValue(int i,int x)

– void setfloatValue(int i, float x)

– void setdoubleValue(int i, double x)

– void setstringValue(int i, std::string x)

– void setTag(std::string x)

– void setargument1(std::string x)

– void setstartTime(lcio::LCTime x)

– void setendTime(lcio::LCTime x)

– unsigned int getnoInts()

– unsigned int getnoFloats()

– unsigned int getnoDoubles()

– unsigned int getnoStrings()

– int getintValue(int i)

23



– float getfloatValue(int i)

– double getdoubleValue(int i)

– std::string getstringValue(int i)

– std::string getargument1()

– std::string getTag()

– lcio::LCTime getstartTime()

– lcio::LCTime getendTime()

– dbObject & operator=(const dbObject &rhs)

5.5.5.1 Private Members

5.5.5.1.1 Int noInts, noFloats, noDoubles The variables stored in each instance of
an object can be either integers, floats or doubles. This contains the number of each of
these which are variables. For instance, if your object contains 2 integer variables, 1 float
variable and no double variables. Then those numbers will correspond to the noInts,
noFloats and noDoubles respectively.

5.5.5.1.2 std::vector< int > intValue (and floatValue and doubleValue) Each of
these vectors contains one instance of each variable. Refer to Figure 6 for more informa-
tion.

5.5.5.1.3 std::vector<std::string> stringValue The stringValue is a vector with a size
equal to the sum of the sizes of the vectors for intValue, floatValue and doubleValue. It
contains the names of the variables in the order in which they are read into the int, float
and double Values.

5.5.5.1.4 lcio::LCTime startTime, endTime These contain the start and end time for
the objects. They are stored in an LCIO class called LCTime.

5.5.5.1.5 std::string TypeName, argument1, argument2, tag TypeName is unused
at this point but will contain the value of the typename given for the object from the
LCCD class. argument1 and argument2 are the arguments needed to access the database
and folder respectively and give identifiers for the objects. tag is the tag associated with
the object, this one must be changed as mentioned in Section 5.6.1.2.

5.5.5.2 Public Members

24



5.5.5.2.1 dbObject() and dbObject(int p noInts, int p noFloats, int p noDoubles,
lcio::LCTime p startTime, lcio::LCTime p endTime) The empty constructor simply
intialises everything to 0 or NULL where possible. The parameterised constructor fills
the dbObject with all the currently used information which is neccessary. There should
probably be more parameterised constructors which, for instance, don’t require a knowl-
edge of noInts/Floats/Doubles but can work them out based on a a vector of each of the
above.

5.5.5.2.2 ˜dbObject() The destructor sets all values to zero and clears all dynamically
allocated memory.

5.5.5.2.3 void clear() The clear function is very similar to the destructor.

5.5.5.2.4 Set and Get Functions The set and get functions do as you would expect
them to do in all cases.

5.5.5.2.5 dbObject & operator=(const dbObject &rhs) The assignment operator is
used to set one dbObject equal to another one.

5.5.6 Class: objectRect

This class inherits from QGraphicsItem, which is important because it means that the
objectRect class is a custom QGraphicsItem and thus contains all the functionality of the
QGraphicsItem class with all the virtual functions being overridable. The class contains
the following:

• Private Members:

– double m xpos, m ypos, m xlength, m ylength

– std::vector<dbObject> m instancesofObject

– QColor m colour

• Public Members:

– objectRect(QGraphicsItem *parent = 0)

– objectRect(double xpos, double ypos, double xlength, double ylength, std::vector<dbObject>
instancesofObject, QColor colour, QGraphicsItem *parent = 0)

– double x()

– double width()

– double y()

– double height()

– QRectF boundingRect() const

25



– void paint(QPainter *painter, const QStyleOptionGraphicsItem *option, QWid-
get *widget)

– void openTable()

– dbObject getObjectInstance()

– void setColour(QColor colour)

5.5.6.1 Private Members

5.5.6.1.1 double m xpos, m ypos, m xlength, m ylength These correspond to the x
and y coordinates and the length and height of each of the rectangles.

5.5.6.1.2 std::vector<dbObject> m instancesofObject The object must contain all
the instances of the variables so that they can be accessed in the table later. So they are
stored in this variable.

5.5.6.1.3 QColor m colour This contains the colour of the rectangle.

5.5.6.2 Public Members

5.5.6.2.1 objectRect(QGraphicsItem *parent = 0) and objectRect(double xpos,
double ypos, double xlength, double ylength, std::vector<dbObject> instanceso-
fObject, QColor colour, QGraphicsItem *parent = 0) The uninitialised constructor
makes a rectangle with no height or width and therefore basically does not exist. The
parameterised constructor gives the rectangle a position, dimensions and fills it with the
associated data, as well as giving it a colour.

