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Dynamics of colloidal crystals studied by pump-
probe experiments at FLASH.

1. Introduction

A colloidal crystal is an ordered array of colloid particles (see Fig. 1, 2), analogous to a
standard crystal whose repeating subunits are atoms or molecules. A natural example of this
phenomenon can be found in the gem opal, where spheres of silica assume a close-packed
locally periodic structure under moderate compression. Bulk properties of a colloidal crystal

depend on composition, particle size, packing arrangement, and degree of regularity.

Nowadays, colloidal nano-
and mesoscale particles with
dimensions from few nanometers
up to 1 um are used in a growing
number of applications, e.g., as
fillers in polymer thin films to
enhance thermo-mechanical
properties, to improve coatings
performance and as components in

nanocomposites  operating  as

photonic, plasmonic, and phononic

structures. For a wide range of such

Figure 1. The SEM image of polystyrene colloidal crystal.

applications, information on the
mechanical properties and the stability of these colloidal composite materials are of great
importance. Conventional methods of measurement on the macroscopic system are often not
sufficient to elucidate the specific contributions of the nanostructured components. At the
nanoscale, forces negligible in macroscopic systems, such as depletion, interfacial, and
confinement effects often become significant, and the behavior of the same materials in
nanoscopic systems can considerably deviate from the bulk. A fundamental understanding of
transport and thermo-mechanical properties of nanostructured materials is a precondition to

address a specific need by structural engineering.



In the case of colloidal composite materials, the vibrational modes confined to the
individual particles result from the elastic motion at the nanoscale and should sensitively depend
on the geometrical, architectural, interfacial, and mechanical characteristics of the particles.
However, there is a paucity of nondestructive experimental techniques to probe these frequencies
of particle vibrations since both high frequency resolution and sensitivity are required to detect
the numerous eigenmodes.

Optical pulse-probe techniques can probe, respectively, the spontaneous and stimulated
vibrations confined in sub-micrometer particles. Using such technique, the excited acoustic
oscillations are observed in the form of modulations of the transient reflectivity of the probe

laser, and hence the particles must possess good reflectance.

If vibrations are excited
in a finite elastic body, it can act
as an elastic resonator. The
elastic standing waves in stress-
free boundary are referred to
vibration eigenmodes. In the
case of elastic spheres, the
analytical solutions were first

derived by Lamb [1]. The use of

inelastic  light scattering to

measure vibration eigenmodes of

i T 2 L

small spherical particles was : i :
Figure 2. The SEM image of polystyrene colloidal crystal. Inset

shows enlarged view of colloidal spheres about 400 nm in
by  low-frequency = Raman diameter.

first performed experimentally

scattering (RS). Due to selection

rules only two distinct vibration eigenmodes contribute to the RS of spherical particles with
diameter (d) much smaller than the wavelength of the probing light (A). For bigger spheres with
d~A, Brillouin light scattering (BLS) in the GHz-range becomes the technique of choice [2]. Due
to the consideration of higher-order terms in the electric multipole expansion and of retardation

effects, BLS can resolve a multitude of eigenmodes.



2. Experiment description

2.1 Experimental setup

The general idea behind the pump-probe method is as follows:

1. Bring the sample into a state, the time evolution of which is to be investigated. This is
done by the pump-pulse at t=0

2. Wait until a time At; later and send a probe pulse

3. Record the sample’s interaction with the probe pulse

4. Repeat measurement for a new time step At; later
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Figure 3. Scheme of the pump-probe experiment.

By combining a range of time steps spaced e.g. 100 ps apart, it is then possible to create a
“molecular movie” of extremely fast phenomena (even like chemical reactions) on the scale of
individual molecules. The “story line” of the movie can be either the energy evolution of the
system if the probe is a laser pulse or the structural evolution if the probe is an X-ray pulse (see
Fig. 3).

The experimental results are obtained in a form of diffraction patterns. A lot of fine
Bragg peaks could be clearly seen on these patterns. Also we could see lines, connecting these

peaks. They can be explained in term of diffuse scattering.



2.2 Preliminary data analysis
The process of data evaluation is quiet simple. We measure the distance from each Bragg

peak, so called Q or peak-to-center distance shown in Fig. 3. There were two data sets for
different time delay steps (20 ps and 50 ps) and for different range of delays from -100ps up to

1000ps. Figure 4 shows averaged distance dependence vs. time delay has some kind of

oscillations.
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Figure 4. Averaged peak to center distance for different time delay.

After Fourier transformation of this data we have frequencies of periodical changes in the
system (see Fig.5). In this case we could recognize some kind of local maximums at 2, 5, 7, 12,

17 GHz. They may be contributed to the particle/lattice vibrations.

FFT, Power (Log)

Fourier transform analysis
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Figure 5. Fourier transform analysis of data shown in figure 4.




