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Dynamics of colloidal crystals studied by pump-

probe experiments at FLASH. 

 

1. Introduction 

 
A colloidal crystal is an ordered array of colloid particles (see Fig. 1, 2), analogous to a 

standard crystal whose repeating subunits are atoms or molecules. A natural example of this 

phenomenon can be found in the gem opal, where spheres of silica assume a close-packed 

locally periodic structure under moderate compression. Bulk properties of a colloidal crystal 

depend on composition, particle size, packing arrangement, and degree of regularity. 

 

Nowadays, colloidal nano- 

and mesoscale particles with 

dimensions from few nanometers 

up to 1 µm are used in a growing 

number of applications, e.g., as 

fillers in polymer thin films to 

enhance thermo-mechanical 

properties, to improve coatings 

performance and as components in 

nanocomposites operating as 

photonic, plasmonic, and phononic 

structures. For a wide range of such 

applications, information on the 

mechanical properties and the stability of these colloidal composite materials are of great 

importance. Conventional methods of measurement on the macroscopic system are often not 

sufficient to elucidate the specific contributions of the nanostructured components. At the 

nanoscale, forces negligible in macroscopic systems, such as depletion, interfacial, and 

confinement effects often become significant, and the behavior of the same materials in 

nanoscopic systems can considerably deviate from the bulk. A fundamental understanding of 

transport and thermo-mechanical properties of nanostructured materials is a precondition to 

address a specific need by structural engineering. 

 

Figure 1. The SEM image of polystyrene colloidal crystal. 
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In the case of colloidal composite materials, the vibrational modes confined to the 

individual particles result from the elastic motion at the nanoscale and should sensitively depend 

on the geometrical, architectural, interfacial, and mechanical characteristics of the particles. 

However, there is a paucity of nondestructive experimental techniques to probe these frequencies 

of particle vibrations since both high frequency resolution and sensitivity are required to detect 

the numerous eigenmodes. 

Optical pulse-probe techniques can probe, respectively, the spontaneous and stimulated 

vibrations confined in sub-micrometer particles. Using such technique, the excited acoustic 

oscillations are observed in the form of modulations of the transient reflectivity of the probe 

laser, and hence the particles must possess good reflectance. 

 

If vibrations are excited 

in a finite elastic body, it can act 

as an elastic resonator. The 

elastic standing waves in stress-

free boundary are referred to 

vibration eigenmodes. In the 

case of elastic spheres, the 

analytical solutions were first 

derived by Lamb [1].  The use of 

inelastic light scattering to 

measure vibration eigenmodes of 

small spherical particles was 

first performed experimentally 

by low-frequency Raman 

scattering (RS). Due to selection 

rules only two distinct vibration eigenmodes contribute to the RS of spherical particles with 

diameter (d) much smaller than the wavelength of the probing light (λ). For bigger spheres with 

d~λ, Brillouin light scattering (BLS) in the GHz-range becomes the technique of choice [2]. Due 

to the consideration of higher-order terms in the electric multipole expansion and of retardation 

effects, BLS can resolve a multitude of eigenmodes. 

 

 

 

 

 

Figure 2. The SEM image of polystyrene colloidal crystal. Inset 
shows enlarged view of colloidal spheres about 400 nm in 
diameter. 
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2. Experiment description 

2.1 Experimental setup 

The general idea behind the pump-probe method is as follows: 

1. Bring the sample into a state, the time evolution of which is to be investigated. This is 

done by the pump-pulse at t=0 

2. Wait until a time Δt1 later and send a probe pulse 

3. Record the sample´s interaction with the probe pulse 

4. Repeat measurement for a new time step Δt2 later 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Scheme of the pump-probe experiment. 

 

By combining a range of time steps spaced e.g. 100 ps apart, it is then possible to create a 

“molecular movie” of extremely fast phenomena (even like chemical reactions) on the scale of 

individual molecules. The “story line” of the movie can be either the energy evolution of the 

system if the probe is a laser pulse or the structural evolution if the probe is an X-ray pulse (see 

Fig. 3). 

The experimental results are obtained in a form of diffraction patterns. A lot of fine 

Bragg peaks could be clearly seen on these patterns. Also we could see lines, connecting these 

peaks. They can be explained in term of diffuse scattering. 
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2.2 Preliminary data analysis 

 The process of data evaluation is quiet simple. We measure the distance from each Bragg 

peak, so called Q or peak-to-center distance shown in Fig. 3. There were two data sets for 

different time delay steps (20 ps and 50 ps) and for different range of delays from -100ps up to 

1000ps. Figure 4 shows averaged distance dependence vs. time delay has some kind of 

oscillations.  

 

 

Figure 4. Averaged peak to center distance for different time delay. 

 

After Fourier transformation of this data we have frequencies of periodical changes in the 

system (see Fig.5). In this case we could recognize some kind of local maximums at 2, 5, 7, 12, 

17 GHz. They may be contributed to the particle/lattice vibrations. 

Figure 5. Fourier transform analysis of data shown in figure 4. 
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3. Theoretical model 

3.1 Vibrations of elastic sphere 

The vibration of a solid elastic sphere is an old problem. The radial oscillation of a sphere 

was studied in 1828 by D.Poisson. The problem related to the elastic sphere was then continually 

developed by Lamb [1] and other scientists [3]. Lamb’s work has the advantage of discussing the 

simpler modes of vibration of a uniform sphere in detail with the method of obtaining roots of 

frequency equations. He classified the general types of vibration into the “first class” and the 

“second class”. The first class referred to the torsional class vibration modes which result in a 

dilatation-free (no volume change) motion. The second class referred to the spheroidal vibration 

modes where the displacements have radial components and the volume is changing. Actually, 

just second class of vibration modes is important for us, because with radial displacements we 

receive the changing of a structure factor. That will be followed by changings in intensities of 

scattered beam. 