5.5.6.2.2 double x(), y(), width(), height(), getObjectInstance() These are all in-
stances of get functions, to get the x and y coordinates. The getObjectInstance is slightly
different in that it gives you the first instance of an object, so that data can be accessed
such as the tags or startTime/endTime etc.

5.5.6.2.3 QRectF boundingRect() const The bounding rectangle is the rectangle in
which the object must lie and therefore also sets the items coordinate system. The
bounding rectangle for this class is very simple because the shape of the QGraphicsItems
are indeed rectangles themselves.

5.5.6.2.4 void paint(QPainter *painter, const QStyleOptionGraphicsItem *option,
QWidget *widget) This paints the object and is called by the QGraphicsView.

5.5.6.2.5 void openTable() This is the function which opens QTableWidget and fills it
with the information from the instances of the object. The table is sortable, but currently
contains no additional functionality.

26



5.5.6.2.6 void setColour(QColor colour) This sets the colour of the objectRect, this
is used to highlight tagged objects.

5.5.7 Class: tagWindow

This class is derived from QWidget. The purpose of this class is to contain the window in
which the tagging system will operate. Because it uses signals and slots the Q OBJECT
macro is used. The class contains the following:

• Private Members:

– taggingSystem *treeWidget

• Public Members:

– tagWindow(QWidget *parent = 0) : QWidget(parent)

– void showTagsList(std::vector< std::string > allTags)

– voidb clear()

• Signals:

– signal showTaggedObjects(std::string)

5.5.7.1 Private Members

5.5.7.1.1 taggingSystem *treeWidget The taggingSystem class is described in detail
in Section 5.5.8. But this is where it is declared and used.

5.5.7.2 Public Members

5.5.7.2.1 tagWindow(QWidget *parent = 0) : QWidget(parent) The constructor
creates the window, gives it a header, makes a connection to the from the treeWidget to
the class we are currently in for the showTags signals.

5.5.7.2.2 void showTagsList(std::vector< std::string > allTags) The argument from
this is taken from ConditionsDBMySQL and the function is called in the openFile slot of
the objectControl class. This function iterates through the vector of strings and makes a
QTreeWidget that only goes one layer deep and has the names of the tags in the text.

5.5.7.2.3 void clear() This clears the treeWidget function using the QTreeWidget::clear()
built in function.

5.5.7.3 Signals

27



5.5.7.3.1 signal showTaggedObjects(std::string) This signal is connected from this
class to the objectControl class and from there the objectRect items are changed to the
colour red if they have a tag which matches the string passed as an argument.

5.5.8 Class: taggingSystem

This class is derived from QTreeWidget, and therefore has all its properties. It contains
the following:

• Private Members:

– QAction *m showObjectsWithTag, *m deleteTag

– QMenu *m menu

– QPoint *m item

• Protected Members:

– virtual void mousePressEvent(QMouseEvent *event)

• Public Members:

– taggingSystem(QTreeWidget *parent = 0) : QTreeWidget(parent)

• Signals:

– signal showTaggedObjects(QPoint)

– signal showTaggedObjects(std::string)

• Public Slots:

– slot showTaggedObjects()

– slot showTaggedObjects1(QPoint itemPos)

5.5.8.1 Private Members

5.5.8.1.1 QAction *m showObjectsWithTag, *m deleteTag These actions are both
used to do the associated tasks by means of signals and slots. The deleteTag QAction
does not yet do anything and is part of the missing functionality that must be included
by future modifications. The showObjectsWithTag QAction connects the trigger of this
QAction to slot showTaggedObjects.

5.5.8.1.2 QMenu *m menu This is the menu that will appear when the user right
clicks on an item in the tagWindow class. It will contain the two action members of this
class.

5.5.8.1.3 QPoint m item This point is used to determine if an QTreeWidgetItem is
found when the mouse is clicked.

28



5.5.8.2 Protected Members

5.5.8.2.1 virtual void mousePressEvent(QMouseEvent *event) This functions checks
to see if it was the right or left mouse button that was pressed. If it was the left mouse
button and the QTreeWidgetItem has children, then the item is expanded so you can see
its children. Likewise if it is already expanded you can contract it by left clicking on it.
The right mouse button opens the m menu at the position where the mouse button is
clicked and makes a connection of the trigger to the slot for the two QActions.

5.5.8.3 Public Members

5.5.8.3.1 taggingSystem(QTreeWidget *parent = 0) : QTreeWidget(parent) All
the constructor does in this class is make the connection between the signal showTaggedObjects(QPoint)
and the slot called slot showTaggedObjects1(QPoint).

