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Abstract

The performance of the Medipix3 hybrid silicon pixel detector is characterised at
different temperatures and settings. Images are taken using the built-in test pulse
feature to simulate impinging energetic photons. The result is globally evaluated
by counting the number of (in)correctly working pixels. Additionally, a per-pixel
analysis is done in order to study the behaviour of each pixel and find parameters
such as the cut-off threshold and the noise edge. Measurements of the voltages
of the built-in DACs show an important temperature dependency, illustrating the
need to equalise the pixel array after major changes. Some demonstration X-ray
images are provided as well.
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1 Introduction

High-energy photon detection is an important aspect of several experimental physics
setups, e.g. imaging, scattering, spectroscopy and tomography, using either an X-ray
tube or a synchrotron beamline. The function of the detector is to retrieve as much
information as possible about the impinging photons. This would imply measuring
the intensity (number of photons per second), the energy (wavelength), the position, the
angle, the arrival time, and the polarisation[1]. Unfortunately, the ideal detector does not
exist, so one has to compromise. The CCD1 is a popular type of semiconductor detector
which can offer a high spatial resolution, but only integrates the total intensity and offers
no spectral information. Noise and leakage current are integrated along with the signal
during exposure, and for long exposures (low intensity) this can be problematic.

Hybrid pixel detectors aim to improve on some of these limitations. They were originally
developed as detectors for particle physics at CERN, but proved to be very useful for
X-ray imaging as well. They feature two separate layers: the top layer is photosensi-
tive, while the bottom layer contains per-pixel processing circuitry. An array of bump
bonds provides electrical connections between both layers. This approach has several
advantages: the whole area is available for photon capture, while there is also space
for per-pixel readout and processing electronics. The end result is a photon-counting,
energy-discriminating design with good spatial resolution. The measurements in this re-
port were carried out using the Medipix3, a state-of-the-art chip designed by the Medipix
collaboration with lots of advanced features [2].

2 Hardware

2.1 Detector structure

In Figure 1 the Medipix3 sensor arrangement is shown schematically. The bulk of the top
layer consists of n-type silicon, of which the upper side is metallised with aluminium. The
opposite side is implanted with p-type material at regular intervals, forming an array of
pn-junctions (one for every pixel). In normal operation, a positive voltage of about 100V
is applied to the n-type material with respect to the p-type. In other words, the junctions
are reverse biased; this creates depletion regions in which no current (aside from leakage)
normally flows. For each pixel, this region fulfills the role of a photon-detecting medium.
When an energetic photon impinges, it can cause a high-energy electron to be released
in accordance with the photoelectric effect. In turn, this photoelectron excites local
electron-hole pairs. The existing electric field causes drift of the mobile charges, and a
current flows in the corresponding pn-junction. The produced charge is proportional to
the energy of the impinging photon.

The top layer is connected to the Medipix3 integrated circuit using an array of solder (or
indium) bump bonds, one for each pixel. Thus, any current produced in a pn-junction in

1Charge-coupled device.
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Figure 1: Illustration of the Medipix sensor, showing the layered design.

the top layer will be conducted to the corresponding electrode on top of the electronics
chip. Figure 2 shows this arrangement of electrodes on a bare Medipix3 chip. Every
pixel contains CMOS circuitry that will amplify, shape, discriminate, and count the
electrical pulses it receives. The next paragraph will elaborate on this.

2.2 Signal processing

The function of each pixel is to analyse the electrical impulse it receives from the pn-
junction in order to reconstruct information about the photon. A block diagram of a
single pixel readout cell is shown in figure 3. The charge received on the input pad first
goes through amplification and shaping. The resulting signal is a voltage that varies in
time according to a peak shape; the height of the peak is proportional to the collected
charge, which is in itself proportional to the energy of the captured photon. It is then
simply a matter of comparing the signal to a threshold voltage to get a (digital) photon
count. By using both an upper and lower threshold, one can even count photons inside
a certain energy window. This idea is illustrated in figure 4.

