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1 Introduction

High resolution X-ray imaging, presently allowing resolution of up to 10 nm [2] for non-
crystalline samples, aiming for much higher resolutions [5], is used in many fields of
science, for example, to study both non-biological and biological samples - cells, viruses
[1], etc. Three-dimensional (3D) imaging of thick samples, possible because of the high
penetrative ability of the X-rays, provides insight in the objects structure much more so
than a 2D projection.

Resolution of conventional x-ray imaging methods is often limited by the optics
used, as it is difficult to produce x-ray lenses that are both efficient and highly resolving.
[1] However, in coherent x-ray diffraction imaging the image is reconstructed directly
from the far-field diffraction pattern, measured from an isolated object, without using
optics between the sample and the detector. Resolution in this case is limited only by the
wavelength and scattering angles recorded, and the technological problems concerning
lens manufacture are removed.

On the other hand, coherent x-ray diffraction imaging, as its name suggests, in-
troduces the need for coherence in the incident beam. Though experiments have been
performed at the synchrotrons (for a review see [1]), free electron lasers are intrinsically
much more spatially coherent [7].

Another reason why an FEL is very well-suited for coherent diffraction imaging
is that the pulse duration of the photon bunches produced by FELs is in the order of
hundreds of femtoseconds or, under certain conditions, even less than 10 femtoseconds.
[4] This is important because samples suffer from radiation damage, which limits the
resolution achieved at synchrotron sources,[5] however, extremely short and bright pulses
can scatter from an object before the latter is destroyed. [3] [11] This means a further
increase in the resolution of the reconstructed image, which relates to the exit surface
wave of the sample, which contains the information about sample’s structure.

The combination of ultrashort pulses and high spatial resolution at FELs can
potentially be used to image macromolecules at near-atomic scales, which makes possible
the structure determination of non-crystallized samples - for example, non-crystallized
protein states. [2] [6]

The reconstruction of the image from the measured diffraction data, be it 2D or
3D, is not a trivial process. The detector measures only the intensity of the diffraction
pattern, but to reconstruct an image, one also needs to reconstruct the phase of the
wave at the plane of the detector. The aim of this work was to model the diffraction
data and reconstruct the sample image for three different methods: 2D plane wave
imaging, 3D CXDI and tomography from reconstructed 2D projections. In this project
we simulate a very simple model of a cell component to test 3D CXDI and tomography
for such a sample. This modelling program aims to ultimately evaluate the fidelity of
reconstruction with a limited number of projections and a limited photon flux in each
projection to explore the limitations radiation damage places on 3D Coherent Imaging
with synchrotron sources.
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2 Methods

2.1 Two-dimensional Plane Wave Imaging

2.1.1 Modelling

The general scheme is shown on Fig. 1. A plane wave is incident on a sample, which
partly absorbs it and changes it’s relative phase at each point of the plane - according
to the distribution of material in the sample. The wave propagates to the detector
plane, where we see a far-field diffraction pattern. The distance z12 between sample and
detector planes satisfy the condition z12 >>

d2

λ
, where d is the size of the sample and λ

is the wavelength.

Figure 1: General scheme of plane-wave case propagation

The formula for propagation between planes is (for example, [9]):

Ψ(x′′, y′′, z12) =
i

λz12

e
2πi
λ
z12eiπλz12(x′′2+y′′2)F{Ψ(x′, y′, 0)e

−iπ
λz12

(x′2+y′2)},

where Ψ is a wave function, x′ and y′ are coordinates on the plane of origin, λ is the
wavelength, z12 is the coordinate of the final plane relative to the original one, x′′ = x

λz12

and y′′ = y
λz12

are conjugate to x′ and y′, F is the Fourier transform.
However, for alculations we need a discrete propagation formula. It follows from

the previous one:

Ψ(l, k, z12) = Prop(Ψ(m,n, 0), z12) = Ψie
2πi
λ
z12e

iπ
λz12

ρ2FFT{Ψ(m,n, 0)e
iπ
λz12

ρ1},

where ρ1 = (m2 + n2)dx2 is distance from the center in the original plane, ρ2 = (l2 +
k2)dx2

2 is distance from the center in the final plane, dx2 = λz12

dxN
is pixel size in the final
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plane, N - number of pixels, FFT - Fast Fourier Transform. It is important to point out
that center of the Fourier transform in this formula is ρ = 0.

To model the far-field intensity, we need to perform following steps:

• 1. Construct the sample transmission function from the known properties and
distribution of the materials in the sample

• 2. Multiply the incident wave function by it (assuming the sample is thin)

• 3. Propagate it to the detector plane according to the aforementioned formula

• 4. Calculate the diffracted intensity by squaring the far-field wave function

The sample transmission function is a product of the fraction not lost to the ab-
sorption and the factor corresponding to phase excursion.

