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Abstract

The coherent X-ray diffractive imaging (CXDI) is a good method to investigate the
structure of matter. It’s possible to reconstruct the electron density of a sample
from its diffraction patterns using a phase retrieval algorithm.
Simulated 3D scattering data of several colloidal samples, with different beamstop
size, are reconstructed. The reconstruction method using program recon and its
main properties is shown.
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1 Introduction

The coherent X-ray diffractive imaging (CXDI) is an important techniques to relieve
the structure of a sample. It consists to illuminate a finite sized object with a coherent
X-ray, record the scattered radiation in the far-field limit and invert the signal in order
to reach informations about the sample: the diffraction pattern is closely connected with
the Fourier transform of the sample’s electron density [1]:

I(R, θ, φ) ∝
∣∣∣∣∫ nel(r) ei(k

′−k)·r dr

∣∣∣∣2 · ( dσdΩ

)
(1)

By rotating the sample along the z-axis, its 3D reciprocal space amplitude can be ac-
quired.

Figure 1: Esperiment Diagram.

It’s not trivial to invert Eq. (1) because of the phase problem. The experimental data
gives only the amplitude of the signal without the phase, but we need both of them to
reconstruct the object.
If a diffraction pattern could be sampled at twice of the Nyquist frequency, in other
words oversampled, it would be possible to retrieve all the necessary information [1].

2 Phase retrieval algorithm

There is a computer algorithm that incorporates the oversampling as real-space con-
straints. A good description and comparison of several numerical implemantations of
the phase retrieval algorithm are shown by Fienup [2].
To understand the process, we show here the Input-Output (IO) algorithm. It operates
by successively Fourier trasforms of the data between the real and reciprocal space,
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Figure 2: Diagram of Input Output algorithm.

applying constraints in both of them. We have the final result when constraints doesn’t
change the data. In Fig. 2 a representation of the IO algorithm is shown.
For start a guess of the electron density distribution ρ(r) is necessary. It’s obtained
performing an inverse Fourier trasform of the square root of the measured intensities,
multiplied by a random phase factor ψ:

√
I(q) · exp[iψ(q)].

The first step is to calculate the new complex scattering amplitude A(q) = |A(q)| ·
exp[iφ(q)] with a Fourier trasform. But we want that our object respects the reciprocal
space constraint, that is, the modulus of the complex scattering amplitude A(q) must
be equal to

√
I(q). Hence we impose this condition to our data.

In the next step we calculate the new estimate of electron density ρ′(r) performing a
inverse Fourier transform. Finally real space constraints are applied to our estimated
object: the (optional) request that ρ′(r) is positive and the application of a sort of mask,
the support, which sets ρ′(r) to be the same value in the support region and reduced it
otherwise. In particular the last operation gives the following result:

ρk+1(r) :=

{
ρk(r), in the support,

ρk(r)− βρ′k(r), outside the support,
(2)

where β parameter quantifies the reduction percentage.
The application of the real and Fourier constraints allows to improve the phase factor
in each iteration.

2.1 Error-Reduction and Hibrid Input-Output algorithms

In this work Error-Reduction (ER) and Hibrid Input-Output (HIO) algorithms are used.
They have the same basic idea of IO algorithm. The differences are in the way to apply
the support.
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In HIO algorithm we have to consider ρk(r) and ρ′k(r) electron density distributions at
the k-th iteration. The new density estimate is a combination of the old ones, such that

ρk+1(r) :=

{
ρ′k(r), in the support,

ρk(r)− βρ′k(r), outside the support.
(3)

The idea of the ER algorithm is easier: we leave the same distribution in the support
region and we set null value otherwise.

ρk+1(r) :=

{
ρ′k(r), in the support,

0, outside the support.
(4)

3 Coherent X-ray scattering simulation

In this work we don’t analyse real diffractive patterns but we use simulated ones. The
programme Moltrans provides simulated scattering data.
The main parameters for a simulated experiment are the sample (the distribution of
particles inside the sample as a .pdb file), the wavelength of the light, the sample-detector
distance (d) and the detector size (l). Moltrans receves other optional informations that
we omit here.
With these three variables the image resolution is determinated. In fact, from the diffrac-
tive law, we can calculate the smallest distance ∆x between two consecutive interference
fringes, that is, the smallest distinguishable distance.

λ = 2∆x sin θ (5)

The angle range is limited by the experiment geometry. As it’s shown in Fig. 3, the
bigger angle is related with the lengths d and l by trigonometrial equation. Combining

Figure 3: Esperiment layout.

these two reletions, we can obtain the resolution:

∆x =
λ

2 sin
[
1
2

arctan
(

l
2d

)] . (6)

We have to choose also the size of the image (in pixels) and the number of sample
rotations along its axis. The latter should be such that scattering informations can
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cover all the 3D q-space pixels: for this reason we select a rotation of 180 degrees and
search the number of scattering acquisitions such that in a singular rotation the plane
doesn’t overcome pixel length.