2.3 Configuration

2.3.1 Test pulses

In addition to receiving charge from the input pad, one can configure each pixel readout
cell to be injected with a charge from the 4.8 fF capacitance CTEST (figure 3). This
feature is very useful for test purposes: it simulates charge from incoming photons
without actually having to expose the sensor to a source. Several parameters, including
the injected charge (energy) and the number of pulses, can be configured by the user.
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Figure 2: Microscope view of the top layer of a bare Medipix3 chip. One pixel measures
55×55 µm; the whole chip contains 256×256 pixels.

2.3.2 Equalisation

Not all pixels of the Medipix3 behave in exactly the same way. Due to limitations within
the production process, transistor gains are often mismatched. This causes certain pixels
to be more sensitive than others. In other words, the threshold would be different for
every pixel. Without correcting for this, the image would be very noisy. Luckily, each
pixel in the Medipix3 has its own adjustment circuitry to compensate. The idea is that
one can perform an algorithm which determines – for each pixel – a correction value
which brings it as close as possible to a global behaviour. This procedure is called an
equalisation. It can be easily performed by the Pixelman software (see paragraph 3.1)
[5]. Once the equalisation file for a certain chip is calculated, it can be saved and
re-loaded the next time, unless the chip has been exposed to important changes (e.g.
temperature).

2.3.3 DACs

The Medipix3 features several internal DACs2. The most commonly used one is the
global threshold DAC, also named Threshold0 in Pixelman or abbreviated as THL. It
sets the lower threshold for counting a pulse, as shown in figure 4. It is a 9-bit register, so
its value ranges from 0 to 511. Setting THL to very low values will result in false counts
because of noise, while setting THL to a high value will reject lower-energy photons (or
test pulses). The Medipix3 also features an upper threshold, but this feature will not be
used here.

2Digital-to-analog converters.
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Figure 3: Block diagram of a single Medipix3 pixel cell.[2]

Other important DACs include ThresholdN and DACPixel (both 8 bits and global),
together with the per-pixel adjustment settings B TH<4> (1 bit) and B TH<0:3> (4
bits). They are used for equalising the pixel array (see paragraph 2.3.2 for the concept
behind this). B TH<0:3> shifts the behaviour of a pixel in one direction, with a global
multiplication factor set by DACPixel. It effectively works as a local addition to the
global threshold value. If the pixel needs a shift in the other direction, the bit B TH<4>
can be set. This causes a fixed value, determined by ThresholdN as a multiplication
factor, to be effectively subtracted from the global threshold.

Some DAC’s influence the pulse amplification, shaping & discrimination process. These
ones have the – mostly cryptic – names ’Preamp’, ’IKrum’, ’Shaper’, ’Disc’, ’Disc LS’,
’RPZ’, ’GND’, ’FBK’, and ’CAS’. The exact role they play in the electronics will not
be discussed here, but more information (from a ’circuit design’ point of view) can be
found in reference [4].

2.4 Readout system

In order to actually use the chip, one needs to interface it to a computer. To this end,
some electronics are needed. The total arrangement consists of a chip board, an interface
board, and a USB readout board. The Medipix3 chip is bonded to the chip board using
bare wire bonds. Care has to be taken to avoid damaging them. The USB readout
board enables one to simply plug it into a free USB port and start using the sensor with
suitable software, e.g. Pixelman (3.1). The high voltage (100V) used as reverse-bias for
the top layer is also generated by this board.
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Figure 4: Illustration of photon (electrical pulse) counting by threshold discrimination.

3 Software

3.1 Pixelman

Pixelman v2.1.0 (July 4th 2011) provides a graphical interface for working with the
sensor. It is designed to be used with the USB readout system, as discussed in 2.4. It runs
on Windows and offers a (moderately) user-friendly way to perform image acquisitions.
It exposes a lot of configuration settings, e.g. DAC settings, test pulse parameters, etc.
Additionally, it has built-in routines to perform automated measurements and save the
data to ASCII files. For instance, the “DAC Scan” feature scans a range of values for a
particular DAC and saves the acquired image for each step. The software can be freely
downloaded online [6].