3. Theoretical model

3.1 Vibrations of elastic sphere

The vibration of a solid elastic sphere is an old problem. The radial oscillation of a sphere
was studied in 1828 by D.Poisson. The problem related to the elastic sphere was then continually
developed by Lamb [1] and other scientists [3]. Lamb’s work has the advantage of discussing the
simpler modes of vibration of a uniform sphere in detail with the method of obtaining roots of
frequency equations. He classified the general types of vibration into the “first class” and the
“second class”. The first class referred to the torsional class vibration modes which result in a
dilatation-free (no volume change) motion. The second class referred to the spheroidal vibration
modes where the displacements have radial components and the volume is changing. Actually,
just second class of vibration modes is important for us, because with radial displacements we
receive the changing of a structure factor. That will be followed by changings in intensities of

scattered beam.

The Navier equation which governs the small motion of an isotropic sphere without any

body forces (E = 0) can be expressed as follows:

The Navier equation which governs the small motion of an isotropic sphere

without any body forces (E = 0) can be expressed as follows:
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uViu+ (p+ A)graddivu = p
Viu = grad divu — rot rot i

9%u
dt?

(A +2u)graddivi — protrotu=p (1)

A, u— Lame's constants

1 — displacement vector

o —mass density

The solution can be obtained in terms of a scalar ¢ and a vector potential P,
L=V +V¥(2)

Substituting equation (2) into equation (1) results in:

W2+ 20072 — pé) + ¥ x (uv?F — p¥) =0 (3),



taking into account that

V-VX¥=0(4)

V-V =79 (5)

The displacement equation (2) will satisfy Navier equation if
2 1 -

Vie = —¢ (6),

[A+2u . . .
where ¢; = el longitudinal phase velocity, and

VI = W (7),
G

-
u .
where ¢, = |'; - transverse phase velocity.
N

The vector wave equation (7) is satisfied if the following scalar wave function is satisfied:

Vi + L w =0 (8)
T

In spherical coordinates (see Fig. 6), the solution of scalar equation (6) for ¢ is in the form

¢ = @(r.8,¢)T(t) (9)

Figure 6. Spherical coordinate system

Substituting equation (9) into (6) results in:

2T
cf—
L

=2 =—w?(10)



T+ «*T=0(1)

and

Vi +?—;¢ =0(12)

T=e "'t — the solutions of equation (11).

Equation (12) in spherical coordinates can be written as:

LEFE)+ 22 (o L)+ 2+ Lo =0013)

= \ar ar gin @ dr a8 sin®f 8 g

Equation (13) is separable: ®(r,8,@) = R(r)@(8)®' (¢);

d i T oer

> +m~d = 0(14),

d®8  cosd d0 2 m2 _

d82 slnEE-I_( _sin:E)B_ﬂ(ls)a
é*R | 2 4R w® K _

i Trar T (c_f_,_:)R =0(l6),

where m and k are the separation constants.

The general solution of equation (14) is

@'(9) = e,

To obtain a single valued potential function with the range of ¢ to be (0;27), m must be an
integer: m=0,£1,42...

The same can be shown for equation (15): k* = 1(1 + 1), =0,1,2,3 ...

For these values of k7 the solutions of (15) are the associated Legendre polynomials of the first
kind:

Im| |ml
e(e) = F'zlml (cosB) = (1— CDSEEijF:[CDS 8) (17),

where 1=0,1,2,3 ...; |m|<n;

1 al

2l dicos E‘}E

P,(cosf) =

(cos*8 — 1) (18)

The solutions of equation (16) are the Bessel functions of the first kind represented as:
2 fw wr

R = [2(5)2(5) a9

Thus, the solutions of equation (12) are:



®,,,(r,8,0) = Z,(<Z) P/ (cos8) ™ (20),

where 1=0,1,2... and |m|=1,2,...,1.

Combining the solutions of equations (11) and (12) we can obtain the solutions of equation (6):

b, (7.6, 0) = Z, (?} F':Iml (cosB)e™Pg™iwt (2])
— 7 [(@r)plml ime
v . (r.6,¢)= .Z:( )P, (cosB)e’™* (22)
= -

Note that for the case of a solid sphere we cannot apply Bessel’s function of the second kind,

W . . .
because ¥; (?] is infinite when r — 0.
L

3.2 Pure compressional modes

For the ground mode, I=0 and m=0, displacements are purely radial

Uy = Ugg = V(1. 8, 0) = V2, (E:_T) = Erizc-(n:_?) (23).

