Report on DESY Summer Student Program

Alexander Chaushev
2011-08-23

Abstract

Abstract: The data quality monitoring (DQM) system and data har-
vesting procedures used by the DESY CMS group are outlined in this re-
port. The purpose and mechanism of a script desinged to aide the offline
shifter in identifying runs which are ready to be certified are described.
The method of data harvesting and histogram production is described
and well as the role and function of a script used in the process. The
usefulness and quality of both scripts is assessed and areas of potential
improvement are discussed.

1 Introduction

The role of Data Quality Monitoring (DQM) is to validate the data coming from
the CMS experiment. It is a complex and involved process which is required
to process the large amount of data coming from the CMS experiment both in
realtime as data is recorded and afterwards for detailed testing.

DQM has been setup to assure the quality of the data being distributed to
the scientific community for analysis. From the recording and reconstruction
of real data to certify the validity of the data being used by the wider physics
community. The DQM process involves writing and developing of tools and
procedures used to check the various detector components and maintaining them
as well as managing the people who certify the data.

2 DQM Procedures

Data Quality Monitoring, or DQM, consists of a number of import procedures
designed to check and test if all the elements of the detector are functioning
correctly so that data used for physical analysis can be certified as reliable.
Furthermore DQM is useful for ensuring that the detector is run as efficiently
as possible by reducing the amount of data lost to detector errors. Part of a
DQM workflow is discussed which begins with histogram creation and ends with
the data certification.

Online: Summary . 173'681 .

Figure 1: DQM GUI - Data Quality Monitoring Graphical User Interface -
This webserver is used to store the histograms which are obtained from data
harvesting and are used to check the validity of the data. These histograms are
availiable to anyone with CMS credentials.

2.1 Online DQM

The DQM process is roughly split into ’online’ and ’offline’ components. The
‘online’ components consist of high level filtering via the use of triggers as well
applications which generate histograms for the purpose of DQM in real time.
Due to the large amount of data generated by the detector the data is split
into groups and the histrograms are calculated in different jobs. Once the jobs
have been completed, by parallel processing over a large computer network, the
resulting histograms are sent to ’storage manager proxy’ server. This server
then produces a stream of data which can be used by various DQM applications
for further analyses and histogram generation.

This stream serves the raw data from which online DQM is based. The algo-
rithms run on the stream typically check for a wide range of possible problems
with the detector as well as providing basic information about the run. The
data on the DQM GUI can be viewed in realtime so as to provide an instant
check of the function of the detector and the quality of the data being produced.
Once this process has been completed the data is backed up to tape. Part of
this information is extracted and uploaded to 'Run Registry’ for an ’automated
certification summary’.

event data - DQM step2 DQM step3

“real” or MC “histogramming” “harvesting”
(+ postprocessing)

EDM DQM EDM
1 L
application | . EWi100 DQM
harvesting
EDM DQM EDM
T application | —w g0
EDM i DQM EDM ‘
’ application | _w pgi.. 0 0 L8l]

BN 00

N/

Figure 2: Data Harvesting Workflow - Detailed view of the histogram production
process.

2.2 Data Harvesting

The offline process is based around histograms which are generated by jobs run
on parallel on the data coming from the detector. Once the histograms have
been created and uploaded to the ’storage manager’ server they have to be added
up together so that information from all the events is used to double check the
data. This can be a complex process as not all histograms can be created by
simple addition of the individual histogram components. A simple example of
a quantity like this is an efficiancy which requires a division as well.

2.3 Offline DQM

The offline component of the DQM process involves further processing and anal-
ysis of the information coming from the detector. This is typically done on a
time scale of a few days after the data is initially recorded. Due to the asyn-
chronous and parallel nature of the data processing it is not known when the
processing will be completed. Once the various histograms have been uploaded
to the 'DQM GUT’ they are used by the offline shifter to certify the data as
ready for ’sign off’ . On the DQM GUI the histograms can be viewed by anyone
in the physics community in possesion of a computer and internet connection
(and CMS credentials). This is important in order to ensure that the data is as
well validated as is possible.