3.2 IDL

In order to read and analyse the ASCII data files created by Pixelman, some scripts were
written in IDL 8. This is a programming language focused on quick, array-oriented data
processing; it is in this regard quite similar to Matlab. The built-in routines make it
easy to perform tasks such as importing files, making plots and histograms, curve-fitting,
and displaying image data. Almost all plots in this report were made in this way. Some
example code (used for reading in the data files) can be found below.

PRO THLscanTestpulses
; Def ine the l o c a t i o n and the name o f the numbered ASCII data f i l e s
d i r e c t o r y = ’D:\Medipix3\Equal ized temperature dependency\−20\TP\ ’
f i l e p r e f i x = ’ DACScan100TP Threshold0 ’
f i l e s u f f i x = ’ . txt ’
; Def ine the l o c a t i o n o f the ASCII f i l e t emp la te
template path = ’ \\win . desy . de\home\ t fdobbe l \My Documents\IDLWorkspace8\

Defau l t \pixelmantemplate . sav ’
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Figure 5: Image and histogram of the cut-off values determined for each pixel, before
equalisation. Measurement conditions: −20 ◦C, 100 test pulses.

; Load the temp la te f i l e to a v a r i a b l e c a l l e d ’ p ixe lmantemplate ’
r e s t o r e , template path
; Minimum and maximum index
THLmin = 0
THLmax = 150
THLsteps = THLmax−THLmin+1
defsysv , ’ ! numbe r o f t e s tpu l s e s ’ , 100
THLvector = indgen ( THLsteps )+THLmin ; Create a vec to r count ing from THLmin

to THLmax
c o u n t s t o t a l = l o n a r r ( THLsteps ) ; Create a vec to r s t o r i n g the t o t a l p i x e l

va lue count f o r each t h r e s h o l d l e v e l
counts nonzero = l o n a r r ( THLsteps ) ; Create a vec to r s t o r i n g the count o f

nonzero p i x e l s f o r each t h r e s h o l d l e v e l
inputimage = i n t a r r (256 ,256 , THLsteps ) ; This three−dimensiona l array w i l l

s t o r e the 256∗256 p i x e l image f o r every t h r e s h o l d l e v e l
maxTHLdigits = s t r l e n ( s t r t r i m (THLmax, 2) ) ; Get the maximum number o f

d i g i t s t h a t the THL index w i l l conta in
; The inputimage−array i s saved on d i s k to avoid having to load the ASCII

f i l e s again and again ( which i s s low ) .
i f f i l e t e s t ( d i r e c t o r y+’ inputimage . sav ’ ) eq 0 then begin ; I f not found ,

i t ’ s the f i r s t time the code i s running , so read the ASCII anyway .
print , ’ F i l e ’+d i r e c t o r y+’ inputimage . sav ’+’ not found . Ca l cu l a t ing . . . ’
for k = THLmin, THLmax do begin ; Load the image f i l e s i n t o the array ”

inputimage ”
k s t r i n g = s t r i n g (k , format = ’ ( I0 ’+s t r t r i m ( maxTHLdigits , 2 )+’ ) ’ ) ;

Convert the index k to a s t r i n g , padding wi th l e ad in g ze ros to ge t
the r i g h t number o f d i g i t s

f i l ename = d i r e c t o r y+f i l e p r e f i x+k s t r i n g+f i l e s u f f i x ; Create the path
to the current data f i l e

8
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Figure 6: Image and histogram of the cut-off values determined for each pixel, after
equalisation. Measurement conditions: −20 ◦C, 100 test pulses.

