
The strong coupling. The gluons momentum fraction∗

Ecaterina Bodnariuc
Universität Leipzig

Supervisor: Dr. habil. Markus Diehl
DESY Hamburg, Theory Group

8 September 2011

Abstract

The aim of the work is to estimate some properties of the strong interaction related
to the asymptotic freedom. The first one is the running of coupling αs. We compute
the value of the coupling for the next-to-leading order (NLO) and for NNLO using
iterative techniques. We find an agreement with existing results from the literature
and also comment to some ambiguities related to the procedure. The second property
we are focusing on is the dependence of momentum fraction of gluons inside a nucleon
on αs and small-x behaviour of the gluonic density. We solve the DGLAP equation
and obtain the dependence for LO, NLO, NNLO.
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1 The strong coupling

The strong coupling αs is a fundamental parameter of the Standard Model characterising
the strength of the strong interaction. To remove infinities coming from loop diagrams
and define physical parameters contributing to Lagrangian one should make use of the
renormalization procedure. This procedure, apart from everything else, introduces an ar-
bitrary energy scale Q at which the calculation should be performed (the physical coupling
becomes a function of this scale). If the renormalized coupling αs(Q

2
0) can be fixed (i.e.

measured) at a given scale Q2
0, then one can predict the value of αs at any other energy

scale Q2 via the renormalization group equation [2, 5]

Q2 ∂αs(Q
2)

∂Q2
= β

(

αs(Q
2)
)

. (1)

In QCD the β function can be expanded as

β
(

αs(Q
2)
)

= −β0 α
2
s(Q

2)− β1 α
3
s(Q

2)− β2 α
4
s(Q

2)− β3 α
5
s − . . . , (2)

where

β0 =
33− 2nf

12 π
, β1 =

153− 19nf

24 π2
, β2 =

77138− 15099nf + 325n2
f

3456 π3
,

β3 =

149753

6
+ 3564 ζ3 −

(

1078361

162
+

6208

27
ζ3

)

nf +

(

50065

162
+

6472

81
ζ3

)

n2
f +

1093

729
n3
f

(4 π)4
.

(3)
and nf is the number of flavours for quarks with mass less than the energy scale Q and
ζ3 ≃ 1.2020569 is the Riemann zeta function. The three- and four-loop coefficients, β2 and
β3 respectively, depend on the renormalization scheme. The result given here is for the
minimal-substraction (MS) scheme. The β function coefficients are extracted from higher-
order (loop) corrections of the bare vertices of the theory. The minus sign in Eq. (2) is
the origin of the asymptotic freedom, determining that the renormalized strong coupling
becomes weak for large momentum Q.

Table 1: Expansion coefficients of the β-function for nf = 1, 2, . . . , 6.
nf β0 β1 β2 β3

1 0.822 0.566 0.582 0.910
2 0.769 0.485 0.450 0.681
3 0.716 0.405 0.324 0.485
4 0.663 0.325 0.205 0.322
5 0.610 0.244 0.091 0.193
6 0.557 0.165 -0.016 0.099

Figure 1 shows the beta function with three light flavours, when is retained only the first
(one-loop) term, or the first and second (two-loop) terms or the first up fourth (four-
loop) terms in the perturbative expansion in Eq. (2). The difference between truncated β

functions dicreases with addition of higher order αs terms.
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Figure 1: The β function with nf = 3.

The β function coefficients change by discrete amount as flavor thresholds are crossed.
In consequence, there is an indirect dependence of αs on the quark mass. The values of

α
(nf )
s and α

(nf−1)
s are related so that a physical quantity calculated in both cases gives the

same result [3, 2]. This implies that for the so-called pole mass Q = Q0

α
(nf−1)
s (Q2

0) = α
(nf )
s (Q2

0)− 0.0295
(

α
(nf )
s (Q2

0)
)3

+O

(

(

α
(nf )
s (Q2

0)
)4
)

. (4)

In leading and in next-to-leading order the matching condition is α
(nf )
s (Q0) = α

(nf )
s (Q0).