4 Reconstruction of a sample

The support shape plays an important role in the reconstruction process. As we can see
in the IO algorithm, results are strongly determinated by the choice of the support. But
at the beginning we don’t know its real shape. Therefore the shape search is performed
during the reconstruction process.
The programme used for the reconstruction is recon. It has to receive some informations
about the size of the image (SizRec), the size of the support (SizSup, one parameter for
a spherical shape, 2 or 3 for a rectangular shape) or directly a support file, the (optional)
request of object positivity and instructions about the reconstructive iterations.
An example of the configuration list is the following:

SizRec: 135 135 135

SizSup: 55

Positiv: 0

[..]

hio 100 1 0.8 0

er 50 1 0.8 0

ShrinkWrap 1 10 0

[...]

hio 100 1 0.8 0

er 50 1 0.8 0

In hio and er instructions, the first and the third parameters are respectively the number
of iterations and the β costant. Function ShrinkWrap allows to change original support
cutting out the points near support with values of ρ′(r) below a determinated threshold:
in this case, the area with less 10% of the maximum intensity is removed.
A appropriate choice of instructions and parameters allows to obtain a good final image.

4.1 Spherical object

The first object that we’ll reconstruct is a spherical bubble cluster with diameter of
about 1610 nm, shown in Fig. 4(a). 720 scattering amplitudes were acquired rotating
the sample of 180 degrees.
For this simulation we used a wavelength λ = 1.57 Å, sample-detector distance d = 5000
mm and the detector size l = 52 mm. According with Eq. 3, the risolution for this
experimental configuration is about ∆x = 30 nm.
The Fig. 4(b) is the simulated scattering pattern given by Moltrans. In this case the
reconstruction is easy because it’s an ideal data without any missing infomations. The
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(a) A middle slice of the
object.

(b) Simulated diffractive
pattern.

(c) Initial support.

(d) A middle slice of the re-
construction.

(e) The 3D reconstruction of the
sphere.

Figure 4: Simulated scattering and reconstruction of the spherical sample.

first step is finding a right support. The size estimate can be found from fringes in the
diffraction pattern. It’s enough running two times the cycle of instructions above to
find a good shape. Iterating again four times the same cycle with the new support, we
achieve a good result: in Fig. 4(d) is shown one slice of the reconstructed 3D image.
The programme Paraview shows iso-surface of the reconstruction 3D object (Fig. 4(e)).

4.2 Spherical object with beamstop and statistical noise

In the actual experiment there is less information: the presence of a beamstop in front
of the detector, in order to avoid demages, and the statistical noise in the experimental
data. Now we want also simulate these problems in our pattern, as you can see in Figure
5(a).
In order to find the support, we have to run several cycles of the following instructions.
For scattering data with noise, it’s better to start with the option Positive 1.

SizRec: 135 135 135

SizSup: 55

Positiv: 1
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(a) Simulated diffractive pattern. (b) Improving of the support
shape.

Figure 5: Simulated scattering and reconstruction of the spherical sample with beamstop
and statistical noise.

hio 80 1 0.9 0

er 60 1 0.8 0

ShrinkWrap 1 10 0

To improve the shape, we can repeat this step more times, making manual adjustments
(for example, to get more smooth the profile and to fill internal holes: Fig. 5(b))
Obtained a goos support, the reconstruction is possible using the parameter Positive 0
and one cycle of hio and er with the same interation numbers. The result (Fig. 6(a)) is
not very good: the center of the object is confused and not sharp.
The missing information in the center (where is the beamstop) and at corners of the
3D reciprocal space gives problems to the reconstruction. For these reason, the function
FixFreeEvolve filles the missing intensities in the diffraction pattern with rescaled Fourier
transform of the support. It’s possible to replace the intensity within a circle, specified
by first parameter, and optionally besides a second one (the second parameter). Using
the last support, we get reconstruction running three times the following cycle:

Positiv: 0

FixFreeEvolve 17

hio 100 1 0.9 0

er 50 1 0.8 0

Now the result is also well-defined in the middle (see Fig. 6(b)).
We can also compare the reconstructed reciprocal space in Fig. 6(d) with the scattering
amplitude without beamstop, Fig. 4(b).
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(a) The reconstruction. (b) The reconstruction us-
ing FixFreeEvolve.

(c) The final support of the
reconstruction.

(d) The recostructed reciprocal
space with FixFreeEvolve.

(e) The iso-surface of the 3D object.

Figure 6: Reconstructed spherical sample with beamstop and statistical noise.
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4.3 Ellipsoidal object with small beamstop

The real sample isn’t always with a simmetrical shape. For this reason we want to try to
reconstruct a colloidal object with an ellipsoidal shape and more not-simmetrical details,
like in Fig. 7(a). The ellipse size is about 1380 x 2940 x 2530 nm. Beamstop region and
statistical noise are also taken into account in this simulation.

(a) A 3D image of the real
object.

(b) Simulated diffractive pattern.

Figure 7: Simulated scattering of the ellipsoidal sample.