The model sample used here is a simple model of a cell nucleus. It is described
as a 1 micrometer sphere made of protein (H50C30N9O10S1, density 1.35 g/cm3) with a
sphere of selenium with radius 200 nm inside, displaced from the center. The discrete
sample transmission function is then:

Samp(l, k) = eµN
√
R2
N−ρ

2
1N−(µSe−µN )

√
R2
Se−ρ

2
1Se∗

∗e
2iπ
λ

(2nN
√
R2
N−ρ

2
1N+2(nSe−nN )

√
R2
Se−ρ

2
1Se),

if ρ2
1Se < R2

Se, otherwise

Samp(l, k) = eµN
√
R2
N−ρ

2
1N∗

∗e
2iπ
λ

(2nAir(RN−
√
R2
N−ρ

2
1N )+2nN

√
R2
N−ρ

2
1N ),

where RSe is radius of the selenium sphere, RN is radius of the protein sphere, xSe
and ySe are coordinates of the selenium sphere, ρ1Se = ((l − xSe)

2 + (k − ySe)
2)dx2

is distance from the projection of the center of selenium sphere on the sample plane,
ρ1N = (l2 +k2)dx2

2 is distance from the projection of the center of protein sphere on the
sample plane, µN , µSe are absorption coefficients of protein and selenium on the given
wavelength accordingly, and nN , nSe are differences of the refractive index from 1 for the
same materials.

2.1.2 Reconstruction

To reconstruct the wave produced by the sample, we need to know not only the amplitude
of the wave in the detector plane, but also the phase. This can be achieved by one of
the iteration algorithms, using the original far-field intensity and the approximate size
of the sample, known as its support. Those iterative algorythms converge[8], though
sometimes to local minima, which do not correspond to the solution.

The simplest algorithm is called error-reduction. An intermediate wavefunction of
the sample of iteration n+1 has the form:
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Ψn+1 = PSPFΨn,

Here:

PSΨ(x) =

{
f(x), x ∈ Support
0, otherwise

where Support is the approximate support of the beam in the sample plane. This
essentially means that we don’t want the reconstructed sample image to be outside the
known sample borders.

PFΨ = Prop(πFProp(Ψ, z12),−z12),

where

πFΨ(x) =

{
Ameasurede

iϕΨ(x), x ∈ CSupport
Ψ(x), otherwise

Here Ameasured is the square root of the far-field intensity, ϕΨ is the phase of the wave
function, CSupport is the area of the detector where measurements were made. This
essentially means that on each iteration we keep the reconstructed detector wave function
realistic.

However, this algorithm has a tendency to fall into local minima, and the so-called
hybrid input-output algorithm is often used in the initial reconstruction:

Ψn+1 = (PS(β + 1)− βI)PFΨn,

where β is a scalar and I is the identity transformation.
The starting iteration is acquired by back-propagating the starting wavefunction

in the detector plane (with randomly assigned phases in each pixel).
It is important to notice that the coefficients in the propagation formula can be

dropped when iterating since, in this case, they cancel each other. This makes calcula-
tions significantly faster.

Shown on the Fig. 2 are the results of the reconstruction for the earlier modelled
case. Here the number of iterations for HIO was 30, for ER 170, th support was a dish
matching the incident wave in the sample plane, and CSupport was considered the whole
detector plane The wave incident on the sample was a dish of the constant phase and
intensity.

Fig. 2 shows images for the wavelength of 7A, z12 = 0.7m, dx = 24nm, N = 2048,
µN = 7.7 ∗ 106m−1, µSe = 2 ∗ 108m−1, nN = −9.8 ∗ 10−5, nSe = −2.25 ∗ 10−4.
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Figure 2: Original intensity in the sample plane; reconstructed intensity (scale is not the
same); far-field intnsity with central stop and Poissonian noise
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2.2 Tomography

2.2.1 Modelling

The key difference in modelling the CXDI tomography and the 2D plane wave case is
that for tomography we need to generate far-field intensities for different rotation angles
of the sample. For a successful reconstruction, the number of rotations should be roughly
equivalent to the number of resolution elements required in the depth dimension. [?]
One difficulty arising here is that all of the stored images on the detector require a lot of
memory, so for more efficient testing of the reconstruction program, each of the generated
diffraction patterns was processed immediately after generation. The sample used was
the same as in the 2D plane-wave case, with rotation angles from 0 to π, equally spaced
and a total number of rotations of N = 100 - depth (in pixels) of the reconstructed
volume.

2.2.2 Reconstruction

The reconstruction of each of the 2D proections of the sample is the same as in 2D case.
However, to reconstruct the 3D volume of the object from those projections, we need to
use a tomographical method. In this program, the filtered backprojection method[10]
was used.