5.5.8.4 Signals

5.5.8.4.1 signal showTaggedObjects(QPoint) This signal has an argument of a QPoint
so corresponds to a position on the QTreeWidget. This is connected to slot showTaggedObjects1(QPoint
itemPos).

5.5.8.4.2 signal showTaggedObjects(std::string) This is the signal with the tag name
in the string as an argument. This is connected to the slot in objectGrid (slot highlightTaggedObjects(std::string)).

5.5.8.5 Slots

5.5.8.5.1 slot showTaggedObjects() All this slot does is emit the signal signal showTaggedObjects(QPoint)
with the current value where the mouse event occured.

5.5.8.5.2 slot showTaggedObjects1(QPoint itemPos) This slot searches for an item
at the position itemPos, from here it takes the string from the QTreeWidgetItem it
finds and emits the signal signal showTaggedObjects(std::string) with this string as the
argument.

5.5.9 Class: dbHierarchy

This class is very similar to the tagWindow class. It creates the window in which a
QTreeWidget will be placed containing the database folders. The database folders will
be layered in a logical way and when you reach the bottom layer you will be able to open
the folder from the window. The class contains the following:

• Private Members:

– dbTreeView *treeWidget

29



– std::multimap¡std::string,QTreeWidgetItem*¿ itemList

– QAction *m openFolder, *m showTags, *m deleteFolder

– std::string m preamble

– std::string findBottomLayer(std::string fullPath)

– void addItem(std::string fullPath, std::string layerName, QTreeWidgetItem
*childItem)

• Public Members:

– dbHierarchy()

– void addDatabase(std::vector¡ std::string ¿ dbFolder)

– void clear()

– void setPreamble(std::string preamble)

– std::string getPreamble()

• Signals:

– signal openFolder(std::string)

5.5.9.1 Private Members

5.5.9.1.1 dbTreeView *treeWidget This contains the class dbTreeView which is a
QTreeWidget class. This class will contain all the information of the dbHierarchy.

5.5.9.1.2 std::multimap¡std::string,QTreeWidgetItem*¿ itemList This multimap con-
tains a string for a key and the QTreeWidgetItem as the value. The string for each of these
QTreeWidgetItems is the full path which takes you to this point. For Instance, in the ex-
ample folder: “/rdiener/test/pedestal”, each of the words would be a QTreeWidgetItem.
The top one contains the text “rdiener”, and the key associated with it is also “rdiener”.
They next one would contain the text “test”, but the key would be “rdiener/test”. This
is necessary and will be explained further later

5.5.9.1.3 QAction *m openFolder, *m showTags, *m deleteFolder These QActions
will be put into a QMenu when the user right clicks on a folder. THe openFolder will open
the folder of the currently clicked object. The showTags, when implemented, will show
all the tags stored in this folder and its subfolders. The deleteFolder, when implemented,
will delete the current folder and all its subfolders.

5.5.9.1.4 std::string m preamble The preamble is the connection argument to the
database, and is necessary for use with opening a new folder from the dbHierarchy.

30



5.5.9.1.5 std::string findBottomLayer(std::string fullPath) This is a function which
does string magic in order to get the bottom word from a path, for instance with the
example above of “/rdiener/test/pedestal”, if that string is entered into this function
then the returned string is “pedestal”.

5.5.9.1.6 void addItem(std::string fullPath, std::string layerName, QTreeWidgetItem
*childItem) This is a recursive function designed to add all the QTreeWidgetItems to
the QTreeWidget. The idea is that when we have all the folders (which are obtained in
the openFile function of objectControl), we can do a for loop through all the full paths
of the folder lists and add apply addItem for each of these. This starts with the bottom
layers name and then makes a QTreeWidgetItem with this bottom layer as the text. It
then removes this bottom layer from the full path and makes a new item with this new
full path. This continues until it reaches the top layer which is where the recursion ends.
At each level, the child is related to the parent QTreeWidgetItem. There are checks in
place that if a full path is repeated because two bottom layers contain the same upper
layer, then one of the upper layers is ignored. This will then automatically make a correct
and full QTreeWidget system of folders.

5.5.9.2 Public Members

5.5.9.2.1 dbHierarchy()

5.5.9.2.2 void addDatabase(std::vector¡ std::string ¿ dbFolder)

5.5.9.2.3 void clear()

5.5.9.3 Signals

5.5.9.3.1 signal openFolder(std::string)

5.5.10 Class: dbTreeView

5.6 Next Steps for dbViewer

5.6.1 Known Bugs

5.6.1.1 Tagging a whole object incorrectly There is an issue in the code currently
that if an object has an exposed moment in time for which it is valid, and a tag is created,
then the entire object across all moments is tagged. This also means that the entire object
is highlighted. There is no simple way to fix this issue currently, except to have some
sort of check for a high layer at every instant in time and if this is true to seperate the
objects into 2 objects at this point.

