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Abstract

The aim of the work is to estimate some properties of the strong interaction related
to the asymptotic freedom. The first one is the running of coupling a;. We compute
the value of the coupling for the next-to-leading order (NLO) and for NNLO using
iterative techniques. We find an agreement with existing results from the literature
and also comment to some ambiguities related to the procedure. The second property
we are focusing on is the dependence of momentum fraction of gluons inside a nucleon
on ag and small-x behaviour of the gluonic density. We solve the DGLAP equation
and obtain the dependence for LO, NLO, NNLO.
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1 The strong coupling

The strong coupling oy is a fundamental parameter of the Standard Model characterising
the strength of the strong interaction. To remove infinities coming from loop diagrams
and define physical parameters contributing to Lagrangian one should make use of the
renormalization procedure. This procedure, apart from everything else, introduces an ar-
bitrary energy scale @ at which the calculation should be performed (the physical coupling
becomes a function of this scale). If the renormalized coupling a,(Q3) can be fixed (i.e.
measured) at a given scale %, then one can predict the value of ay at any other energy
scale Q? via the renormalization group equation [2, 5]
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and ny is the number of flavours for quarks with mass less than the energy scale ) and
(3 ~ 1.2020569 is the Riemann zeta function. The three- and four-loop coefficients, S and
B3 respectively, depend on the renormalization scheme. The result given here is for the
minimal-substraction (MS) scheme. The  function coefficients are extracted from higher-
order (loop) corrections of the bare vertices of the theory. The minus sign in Eq. (2) is
the origin of the asymptotic freedom, determining that the renormalized strong coupling
becomes weak for large momentum @.

Table 1: Expansion coefficients of the g-function for ny =1,2,...,6.
ny Bo B B2 B3

0.822 0.566 0.582 0.910
0.769 0.485 0.450 0.681
0.716 0.405 0.324 0.485
0.663 0.325 0.205 0.322
0.610 0.244 0.091 0.193
6 | 0.557 0.165 -0.016 0.099

Figure 1 shows the beta function with three light flavours, when is retained only the first
(one-loop) term, or the first and second (two-loop) terms or the first up fourth (four-
loop) terms in the perturbative expansion in Eq. (2). The difference between truncated
functions dicreases with addition of higher order o terms.
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Figure 1: The g function with n; = 3.

The S function coefficients change by discrete amount as flavor thresholds are crossed.
In consequence, there is an indirect dependence of o, on the quark mass. The values of
aﬁ”f ) and aﬁ”f ) are related so that a physical quantity calculated in both cases gives the
same result [3, 2]. This implies that for the so-called pole mass @ = Qg

@) = ot (@) - 005 (@) w0 (@) ). @

In leading and in next-to-leading order the matching condition is ai™(Qo) = o™ (Qo).

In solving the differential equation (1) for a,(Q?), a constant of integration is intro-
duced. This constant is the fundamental constant of QCD that must be determined exper-
imentally. A possible choice for this constant is the value of o, at a fixed-reference scale
Qo'. The strong coupling at other values of ) can be obtained from

WS(Q2)
Q@ _ dz (5)
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Tt has become standard to choose Qo = M.



An alternative approach is to introduce a dimensionful parameter by the definition of
as(Q?%). By convention this parameter is called A and is the constant of integration
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where b, = gﬁ (k=1,2,...). A represents the scale at which the coupling would diverge.
The introduction of A allows us to writhe the asymptotic solution for oy in terms of this
parameter. In leading order (LO), i.e. retaining only the 3y coefficient in the § function,
Eq. (6) can be integrated out leading to
2
1
In Q—2 = . (7)
A 60035(62 )
By including the b; coefficient in the integral (6) the definition of the A is extended to the
next-to-leading order (NLO)
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for next-to-next-leading order (NNLO), i.e. by is included, the integration gives:
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Eq. (8) and (9) allow a numerical determination of a,(Q?) for a fixed value of A.
Furthermore one can Taylor expand (9) for small s and obtain an approximate solution
of (8) and (6) in terms of powers of a,(Q?)
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At this point one can redefine A parameter in a way that no constant term appreas
in Eq. (8) and (9). To obtain an approximate iterative solution for «; in inverse powers
of L one has to substitute oy form Eq. (7) to logarithmic term of Eq. (10) (without the
constant term). Making Taylor expansion? by large L one then obtains first two terms
of the NLO iterative solution (first two terms in Eq. given below). This NLO iterative
solution of s can be again substituted in NNLO eq. (11) and after the same chain of steps
one obtains
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Figure 2: o, dependence of Q%. Two-loop approximation courve is calculated using first
two term of Eq. (12). Exanct solution represents numerically solved Eq. (8) minus the
constant Cj.