i n p u t d a t a f i l e = r e a d a s c i i ( f i l ename , template = pixelmantemplate ) ;
Read the ASCII data

inputimage [∗ ,∗ , k ] = i n p u t d a t a f i l e . p i x e l s ; Get a 256 x256 i n t e g e r array
f o r every t h r e s ho l d va lue

endfor
save , inputimage , f i l ename = d i r e c t o r y+’ inputimage . sav ’ ; Save the

inputimage−array to d i s k in a b inary f i l e
print , ’Done . ’

endif else begin ; I f the f i l e i s found , j u s t load i t
print , ’Found ’+d i r e c t o r y+’ inputimage . sav ’+’ . Loading . . . ’
r e s t o r e , d i r e c t o r y+’ inputimage . sav ’
print , ’Done . ’

endelse
im1 = image ( ( inputimage [ ∗ , ∗ , 6 0 ] < 150) , r g b t a b l e =3, min value =0,

max value =150 , dimensions = [ 1 0 2 4 , 1 0 2 4 ] , p o s i t i o n = [ 0 . 2 5 , 0 . 25 , 0 . 75 ,
0 . 7 5 ] ) ; Disp lay the image

cb1 = co l o rba r ( t a r g e t=im1 , t i t l e = ’ P ixe l va lue ( counts ) ’ , p o s i t i o n =
[ 0 . 2 5 , 0 . 20 , 0 . 75 , 0 . 2 3 ] ) ; Disp lay a co lour bar

im1 . save , ’ \\win . desy . de\home\ t fdobbe l \My Documents\Student2011 Medipix3 \
LaTeX repor t \ p i c s \ image th l60 eq min20 . pdf ’ , / cent imeter s , width = 40 ,
he ight = 40 , p a g e s i z e = [ 1 9 , 2 1 . 5 ] , ymargin = −5 ; Save the image to a
pdf , to be used in the LaTeX repor t

END
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Figure 7: Example plot of the behaviour of one pixel under a changing threshold value.
The data points are for the pixel with coordinates (50,50), measured at 20 ◦C.
100 test pulses were applied.

4 Measurements

4.1 Noise edge and cut-off point

Each pixel will only count photons (or test pulses) correctly if the threshold value is
set within a certain range. This can be investigated by scanning over a range of THL
settings while observing the number of test pulses counted by a pixel. The result is
depicted in figure 7. There are three distinct regions: at low THL values, the pixel
returns very high counts due to noise. The maximum THL value at which this happens
will be referred to as the noise edge. When THL is set above the noise edge, the correct
number of counts is reported. By increasing THL further, one encounters a cut-off point :
beyond this THL value, the pixel value will always be zero. This is due to the threshold
being above the pulse height. Of course, this position is dependent on the photon energy
(or test pulse charge).

By determining the noise edge and cut-off point for every pixel, the images and his-
tograms in figures 5, 6, 8 and 9 are obtained. They illustrate the effect of equalisation:
each pixel is adjusted to get it closer to the centre of the distribution.

4.1.1 Cut-off error function

As observed in figure 7, the transition from the correct count to a zero count is not
sudden. It rather follows an s-shaped curve, known as an error function or an integrated
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Figure 8: Image and histogram of the noise edge determined for each pixel, before equal-
isation. Measurement conditions: −20 ◦C, 100 test pulses.

Gaussian. In mathematical terms, if F (µ, σ, x) is a Gaussian probability distribution in
x with mean µ and standard deviation σ, the error function becomes:

erf(x) =
∫ +∞

x
F (t, µ, σ)dt

This indicates that there is some (Gaussian) noise, represented by the parameter σ,
involved in the pulse discrimination process. If σ were zero, then the error function
would become a step function with the step located at the threshold value µ.

The two free parameters µ and σ can be determined for each pixel by curve-fitting in
IDL. Sigma then gives an indication of noise, while µ will be referred to as the cut-off
value (i.e. the threshold value where 50% of the counts are registered). The result of
such a curve-fit (for one pixel) is shown in figure 10. The following IDL code was written
to curve-fit each pixel and store the found parameters into arrays:

THL mean image = f l t a r r (256 ,256) ; This array w i l l ho ld the f i t t e d ’mean ’
va lue o f the error curve f o r every p i x e l .