31



5.6.1.2 Only one tag per object Currently, only one tag can be applied to a single
object. So this must be changed to something like a vector of tags in the dbObject class
and then iterated through in order to have multiple tags per object.

5.6.2 Unknown Bugs

5.6.2.1 Crash when trying to reopen a database If you open the database and then
choose to close the current database from the File Menu. Then if you try to reopen it
or a different database from the File Menu the program will experience a segmentation
fault. The cause of this error is currently unknown.

5.6.3 Missing Functionality

5.6.3.1 In-Program Help Documentation

5.6.3.2 Object Table Functionality copy paste sort highlight all get additional info.

5.6.3.3 Resize Grid This allows the user to manually input values for the view, such
that you can zoom in on a particular part of the scene.

5.6.3.4 Delete Folders

5.6.3.5 Show All Tags

5.6.3.6 Create New Tags

5.6.3.7 Delete Tags

5.6.3.8 Show Object Specific Information

5.6.3.9 Exception Handling

5.6.3.9.1 Overlapping Objects

5.6.4 Additional Features

32



6 Summary

References

[1] ILD Concept Group. The international large detector letter of intent. Technical
report, DESY, Fermilab and KEK, 2010.

[2] International Large Detector Group. Images of the ild. Found at
http://www.ilcild.org/documents/mdi/ild-illustrations/tentative-version-as-of-
2011-aug.30, 2011.

[3] Ralf Diener. Basic principles of tpcs and gems. Found at http://www-
flc.desy.de/tpc/basics.php, June 2007.

[4] Nokia Corporation. Qt reference documentation. Found at
http://doc.qt.nokia.com/4.4/index.html, 2008.

[5] Ralf Diener. Setting up and using a conditions database with lccd and conddbmysql
or lccd for dummies. Version v0.31, Accessible at DESY, Febuary 2011.

33



Class
Signal
Comes
From

Class
Signal
Goes
To

Item
In Class

Signal
Emitted

Signal/Slot
Receiving

Location of
Connection

menuBar objectControl clearView() clearSignal() mainWindow::
mainWindow

menuBar objectControl docView() docView() mainWindow::
mainWindow

menuBar objectControl openFile() openFile() mainWindow::
mainWindow

menuBar objectControl closeFile() closeFile() mainWindow::
mainWindow

menuBar objectControl resizeGrid() resizeGrid() mainWindow::
mainWindow

menuBar qApp m quitAct triggered() quit() menuBar::
menuBar

menuBar menuBar openDBAct triggered() openFile() menuBar::
menuBar

menuBar menuBar closeDBAct triggered() closeFile() menuBar::
menuBar

menuBar menuBar clearDBAct triggered() clearView() menuBar::
menuBar

menuBar menuBar resizeDBAct triggered() resizeGrid() menuBar::
menuBar

menuBar menuBar docDBAct triggered() docView() menuBar::
menuBar

objectControl objectGrid clearSignal() clear() objectControl::
objectControl

objectControl objectGrid sendObject
ShapesTest
(QList
¡objectRect*¿)

addObject
ShapesTest
(QList
¡objectRect*¿)

objectControl::
objectControl

dbHierarchy objectControl signal
openFolder
(std::string)

openFile
(std::string)

objectControl::
objectControl

tagWindow objectGrid signal
showTagged
Objects
(std::string)

slot
highlight
TaggedObjects
(std::string)

objectControl::
objectControl

Table 1: This table shows all the connections between the classes and within each class

34


	Introduction
	International Linear Collider
	Purpose
	ILC in Numbers
	Basic Design of the ILC

	International Large Detector
	Main Components of ILD
	Time Projection Chamber


	Conditions Data
	The Conditions Database
	Errors in Conditions Data
	Database Design and Object Structure

	Database Viewer
	Introduction
	Working Example
	Code Structure
	Using Qt

	Connections
	Class Hierarchy
	Class: mainWindow
	Class: menuBar
	Class: objectControl
	Class: objectGrid
	Class: dbObject
	Class: objectRect
	Class: tagWindow
	Class: taggingSystem
	Class: dbHierarchy
	Class: dbTreeView

	Next Steps for dbViewer
	Known Bugs
	Unknown Bugs
	Missing Functionality
	Additional Features


	Summary