In solving the differential equation (1) for αs(Q
2), a constant of integration is intro-

duced. This constant is the fundamental constant of QCD that must be determined exper-
imentally. A possible choice for this constant is the value of αs at a fixed-reference scale
Q0

1. The strong coupling at other values of Q can be obtained from

ln
Q2

Q2
0

=

αs(Q2)
∫

αs(Q2

0
)

dx

β(x)
. (5)

1It has become standard to choose Q0 = MZ .
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An alternative approach is to introduce a dimensionful parameter by the definition of
αs(Q

2). By convention this parameter is called Λ and is the constant of integration

ln
Q2

Λ2
= −

∞
∫

αs(Q2)

dx

β(x)
=

∞
∫

αs(Q2)

dx

β1x2(1 + b1x+ b2x2 + . . . )
. (6)

where bk = βk

β0

(k = 1, 2, . . . ). Λ represents the scale at which the coupling would diverge.
The introduction of Λ allows us to writhe the asymptotic solution for αs in terms of this
parameter. In leading order (LO), i.e. retaining only the β0 coefficient in the β function,
Eq. (6) can be integrated out leading to

ln
Q2

Λ2
=

1

β0αs(Q2)
. (7)

By including the b1 coefficient in the integral (6) the definition of the Λ is extended to the
next-to-leading order (NLO)

ln
Q2

Λ2
=

1

β0 αs(Q2)
+

b1

β0

ln
b1αs(Q

2)

1 + b1αs(Q2)
, (8)

for next-to-next-leading order (NNLO), i.e. b2 is included, the integration gives:

ln
Q2

Λ2
=

1

β0 αs(Q2)
+

b1

β0

ln
(

αs(Q
2)
)

−
b1

2 β0

ln
(

1 + b1αs(Q
2) + b2α

2
s(Q

2)
)

−

−
b21 − 2b2

β0

√

4b2 − b21
arctan

2b2αs(Q
2) + b1

√

4b2 − b21
+ C0, (9)

where

C0 =
b1

2 β0

ln b2 +
b21 − 2b2

β0

√

4b2 − b21
·
π

2
.

Eq. (8) and (9) allow a numerical determination of αs(Q
2) for a fixed value of Λ.

Furthermore one can Taylor expand (9) for small αs and obtain an approximate solution
of (8) and (6) in terms of powers of αs(Q

2)

ln
Q2

Λ2
=

1

β0 αs(Q2)
+

b1

β0

ln β0αs(Q
2) + C1 +O

(

αs(Q
2)
)

, C1 =
b1

β0

ln
b1

β0

(10)

ln
Q2

Λ2
=

1

β0 αs(Q2)
+

b1

β0

ln β0αs(Q
2)−

(b21 − b2)

β0

αs(Q
2) + C0 + C1 +O

(

α2
s(Q

2)
)

, (11)

where

C1 = −
b21 − 2b2

β0

√

4b2 − b21
arctan

b1
√

4b2 − b21
−

b1

β0

ln β0.
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At this point one can redefine Λ parameter in a way that no constant term appreas
in Eq. (8) and (9). To obtain an approximate iterative solution for αs in inverse powers
of L one has to substitute αs form Eq. (7) to logarithmic term of Eq. (10) (without the
constant term). Making Taylor expansion2 by large L one then obtains first two terms
of the NLO iterative solution (first two terms in Eq. given below). This NLO iterative
solution of αs can be again substituted in NNLO eq. (11) and after the same chain of steps
one obtains

αs(Q
2) =

1

β0 L
−

b1 ln L

(β0 L)2
+

1

(β0 L)3

(

b21(ln
2 L− ln L− 1) + b2

)

+O

(

1

L4

)

(12)
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Figure 2: αs dependence of Q2. Two-loop approximation courve is calculated using first
two term of Eq. (12). Exanct solution represents numerically solved Eq. (8) minus the
constant C1.

2 The momentum fraction of gluons in the nucleon

2.1 Motivation

The structure of a hadron can be probed by the deep inelastic scattering (DIS) where an
electron emits a virtual photon which scatters on a quark in a hadron. The momentum and

2We assume that Λ in Eq. (7) is the same (or sufficiently close to) the new redefined Λ.
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Figure 3: Dependence of the ratio between approximative solution of αs given by Eq.(12)
and exact solution Eq. (8), (9) for NLO, NNLO respectively, minus the constant terms on
Q2.

energy transver of the electron can be then measured and provide an information about the
structure functions of the hadron. The hadron itself consists of gluons and (anti-)quarks,
which can be characterized by their typical energy fraction and rapidity

x ≡
Econstituent

Ehadron

, (13)

y = yhadron − ln

(

1

x

)

. (14)

The larger is the total energy the smaller could be x. The number of small x partons per
unit rapidity is given by

dN

dy
= x g(x,Q2), (15)

where we also take into account the energy scale Q2 because of the dependence of the
number of partons on the resolution scale. The density of gluons measured at HERA
accelerator is shown in Figure 4.