THL stdev image = f l t a r r (256 ,256) ; This array w i l l ho ld the f i t t e d ’
s tandard dev ia t i on ’ ( no i se ) va lue o f the error curve f o r every p i x e l .

for p i x e l x =0 ,255 do begin ; Loop over a l l p i x e l s a long the x ax i s
for p i x e l y =0 ,255 do begin ; ( Inner ) loop over a l l p i x e l s a long the y

ax i s
i n p u t p i x e l = REFORM( inputimage [ p i x e l x , p i x e l y , ∗ ] ) ; Vector

con ta in ing the p i x e l va lue f o r d i f f e r e n t THL s t e p s ( f o r the
s e l e c t e d p i x e l )

e x c e s s c o u n t s = where ( i n p u t p i x e l gt ! numbe r o f t e s tpu l s e s ) ; Get a l l
i n d i c e s o f p i x e l v a l u e s exceed ing the number o f t e s t p i x e l s ( due to

11



0 50 100 150 200
Noise edge

0

2000

4000

6000

8000

N
um

be
r 

of
 p

ix
el

s

20 40 60 80 100 120 140
Noise edge

Figure 9: Image and histogram of the noise edge determined for each pixel, after equal-
isation. Measurement conditions: −20 ◦C, 100 test pulses.

a THL va lue t ha t i s too low )
weights = make array ( s i z e ( inputp ixe l , / dimensions ) , va lue =1.0) ;

Create a ” we i gh t s ” array wi th l e n g t h equa l to the number o f THL
s t e p s

weights [ e x c e s s c o u n t s ] = 0 ; Ignore exce s s counts ( low THL) by s e t t i n g
the we igh t o f them to zero − otherwise , i t might confuse the curve
f i t t e r

A = [120 , 4 ] ; I n i t i a l parameter va l u e s [mean , s t d e v ]− i t shou ld be a
reasonab ly good guess , o the rw i s e the curve f i t t e r can ge t l o s t

f i t y v a l = CURVEFIT( THLvector , i nputp ixe l , weights , A, FUNCTION NAME
= ’ THLscanGaussfit ’ , / noder ivat ive , itmax = 50 , s t a t u s = c f s t a t u s ,
/ double ) ; Attempt a curve f i t

i f c f s t a t u s ne 0 then print , p i x e l x , p i x e l y ; Pr int the p i x e l s where
the curve f i t f a i l e d , might be u s e f u l to i n s p e c t them l a t e r

THL mean image [ p i x e l x , p i x e l y ] = A[ 0 ] ; Copy the found parameters
in t o the appropr ia t e array

THL stdev image [ p i x e l x , p i x e l y ] = A[ 1 ]
end
print , ’ Progres s : l i n e ’+s t r t r i m ( p ix e l x , 2 )+’ /255 ’

end

4.2 Temperature dependency

To test the influence of ambient temperature on the sensor output, the sensor and its
USB-interface were put into a climate chamber (Vötsch model VTL7006). Care was
taken to insure that no ambient light enters the sensor, as this degrades the image
quality. Using the ’DAC scan’ feature in Pixelman, images were taken for a range of
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Figure 10: The result of curve-fitting an error function to a pixel cut-off. The mean µ
is indicated with the dashed line, the dotted lines are at a distance of one
standard deviation σ.

threshold values. This was repeated for ambient temperatures ranging from 20 ◦C to
−60 ◦C in steps of 10 ◦C. The chip was configured to inject 100 test pulses charged to 5
ke− into every pixel. The equalisation procedure was performed for each temperature.

Please note that the ambient temperature does not equal the actual chip temperature.
Due to the low thermal conductivity of the test board and the chip producing about
1W while in use, the temperature as reported by the internal sensor is about 55 to 60
◦C higher than the outside temperature. For instance, a measurement with the cooling
chamber at −20 ◦C implies an actual chip temperature of about +40 ◦C.