In the general case, formulaes for this method are

g′(s, θ) = [FS
−1abs ∗Rf ](s, θ),

f(x, y) = [Bg′](x, y),

where f(x,y) is the 2D function which we want to reconstruct (slice of the sample),
Rf(s, θ) is its projection on the axis rotated by the angle θ (this is what we really
know), F is a Fourier transform, abs(S, θ) = |S|, Bg(x, y) =

∫ π
0
g(x cos θ + y sin θ, θ)dθ.

Now one needs a discrete approximation for this set of formulae. The one used
here is:

g′n(m∆s) =
∑
i

h(m− i)gn(i),

[Bg′](x, y) =
π

N

∑
n

g′n(x cosn
π

N
+ y sinn

π

N
),

where

h(m) =


1

4∆S
, m=0

0, m even and non-zero
−1

π2m2∆s2
, otherwise

, where N is the total number of rotations, ∆s is the pixel size. It’s important to notice
that center here is in the point n=0, m=0. This was the algorithm for getting the slice
of the sample in the horizontal plane from corresponding lines in the projection. To get
the whole 3D image of the sample, one needs to perform this operation for all horizontal
slices.
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In Fig. 3 one can see how the filtered backprojection reconstructs direct projec-
tions. This is not the result of the filtered backprojection of the backpropagated inten-
sities, however - as one could see from Fig. 2, for such a symmetrical sample some of
them can be mirror images, and some - not, which obviously may lead to the corruption
of the reconstruction.

Figure 3: On the left is the original distribution of the real part of the refractive index; on
the right is the filtered backprojection of the direct projections of the sample
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2.3 Three-dimensional CXDI

In the case of three-dimensional coherent X-ray diffraction imaging we construct 3D
intensity distribution in Fourier space. Due to the Fourier slice theorem, [10] the image
on the detector, corresponding to the angle of rotation θ is rotated by the same angle in
3D Fourier space around the center. Using interpolation (in our case, nearest neighbor
interpolation), we can calculate the intensity distribution in Fourier space. To make the
result more accurate, one needs to get at least 1 plane going through any given pixel
(oversampling)[2]:

∆φ <
∆x

D
,

where ∆φ is angular increment, ∆x is sampling interval in real space, and D is a maxi-
mum width of the sample along any of the real-space axis.

The modelling part is the same as in tomography case, since we also need to get
far-field intensities from the rotated projections of the sample - the only difference is
that number of projections required is higher. The reconstruction now begins from the
preparational stage - creating a 3D array in Fourier space from the 2D projections with
the aforementioned procedure. The iterative process now takes place in 3D space, and so
the Fourier transform and all of the arrays are now generalized to the three-dimensional
case. The algorithm formulae, however, remain the same as in 2D case.

The results of the reconstruction of the direct propagation you can see in Fig. 4.
You can notice the mirror reflection and intensity variations, analogous to the once in
the 2D-case and arising for the same reasons.

Figure 4: On the left is the original distribution of the real part of the refractive index;
on the right is the reconstructed one.
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2.4 Two-dimensional Fresnel Imaging: Modelling

In all of the methods mentioned before, the wave falling on a sample is plane. However,
it is also possible to focus the wave on the sample using a zone plate. In this case
one has two work with additional plane - the zone plate plane (it is called source plane
further in the text). Propagation formula between any two given plains remains the
same. However, as we want to focus the wave, the source wavefront now is spherical and
has a phase variation of:

Ψ(x, y) = e
− iπ(x2+y2)

λzF ,

where x, y are the coordinates in the source plane and zF is focusing distance of the zone
plate. The intensity is modeled as Gaussian.

However, fast fourier transform does not work well with rapid phase oscillations.
[9] So in the source and far-field plane we work not with wavefunctions, but instead with
functions P and Q:

P = Ψsourcee
iπ(x2

source+y2
source)

λzS , Q = Ψfar−fielde
−
iπ(x2

far−field+y2
far−field)

λzD ,

where zS is the distance between source and sample planes, and zD is the distance
between sample and detector planes. The algorythm for modelling consists of following
steps now:

• 1. Propagate the source P function to the sample plane

• 2. Construct the sample transmission function from the known properties and
distribution of the materials in the sample

• 3. Multiply the incident wave function in the sample plane by it (assuming the
sample is thin)

• 4. Propagate the result to the detector plane

• 5. Calculate the diffracted intensity by squaring the far-field Q function

Diffracted intensity (with central stop and Poissonian noise) is on the Fig. 5.
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Figure 5: The diffracted intensity with central stop and Poissonian noise applied
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3 Conclusions and future work

Modeling of a diffraction pattern for 2D plane wave and Fresnel case is implemented.
HIO&ER iteration algorithm reconstruction in 2D and 3D plane wave case is im-

plemented.
Tomography filtered backprojection reconstruction in plane wave case is imple-

mented.
Further work includes finishing Fresnel case reconstruction and finding optimal

working point between noise and radiation damage.
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