2 The momentum fraction of gluons in the nucleon

2.1 Motivation

The structure of a hadron can be probed by the deep inelastic scattering (DIS) where an
electron emits a virtual photon which scatters on a quark in a hadron. The momentum and

2We assume that A in Eq. (7) is the same (or sufficiently close to) the new redefined A.
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Figure 3: Dependence of the ratio between approximative solution of a; given by Eq.(12)
and exact solution Eq. (8), (9) for NLO, NNLO respectively, minus the constant terms on
Q.

energy transver of the electron can be then measured and provide an information about the
structure functions of the hadron. The hadron itself consists of gluons and (anti-)quarks,
which can be characterized by their typical energy fraction and rapidity

Econstituent
g = —constituent 13
Ehadron ( )
1
Y = Yhadron — In (5) . (14)

The larger is the total energy the smaller could be x. The number of small x partons per
unit rapidity is given by
dN
dy
where we also take into account the energy scale Q? because of the dependence of the
number of partons on the resolution scale. The density of gluons measured at HERA
accelerator is shown in Figure 4.

We clearly see from the plot that the density of gluons increases for small x, which means
that for increasing energies the low momentum gluon density grows. As the density of
gluons per unit area per unit rapidity increases, the typical transverse separation of gluons
decreases, so the matter becomes very dense and the strong coupling becomes relatively
small. Because of the Bose-Einstein statistics we can expect that at large phase space
density gluons can be described classically. This opens a door for a new phenomenology
and motivates us to measure the properties of gluonic flields at small x.

v g(z,Q%), (15)
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Figure 4: Gluon density distribution as a function of x at fixed values of Q? (by H1
collaboration [1])

2.2 Computation

The DGLAP equations, that describes the Q? dependence of partons distribution function
at a fixed fraction x of the nucleon momentum, can be rewritten in terms of gluon g(x, Q?),
a flavour non-singlet ¢ (z,Q?) and a flavour singlet ¥(x, @?) distribution function as
following

d
Tt (@) = P ©4"(QY),

ma (inen )= (( izz izz Jo(3))wer o

with the Mellin convolution defined as

(f © )z, %) =/% (—) (2,Q?), (17)

and the splitting function Pj;. Valence quark distributions are non-singlet distributions
and their evolution does not depend on the gluon distribution.
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Using the momentum fraction carried by a parton distribution

1

4@ = / de gz, Q). (18)

0

and the renormalization group equation (1), one obtains the evolution equations for mo-
mentum fraction carried by gluons [g] and quarks [X] from (16)
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where the anomalous dimensions v;; = [ duu P;;(u) can be preturbativelly expanded in
0
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with the entries

ap by a1 by &1 a2

8 1 734 26 611 344638 + ﬂc
9 6m 2437 81w 12967 65611 81 >3

by C2 dy €9

33722 160 71 670871w 650 8830
+ 57xC3 C3
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The sum rule [¥]+ [g] = 1 imposes the constraint v4, — V49 = Vg9 — Vgq On the linear system
of ODE’s (19). A general form for the gluon momentum fraction can be written as

QS(Q2)
[9)(Q?) = ele=(@) / dze PPq(x) + [g)(Q2) | . (21)
s (QF)
where N
_ Jog — Tga 4 _ ga
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and the initial conditions o, (Q3), [9](Q2).
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Figure 5: The dependence of gluons momentum fraction on strong coupling «, for LO,
NLO, NNLO approximation of anomalous dimensions.

The results at LO, NLO and NNLO, employing the perturbative expansion (2) for j
function are given in Figure 5. The input data for initial condition for ny = 3 are
[9](2GeV?) = 0.479 and o, (2 GeV?) = 0.313 [4]. The deviation of LO from NLO and NNLO
of [g] increases with growing a, i. e. in the region where the perturbative calculations are
not valid. The behavior of gluons’ momentum fraction remains similar going from NLO to
NNLO. The difference between curves becomes smaller as o, decreases and they approach
the same value for oy — 0.

Table 2: The values of ay, @ and @ (calculated with Eq. (12)) at [g](as) = 0.

LO | NLO [ NNLO

s 293 1.14 | 1.07
Q%*(GeV?) [0.19 ] 0.63 | 0.73
Q(GeV) 044 079 | 0.85

The values for Q? in Table 2 are calculated using Eq. (12). A significant difference between
Q? at LO from NLO and NNLO is observed.
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3 Summary

In the present work we desctibe a dependence of the running coupling o, on the energy
scale Q2 for the LO, NLO and NNLO. We also found the dependence of gluonic momentum
fraction on strong coupling o, for LO, NLO, NNLO approximation of anomalous dimen-
sions using the DGLAP equation. We also commented on a possible application of the
small-z results to the estimation of the classical gluonic density inside a nucleon.
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