4.2.1 Faulty pixel count

A simple way to evaluate the image quality is to count the number of pixels registering
an incorrect count (often either zero, as in a dead pixel, or a large number, e.g. a
noisy pixel). Figure 11 plots this number against the ambient temperature. To the left
side, the threshold was fixed to 60. It can be observed that the sensor performs best
between −10 and −40 ◦C. At lower temperatures, the behaviour gets worse again; this
is partly because of the threshold DAC value drifting (which will be shown later). To
the right side, the same plot was made, but while finding the optimal THL value for
each temperature. It can be seen that the effect is not as pronounced in this case.

The most important thing to note about figure 11 is the poor performance of the chip
at room temperature. The high number of faulty pixels in this case is most likely due

13
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Figure 11: The number of pixels with an incorrect count as a function of outside tem-
perature. Left: threshold fixed to 60. Right: optimal threshold value for each
temperature.

to leakage current. Indeed, inspection of figure 12 (right side) shows that the failing
pixels are the ones at the border of the sensor, where leakage is naturally higher due to
crystal defects. It should also be noted that even at the optimal temperature of −20 ◦C
(figure 12, left side) there are still some faulty pixels.

By inspecting the threshold scans of these pixels, one can distinguish between three
categories of failure (figure 13). The first kind always reports a zero count, independent
of the THL setting. The second kind is actually working, but is badly misadjusted
(located in the tail of the distribution). Its curve will simply be shifted to the right.
The third kind shows the right curve shape, but has a lot of noise superimposed.

Table 1: The default DAC settings at −20 ◦C.

THL 60 Shaper 140 RPZ 255
Preamp 100 Disc 150 GND 117
IKrum 20 FBK 181 Disc LS 200

4.2.2 DAC drift

Using the ’DAC Dependency Scan’ feature in Pixelman, the analog voltage produced
by a DAC can be measured as a function of its digital setting. Repeating this for
temperatures ranging from −60 ◦C to +20 ◦C gives additional information about the
temperature dependency. After some data processing in IDL, the plots displayed in
figure 14 can be drawn. They show how the output voltages depend on the temperature
for the DACs at their default settings (see table 1). It appears that most DACs have a
major temperature dependency. However, GND seems to be an exception.

14
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Figure 12: Images as obtained by Pixelman using 100 test pulses. Left side: −20 ◦C;
right side: +20 ◦C.
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Figure 13: Three kinds of pixel ’failure’. Left: misadjusted, center: noisy, right: dead.

4.2.3 Average pixel properties

Using an IDL script, it is possible to find the noise edge and cut-off point for each pixel.
Making a histogram of these values results in roughly Gaussian distributions. This was
already shown in figures 6 and 9 for one temperature. However, if one does the same
thing at different temperatures, a shift in the average value of both distributions is ob-
served. This is shown in figure 15. Both the noise edge and the cut-off point tend to
shift upwards when the temperature decreases. This could be due to the temperature
dependent threshold DAC voltage, or changes in transistor gain for the pulse amplifica-
tion. Perhaps the test pulses themselves change, as their properties are also determined
by DAC settings.
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Figure 14: Plots showing the temperature dependency of several DAC voltages. To
illustrate the scale of the voltage variation, the DAC voltages at −20 ◦C are
drawn with a horizontal dotted line for the default setting, dashed lines for
default ± 10 steps, and solid lines for default ± 20 steps.
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Figure 15: Shift in the average value of the noise edge (left) and cut-off value (right)
distributions.

In figure 16, an attempt to calculate a ’signal-to-noise ratio’ of the electronics circuitry
was made. The y-axis displays the ratio between the range of correct counts (in other
words, the difference between the cut-off value and the noise edge) and the cut-off
width (caused by the Gaussian noise σ). The interesting thing is that the variation of
the threshold DAC with temperature is cancelled out, as both the numerator and the
denominator are expressed in the same units (threshold steps). It can be observed that
the ratio gets worse at higher temperatures. This implies that the electronic noise in
the discrimination circuitry increases with temperature, as can be expected.