3 Scripts

Two scripts are detailed which are designed to be used in the some parts of the
DQM process. The aim of the first script called the ’auto-run-checker’ script is
to check whether are new runs are availibe for certification. The second script
is used in the harvesting process and is designed to replace a bash script whose

CMS DQM Run Registry (Global) []

NI P umsec 3 IS D R AT

s et mmswe oME Us £ Fw L0 & Swe Dwwe SWer GAVOR GS 0T EGAL ES KGAL WT LT Pm WP Siswp EGumma et M Tack
T a2 JONEN “omm o X open LviaFan Gaoh| el Exc. ExcL GO0D el G06D G060 el | EXCL EXCL
mn swry TSN wopsos ws o 2w o x sonorr SR worew (600D U B. Bl 000 DG 600D G000 DL BG BXGL
e T LIS o Uyes Grunder (60001 B0 DXL BXck 5000 BiGk 600D G003 DG B BXGL
oo TN wmas w0 mm o x s Uyees Gt [G000] DXL DXL BXCL 6000 BiGe 600D G000 DG PG BXGL
sz sz TR ooy o0 am o X sionor Uyees e [G00D] BXGL | BXGL BXGL G000 BiGL G000 G000 Bk PGk XL

v s MU coxogns s 0 2m o X sioworr [or [GOOD| BXcL BGL EXcL 600D ExcL GOOD GOON EXcL ExcL excl

snam2ss amnme 4oL 00225 72 0 281 0 X SIGNOFF o] exc BXCL BXCL EXCL GOOD GOOD 600D EXCL EXCL

e wesoer WO womuss s o me o X sioworr (S99

GooD] ExcL BXCL BXCL EXCL GOOD 600D GO0D BXCL EXCL

Thuoros 1t

sz 7| 100 w037 71 0 281 0 X SionoFF

G000 EXCL BXCL EXCL GOOD GOOD GOOD BXCL EXCL

Podo Gall

Thuotas1 "
2o w00 moei0s s 0 281 0 X sionorr o o [500D GOOD GOOD EXCL EXGL GOOD GO0 (600D EXCL GOOD

1779 Cosmicst1 a1 sosme WeANOBT go0p3557 3w 0 2081 0 X SIGNOFF serey semenov [JBBl GOOD! GOOD GOOD EXCL EXCL GOOD GOOD EXcL EXcL (GOOD
210t ; A g

175045 conmesiningtt 507230 720158 WIS | 0020700 35 0 281 0 X sionorF S | ooy semeros | NN (EXCU | (ECU BGU ¥y exce [N G908 ExGL | ExcU 6908

[rps— PR R W0m0 U 0 281 0 X SGNOFF torars JEMB XL BXCL BCL ExcL GOOD GOOD 600D (GO0 GO0D (OGO

174522 | Commica1t 2m07 st g™ cmwon 125 o 2081 0 X SIGNOFF | Livio Fang MBI e L ExcL ExcL 600D 600D 00D (G00D G000 (600D

174913 Cosmicst ostezs o13s peatae®’t o200 st 0 2081 o X siGNOFF Livio Fang. BBl oc. ec. [©c. 660D 600D GOOD GOGD GOOD GOOD
07270

174912 Cosmicst wmmes 917275 WAl posmon w3 0 2081 0 X sionorFF Livo Fang. Goodl ExcL excL |EABN cxc. |EABN Gooo Gooo Gooo |EADN DN
orisoo

1702 conmsoningtn zmzm0 10174 WO goiom 1725 0 s 0 X siaor Worans BB BCU B Gooo [EAB] ©XCL 600D GOOD BXCL BXCL EXGL
210500 B

10| conmisoniott| 5247 oa7is MBI cograren w7 om0 X sionorr | T,

174817 commsioning 373207 asmosar YBBN oooomis e 0 e 0 X siooFF Vssmirucnic | [JEBBI ExcL ExcL exc [AB] EXcL GOOD GOOO GOODI | EXCL EXCL