We clearly see from the plot that the density of gluons increases for small x, which means
that for increasing energies the low momentum gluon density grows. As the density of
gluons per unit area per unit rapidity increases, the typical transverse separation of gluons
decreases, so the matter becomes very dense and the strong coupling becomes relatively
small. Because of the Bose-Einstein statistics we can expect that at large phase space
density gluons can be described classically. This opens a door for a new phenomenology
and motivates us to measure the properties of gluonic flields at small x.
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Figure 4: Gluon density distribution as a function of x at fixed values of Q2 (by H1
collaboration [1])

2.2 Computation

The DGLAP equations, that describes the Q2 dependence of partons distribution function
at a fixed fraction x of the nucleon momentum, can be rewritten in terms of gluon g(x,Q2),
a flavour non-singlet q(ns)(x,Q2) and a flavour singlet Σ(x,Q2) distribution function as
following

d

d lnQ2
q(ns)(Q2) = P (ns)

qq ⊗ q(ns)(Q2),

d

d lnQ2

(

Σ(x,Q2)
g(x,Q2)

)

=

((

Pqq Pqg

Pgq Pgg

)

⊗

(

Σ
g

))

(x,Q2), (16)

with the Mellin convolution defined as

(f ⊗ g)(x,Q2) =

1
∫

0

dx

y
f

(

x

y

)

g(x,Q2), (17)

and the splitting function Pij. Valence quark distributions are non-singlet distributions
and their evolution does not depend on the gluon distribution.
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2.2 Computation 8

Using the momentum fraction carried by a parton distribution

[q](Q2) ≡

1
∫

0

dxx q(x,Q2), (18)

and the renormalization group equation (1), one obtains the evolution equations for mo-
mentum fraction carried by gluons [g] and quarks [Σ] from (16)

β(αs(Q
2))

d

dαs(Q2)

(

[Σ]
[g]

)

=

(

γqq γqg
γgq γgg

)(

[Σ]
[g]

)

, (19)

where the anomalous dimensions γij =
1
∫

0

duuPij(u) can be preturbativelly expanded in

αs(Q
2)

(

γqq γqg

γgq γgg

)

= −αs(Q
2)

(

a0 −b0 nf

−a0 b0 nf

)

− α2
s(Q

2)

(

a1 − b1 nf −c1 nf

−a1 + b1 nf c1 nf

)

−

−α3
s(Q

2)

(

a2 − b2 nf − c2 n
2
f −d2 nf + e2 n

2
f

−a2 + b2 nf + c2 n
2
f d2 nf − e2 n

2
f

)

, (20)

with the entries

a0 b0 a1 b1 c1 a2

8
9π

1
6π

734
243π

26
81π

611
1296π

344638
6561π

+ 80
81π

ζ3

b2 c2 d2 e2

33722
8748π

+ 160
27π

ζ3
71

243π
670871π
69984π

−
650
108π

ζ3
8830

11664π

The sum rule [Σ]+ [g] = 1 imposes the constraint γqq−γqg = γgg−γgq on the linear system
of ODE’s (19). A general form for the gluon momentum fraction can be written as

[g](Q2) = ep(αs(Q2))







αs(Q2)
∫

αs(Q2

0
)

dx e−p(x)q(x) + [g](Q2
0)






, (21)

where

p(x) =

x
∫

α(Q2)

γgg − γgq

β(y)
dy, q(x) =

γgq

β(x)

and the initial conditions αs(Q
2
0), [g](Q

2
0).
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Figure 5: The dependence of gluons momentum fraction on strong coupling αs for LO,
NLO, NNLO approximation of anomalous dimensions.

The results at LO, NLO and NNLO, employing the perturbative expansion (2) for β

function are given in Figure 5. The input data for initial condition for nf = 3 are
[g](2GeV2) = 0.479 and αs(2GeV2) = 0.313 [4].The deviation of LO from NLO and NNLO
of [g] increases with growing αs, i. e. in the region where the perturbative calculations are
not valid. The behavior of gluons’ momentum fraction remains similar going from NLO to
NNLO. The difference between curves becomes smaller as αs decreases and they approach
the same value for αs → 0.

Table 2: The values of αs, Q
2 and Q (calculated with Eq. (12)) at [g](αs) = 0.

LO NLO NNLO
αs 2.93 1.14 1.07

Q2(GeV2) 0.19 0.63 0.73
Q(GeV) 0.44 0.79 0.85

The values for Q2 in Table 2 are calculated using Eq. (12). A significant difference between
Q2 at LO from NLO and NNLO is observed.
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3 Summary

In the present work we desctibe a dependence of the running coupling αs on the energy
scale Q2 for the LO, NLO and NNLO. We also found the dependence of gluonic momentum
fraction on strong coupling αs for LO, NLO, NNLO approximation of anomalous dimen-
sions using the DGLAP equation. We also commented on a possible application of the
small-x results to the estimation of the classical gluonic density inside a nucleon.
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