The strain field associated with Eq. (23) has only 3 components:

_13du,

lw Or

rr

s = 1 u,
gg —
iw ¥

1w,

S,,=——
¥ jwr

The traction force on the spherical surface (r=a) is

Trr = Cllsrr + €12 (SEE +35 (24)

mm]

The stress free condition is

W lo,g d i
i

"n:—;zn(?)+733u(c—) =0 (25,

L

where £ {?) = —r-.

L Cr

The definition of Poison’s ratio, v, in terms of the stiffness constants, Cjir j and 1 are integers:

Cya—2 € . . . .. .
v = ﬂ"—‘“} and for isotropic materials ¢y; = 43 — 2 €4, We get characteristic equation
£L6ya™ Cag



or Z)
tan (T) - i[@ (26).

The natural frequencies of this family of modes are:

5

2na

f:

5 00

Poissons’s ratio for polystyrene is 0.3, therefore

tan (“’G—T) = 1_—(;_% 27)

The solutions of this transcendental equation were calculated numerically. The script was

written using C++ programming language.

Figure 7 shows a graphical solution of equation (27).

| 1 |
I

| |

| |

) | |

|

/ |

1
1
1
1
|
1
1
| |
{ [ 1
. / !
I
I
1
I
I
1

| ) |
P [ |
i / ! /
i f
1 , : il / | _ / —
Y/ n=1 / n=2 n=3
4 ¥ e // uuuuu
LD IUL / St .
‘; - é R 2 !
o 4 ! / —
Ve } / f// ! / 5 c.[
“1f o / / /
T / f.-’ |

[
I
I
: ! : —
L-----“"'_"_—_____{-___ ¥4 | /./ T
/ |
I
[
[
[
[
[
I
I
[
[
[
[

n — number of harmonics

Figure 7. Graphical solution of equation (27).



3.3 Mixed modes

Imposing the stress-free boundary conditions at the sphere surface (r=a), to solve a combination
of spherical shear wave equations and compressional equations, leads to a complicated frequency
relation, which must be solved numerically. Let’s call these modes 5;,,_;.

Lamb used special function for mixed mode frequency equations, defined as:

"'I"r:(ﬁ'j= (—1:]:-1.3.5... [:2!1+ 1)(%): 3129(28)

The function ¥, (#) has the following properties:

' g
w,(8) = ~ i3 ¥1.1(8) (29)
E:
¥ (0) -, (0) = [ZI+1)(2043) ¥1:1(8) 30)

By using several first values of this function it is possible to calculate frequencies of 1-th
mode vibration. For the mixed mode of vibration, the stress free boundary condition on the
spherical surface (r=a) requires that:

Aw, +Cp, =0
{E:m: + D¢, =0 G

Where w; stands for a spherical solid harmonic of positive degree 1, and ¢, is a solid harmonic of

positive degree 1. The coefficients are given as follows:

A, = l(“‘a’jz ¥ (ha) — 2(1— 1)%1:_1(&:1])

RE\20+1
kigit+3 2(1+ 2)ha
B=—- (¥ (ha) + ———= "y (h
! h2(21+1)( ((ha) + (ka)? ! (ha)

. (ka)®
G = _(Ei—l- 1 ¥, (ka) — 2(1— 1)‘11:—1[-&@])

I 2 g2+ (1+42)

2
b nas 1)(%(@” ka

# J[kﬂ])

Assuming that ha = wa/C, , ka = wa/C, and by changing the number 1 gives a numerical

solutions for mixed mode frequencies.

Excluding the ratio % from the system one can obtain the equation for frequencies in the
following form:

12



o _
D:—B‘:Z—D(32)

L

I also provided the numerical solutions of these equations. Figure 8 shows numerical
solutions of Eq. (32) for the mode 1=2.
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Figure 8. Graphical solution of equation (32) for the vibrational mode I=2.

4. Results

Using numerical methods frequencies of vibrational modes were calculated. The
parameters of modeling are:

m
¢, = 2350—
5
m
c, = 1210—
5

d={100, 200, 300, 400, 600} nm.
Poison’s ratio for polystyrene: v = 0.3

1=1,2,3... n=0,1,2...

13
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Figure 9. Calculated vibrational frequencies for spheres with diameter d. Experimental
frequencies for particles with d=400nm are also plotted.

As a result figure 9 shows several lines which describes the dependence of frequencies
from inverse diameter of the spheres. When compared with the experimental results, it is easy to
see, that some of the experimental points are crossed by theoretical lines. This is a good result for
theory, but anyway we should obtain much more experimental points for different diameters of
colloidal particles. In this case I expect that all the dots to be ordered along the mode lines.

These results can be compared with an experiment obtained using the Brillouin light
scattering [2], where theoretical calculation were also performed (see Fig. 10).
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Figure 10. Calculated and experimental frequencies from Ref. [2].
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