174809 Commisioningtt 1314767 sssors MNEBN g @ o 21 0 X SIGNOFF SRl viesimirrochk [JERSHN [BABN excL oo [BAB GOOD GOOD 06D EXCL EXCL EXCL

Noto:al dstestimes ar n cal Geeva ime one (GET) Verson 2513 Deployed 012011 1218 M

Figure 3: Run Registry - A webserver where runs coming from the CMS detector
are registered. Basic information is kept such as the run number as well as the
number of events. On the right hand side of the display there is a list of flags
which are set by hand. These flags are basic indications of the operation of
different components of the detector.

purpose is to run the data harvester on the correct data sets and to upload the
histogram out to the DQM GUIL

3.1 Assisting the DQM Shifter in identifying runs
3.1.1 Aim

The role of the offline data shifter involves the certification of runs to verify
their validity. The end goal of this task it to form a ’good-run list’. This list is
used by those producing data sets further on down the line of physical analyses.

3.1.2 Requirements

In order to certify that the run is ready for ’sign-off’ the following information
about the run must be available to the shifter:

1. The name of the run, date taken and various other data along with alarm
state flags’ are present on run registry

2. A full set of DQM histograms coming from the 'offline’ DQM, typically
within a few days of the time of collection. These histograms comprise a com-
plete analysis of the validity of the data required for offline certification.

Once these criteria have been met the run can be certified by the current
shifter.
A script was developed by myself and Sarah Lindner in order to automate the
process of checking that the various criteria have been met for a particular run.

The advantage of an automated procedure is that a script can check whether all
data is present on the GUI and on Run Registry quickly and with little error -
thus identifying very efficiently which runs are ready for certification. Doing this
by hand is an iterative and time consuming process as it requires checking that
a variety of conditions have been met for every run. An additional advantage
of the script is the systematic way in which it checks all the databases thus
ensuring that no data slips through the process.

3.1.3 Structure

The program queries the run registry server to obtain a list of all the run’s which
have two dataset entries. The double dataset entry implies that the run is at a
stage where data has begun to be uploaded for it in the DQM GUL

The program then queries the DQM GUI to verify that data corresponding
to that entry has in fact been uploaded. An additional check is done to make
sure the complete data set corresponding to each sub-system has been uploaded
- each complete run has a total of . This is done by checking that the correct
number of entries are present for each run; a total of no less than 27 entries.

Finally the data from each query is parsed and compared. The resulting list
from the comparison is a list of run numbers which are ready to be certified.

3.1.4 How to Run

1. The run checking script has been setup to be run from any directory.

2. The first major point is to check that the proxy certificate has been cor-
rectly configured. The location of the proxy certificate is hard coded into
the script and should be changed to reflect that the certificate may be
elsewhere. A small script has been bundled together with the program
which sets up the GRID Proxy via the 'voms-proxy-init’ command.

3. The resulting output can either be in the form of a graphical window or
as a file whose output directory can be specified. If the output is stored in
a webserver it would be possible to access the list of available runs from
any computer with a web browser.

4. Initially the script has been configured to run every 5 minutes. This is
also hardcoded in the script and should be changed by hand.

Note that cmsenvy must be setup so that the script can find the correct python
libraries.
3.1.5 Functioning and Further Improvements

There are a few issues which affect the functioning of the script:

e It has been noted by Sarah and myself that the run registry server which
is queried often does not respond to queries. Sufficient safety checks have

been done to ensure that the program does not crash but continues to run
smoothly, however it’s functioning can be made more reliable if additional
run regsitry servers are added (if such exist) and queried in parallel. This
can also be used as a check for the reliability of the server, though this is
very unlikely to be an issue.

e Using a proxy to automate the GRID authentication procedure was an
issue and I believe there may still be some bugs which need to be ironed
out with the authentication procedure. Due to the lack of new runs in the
last few weeks prior to the writing of this report it has been difficult to
test that this is working as expected.