 The Navier equation which governs the small motion of an isotropic sphere without any 

body forces ( ) can be expressed as follows: 

  The Navier equation which governs the small motion of an isotropic sphere 

without any body forces ( ) can be expressed as follows: 

 

 

 

 

 

 

The solution can be obtained in terms of a scalar and a vector potential  

 (2) 

Substituting equation (2) into equation (1) results in: 
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 (4) 

 (5) 

The displacement equation (2) will satisfy Navier equation if 

 (6), 

where   – longitudinal phase velocity, and 

 (7), 

where    - transverse phase velocity. 

The vector wave equation (7) is satisfied if the following scalar wave function is satisfied: 

 (8) 

In spherical coordinates (see Fig. 6), the solution of scalar equation (6) for  is in the form 

 (9) 

 

Figure 6. Spherical coordinate system 

Substituting equation (9) into (6) results in: 

(10) 
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 (11) 

and 

 (12) 

T=  – the solutions of equation (11). 

Equation (12) in spherical coordinates can be written as: 

 (13) 

Equation (13) is separable:  

 (14), 

(15), 

(16), 

where m and k are the separation constants. 

The general solution of equation (14) is 

 . 

To obtain a single valued potential function with the range of to be (0;2π), m must be an 

integer: m=0,±1,±2… 

The same can be shown for equation (15):  

For these values of  the solutions of (15) are the associated Legendre polynomials of the first 

kind: 

 (17), 

where l=0,1,2,3 …; |m|≤n; 

 (18) 

 The solutions of equation (16) are the Bessel functions of the first kind represented as: 

 (19). 

Thus, the solutions of equation (12) are: 
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 (20), 

where l=0,1,2… and |m|=1,2,…,l. 

Combining the solutions of equations (11) and (12) we can obtain the solutions of equation (6): 

 (21) 

 (22) 

Note that for the case of a solid sphere we cannot apply Bessel’s function of the second kind, 

because  is infinite when . 

 

3.2 Pure compressional modes 

For the ground mode, l=0 and m=0, displacements are purely radial 

   (23). 

The strain field associated with Eq. (23) has only 3 components: 

 

 

 

The traction force on the spherical surface (r=a) is 

  (24). 

The stress free condition is 

  (25), 

where . 

The definition of Poison’s ratio, , in terms of the stiffness constants,  j and i are integers: 

  and for isotropic materials   we get characteristic equation 
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  (26). 

The natural frequencies of this family of modes are: 

  

Poissons’s ratio for polystyrene is 0.3, therefore  

  (27) 

The solutions of this transcendental equation were calculated numerically. The script was 

written using C++ programming language. 

Figure 7 shows a graphical solution of equation (27). 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7. Graphical solution of equation (27). 
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3.3 Mixed modes 

Imposing the stress-free boundary conditions at the sphere surface (r=a), to solve a combination 

of spherical shear wave equations and compressional equations, leads to a complicated frequency 

relation, which must be solved numerically. Let’s call these modes . 

Lamb used special function for mixed mode frequency equations, defined as: 

 (28) 

The function  has the following properties: 

 (29) 

 (30) 

By using several first values of this function it is possible to calculate frequencies of l-th 

mode vibration. For the mixed mode of vibration, the stress free boundary condition on the 

spherical surface (r=a) requires that: 

 

  (31) 

Where  stands for a spherical solid harmonic of positive degree l, and  is a solid harmonic of 

positive degree l. The coefficients are given as follows: 

 

 

 

 

Assuming that  ,  and by changing the number l gives a numerical 

solutions for mixed mode frequencies.  

Excluding the ratio  from the system one can obtain the equation for frequencies in the 

following form: 
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 (32) 

 I also provided the numerical solutions of these equations. Figure 8 shows numerical 

solutions of Eq. (32) for the mode l=2. 

Figure 8. Graphical solution of equation (32) for the vibrational mode l=2. 

 

4. Results 

Using numerical methods frequencies of vibrational modes were calculated. The 

parameters of modeling are: 

 

 

d={100, 200, 300, 400, 600} nm. 

Poison’s ratio for polystyrene:  

l=1,2,3… n=0,1,2… 
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Figure 9. Calculated vibrational frequencies for spheres with diameter d. Experimental 
frequencies for particles with d=400nm are also plotted. 

As a result figure 9 shows several lines which describes the dependence of frequencies 

from inverse diameter of the spheres. When compared with the experimental results, it is easy to 

see, that some of the experimental points are crossed by theoretical lines. This is a good result for 

theory, but anyway we should obtain much more experimental points for different diameters of 

colloidal particles. In this case I expect that all the dots to be ordered along the mode lines. 

These results can be compared with an experiment obtained using the Brillouin light 

scattering [2], where theoretical calculation were also performed (see Fig. 10). 

 

Figure 10. Calculated and experimental frequencies from Ref. [2]. 
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) 
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