The simulated pattern (see Fig. 7(b)) is obtained with the same wavelength λ = 1.57
Åand detector-sample distance d = 5000 mm, but with different detector size l = 23
mm. The resolution turns to be about 68 nm.
As before, an estimate of object size can be found from fringes in the diffraction pattern.
Searching an approximate object shape is the first step of the reconstruction. We start
with a rectangular support and running cycles as following one:

SizRec: 255 255 255

SizSup: 46 98 74

Positiv: 1

FixFreeEvolve 5 127

hio 100 1 0.9 0

er 5 1 0.8 0

ShrinkWrap 1 12 0

FixFreeEvolve 5 127

hio 80 1 0.9 0

er 5 1 0.8 0

ShrinkWrap 1 2 0 1.5
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hio 80 1 0.9 0

er 5 1 0.8 0

The fourth value of Shrink-Wrap is the gaussian σ parameter: this function smooths
the reconstructed image intensity with a gaussian distribution. Here it’s necessary in
order to fill the possible holes in the support, created by the first Shrink-Wrap. This
function is very useful because we can avoid manual adjustment and to fill black holes
in the support.
In Fig. 8, on the left, the support outputs of each cycles are shown: the value of gaussian
and cutting parameters are gradually decreased.

Figure 8: Support outputs for each reconstruction cycle (on the left the first step, on
the right the second one). In the figure the cutting percentage and the sigma
parameter (when it’s used) are shown.

The second step is improving the support profile. It’s not a trivial operation because for
too low cutting values the result should be worse. Five runs of these functions

hio 100 1 0.95 0

er 5 1 0.8 0

ShrinkWrap 1 6 0

FixFreeEvolve 5 127

hio 50 1 0.95 0

er 5 1 0.8 0

ShrinkWrap 1 5 0

FixFreeEvolve 5 127

hio 50 1 0.95 0

er 5 1 0.8 0

are enough to clean the support from residual wrong regions. A last cycle with ShrinkWrap
1 11 0 0.8 gets smooth our profile (see Fig. 8 on the right).
In the last step we can reconstruct the object. One hundred hio iterations are enough:

11



FixFreeEvolve 5 127

hio 80 1 0.9 0

er 5 1 0.8 0

FixFreeEvolve 5 127

hio 10 1 0.9 0

FixFreeEvolve 5 127

hio 10 1 0.9 0

er 5 1 0.8 0

In order to obtain a nitid image, FixFreeEvolve is used more in the last iterations. The
optional constraint of positivity is always imposed.

(a) The reconstructed reciprocal
space.

(b) The ideal reciprocal space of the
object.

(c) A slice of the reconstructed
sample.

(d) 3D view of the recon-
structed object.

Figure 9: Reconstructed ellipsoidal sample.

In Fig. 9 the reconstructed scattering amplitude is compared with the ideal reciprocal
space of the sample: the missing center region has a good similarity with the actual
case.
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4.4 Ellipsoidal object with bigger beamstop and loose support

The experimental data has usually a bigger beamstop. We can try again to reconstruct
the ellipsoidal sample with more information lack in the center, as in Fig. 10(a). With
tight support it can be easily reconstructed. But usually tight support is unknown.
Therefore we use bigger shape as inizial support, like an estimate of the sample profile
(Fig. 10(b)).

(a) The simulated diffraction pat-
tern.

(b) The loose support.

Figure 10: The initial data of the ellipsoidal sample with bigger beamstop.

As we have seen, the reconstruction is closely connected with the support shape. In this
case the inizial profile is not so good for a directly reconstruction. We have to change it
through many cycles.
The basic idea is to cut gradually the wrong regions of the support: at the beginning
they are one with the reconstructed image and it’s difficult to distinguish them. We used
a lot of times the usual reconstruction cycle with cutting and gaussian values smaller
and smaller, as following:

Positiv 1

[...]

FixFreeEvolve 50 127

hio 100 1 0.8 0

er 5 1 0.8 0

ShrinkWrap 1 9 0 0.7

FixFreeEvolve 50 127

hio 90 1 0.8 0

er 5 1 0.8 0

ShrinkWrap 1 7 0 0.6

FixFreeEvolve 40 127

hio 80 1 0.8 0
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er 5 1 0.8 0

ShrinkWrap 1 5 0 0.5

[...]

When we obtain a good support, the final reconstruction step is as before, in Par. 4.3.
The result is shown in Fig. 11(a) and 11(b). Even with a bigger beamstop and loose
support, it’s possible achieve a good reconstruction of the sample. We can see the

(a) A slice through the re-
constructed sample.

(b) The 3d view of the re-
constructed object.

(c) A magnification of the reconstructed (on the left) and ideal (on the right)
reciprocal space. In dashed green circle the beamstop region.

Figure 11: Reconstructed ellipsoidal sample.

reconstructed reciprocal space in the beamstop region (underlinead by the dashed green
circle) that is similar to the ideal one (Fig. 11(c)).
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5 Conclusion

The CXDI is a good technique to explore the inner structure. As this report shows, it’s
possible to reconstruct the electron density distribution of a colloidal sample. Scattering
pattern with 3 or 4 missing fringes can still be reconstructed.
The future work should be to apply this reconstructing method for mesuread data.
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