The script was thoroughly tested in earlier iterations when data was still avail-
iable. This was done by producing a list of runs and checking this list with the
offline shifter who used the manual procedure to identify runs which are ready.
At this stage there is no evidence to suggest an issue with the fundamentals of
the scripts - it produces a correct and complete list of runs which are ready for
certification.

3.2 Running the harvester
3.2.1 Aim

The role of the CMS Harvesting script is to take data from the DBS (data
book keeping system) and to produce the correct histograms which can then
be uploaded to the DQM GUI. These histograms are then used to certify data
for offline DQM. In the following section I detail a script which was written to
automate the process identifying new data, running the CMS Harvesting script
and uploading the resulting histograms to the GUI.

3.2.2 Requirements

1. The script must correctly identify which data sets have already been up-
loaded to the server. For this person a book keeping file is kept with the
list of data set names which have been submitted.

2. New datasets must be submitted to the CMS Harvester which configures
the files for CRAB. The script must then submit the CRAB jobs.

3. Once the CRAB jobs have completed the resulting histograms are then
uploaded to the DQM GUI for use of the shifters. An external upload
script is used for this.

3.2.3 Structure
The harvester script consists of a number of elements:

e First the DBS is queried to produce a list of runs which have been added.

e This data is parsed to select the relevant information - a list of dataset
names, global tags, data types and CMSSW versions.

e Once this list is produced it is further parsed to seperate all the rele-
vant parts into a useful lists for the CMS Harvester script which is then
compared with the book keeping file.

e The CMSSW version is configured for the data set. The Harverster is then
called and the crab configuration files are produced.

e Crab is then run to submit all the data for processing.

e This process is then repeated for each CMSSW version which is present
in the base directory (hard-coded into the script)

e Once the data is processed it is uploaded to the DQM GUI server.

3.2.4 How to Run

1. Change the base directory to point the directory where all the CMSSW
versions are stored.

2. A book keeping text file should be added in the directory to keep track of
which datasets have been processed. IF such a file has not been generated
before run the script once without calling the harvester and by using the
appropriate function calls to generate such a text file. Otherwise the script
will attempt to submit all the datasets which match the query (currently
hardcoded to check everything added to the database from the 1st of
August 2011.

3. Once the script is run it will start the CMS Harvester which will then save
the resulting histograms in a directory which is coded in the Harvester
script. From there they can be uploaded using the "Upload.sh’ script or
using a tool such as *VisDQMUpload’ or similar code.

4. Note the upload functionality has not been implemented yet. To fully
automate the upload process it may be necessary to produce an upload
book keeping text file for "Upload.sh’. The tools in the script should allow
one to do so quite easily. For 'VisDQMUpload’ a list of names of files
should be supplied. In addition it may be wise to remove the files once
they have been uploaded.

3.2.5 Functioning and Further Improvements

There are two mains ways in which the script needs to be improved:

e At the moment the script does not automatically upload data to the DQM
GUL

e The script can employ multithreading so that data is processed simulta-
neously on different cores and so that threads can be switched around
while a particular process is waiting to receive data from the internet. An
interesting extension of this which can be done is to check how the speed
of the program varies, over a constant data set based, as a function of the
maximum number of allowed threads. It is anticipated that the function
will have a definite peak at a number of threads which is greater than the
number of cores and from there will decrease.

At present the script is able to keep track of which datasets have been uploaded,
start the harvester and run CRAB to successfully process the data.

4 Summary

The CMS Data Quality Monitoring system consists of several distinct systems.
One particular workflow which begins with histogram creation (for online and
offline DQM), proceeds through data harvesting and finally ends with data
‘signoft’ by the offline shifter is discussed.

Two scripts were built to function at various the certification and data har-
vesting stages of the DQM process. These scripts were designed to automate
various aspects of the system which were iterative and time consuming to do
manually. The scripts functioned succesfully and produced the correct output.
However, there is still some scope to improve them, to make them easier to use
and more efficient.

References
[1] L Tuura, A Meyer, I Segoni, G Della Ricca, “CMS data quality

monitoring: systems and experiences”, 2010 J. Phys.: Conf. Ser.
219 072020