4.2.4 Change of equalisation parameters

At the end of each equalisation process, the optimal settings as found by Pixelman can
be seen. They include both global DAC settings (ThresholdN and DACPixel, see 2.3.3),
and a 256×256 matrix of adjustment bits. Figure 17 shows that the values of Thresh-
oldN and DACPixel are dependent on the temperature during equalisation. This implies
that either the DACs themselves change (which is quite likely), or maybe at lower tem-
peratures the uniformity of the pixel array gets worse, forcing the equalisation procedure
to apply more adjustment and thus increase the global DAC settings.
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Figure 16: Variation of the average signal-to-noise ratio with temperature.
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Figure 17: Temperature dependency of the values for ThresholdN and DACPixel as
found by Pixelman after the equalisation.

18



4.3 Dependency on DAC settings

The ’DAC Scan’ feature in Pixelman can be applied to any one of the DACs in table 1.
By varying one of the DACs and keeping the others at their default setting, the influence
on the image can be investigated. To this end, the ambient temperature is held constant
at −20 ◦C and test pulses are injected. The number of faulty pixels, i.e. reporting an
incorrect pulse count, is counted for every DAC setting and plotted in figure 18. This
shows the usable range for each investigated DAC, and indicates that the default setting
is usually the optimal one (lowest faulty pixel count). Figure 19 shows the same kind
of measurement but for IKrum set to 14, which seems to improve the image by a small
amount. It is difficult to find the absolute optimum setting due to the large parameter
space (each pixel is dependent on all of the DAC settings working together).

4.4 Example X-ray images

The function of the sensor is of course to make X-ray images, and this report would
not be complete without some demonstration pictures. To this end, a laboratory X-ray
tube with a Molybdenum target and an acceleration voltage of 50 kV was used as a
light source. This results in X-rays with characteristic peaks at 17.9 keV (K-α) and 19.5
keV (K-β) in addition to broad-spectrum Bremsstrahlung. The image quality can be
improved by doing some extra steps:

• Take a flat-field image. This is done by exposing the sensor to the X-ray tube
without anything in front of it. To reduce noise, one should take many exposures
and average them. This works because photon arrival conforms to Poisson statistics
(shot noise), and the relative standard deviation is inversely proportional to the
square root of the mean. So e.g. by averaging 16 exposures, the shot noise is
reduced by a factor of 4.

• Get some small, interesting objects and place them right in front of the sensor.
Acquire and average several images again, for the same reason as above.

• Divide the image by the flat-field. This compensates for uneven X-ray exposure
or variations in pixel sensitivity.

• Display the image with a proper colour scale, providing the most contrast. Some-
times a logarithmic scale may be useful.

The final images are shown in figure 20.
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Figure 18: The number of pixels with an incorrect count as a function of various DAC
settings. For every plot, one particular DAC was varied while the others were
at a constant value (indicated by vertical lines). Test conditions: default
DAC settings (table 1), 100 test pulses.
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Figure 19: Identical to figure 18, but with IKrum set to 14 instead of 20 (default).
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Figure 20: Demonstration X-ray images of various objects. Top left: CR2032 coin cell
battery; top right: LED bicycle light; bottom left: Sennheiser CX300 in-ear
headphone (top view); bottom right: Op-amp in 8-pin DIP package.
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5 Conclusions

• It has been found that the behaviour of the Medipix3 has a major temperature
dependency. There are several reasons for this. A high temperature causes ex-
cess leakage current which results in more dead pixels, mostly around the border.
The on-chip DAC voltages are also influenced by temperature, and in turn they
influence the image acquisition. Some DACs are automatically tuned by Pixelman
during the equalisation. After major temperature changes, this process needs to
be repeated.

• The ideal ambient temperature has been found to be −20 ◦C; this translates to a
chip temperature of about +40 ◦C.

• The DAC settings that are either set by default or found automatically in Pixelman
work well. Manually fine-tuning them could marginally improve the image, but
certain pixels will stay dead anyhow.
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