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Can decoherence of a quantum system be suppressed by application
of a strong electromagnetic �eld ?

Abstract

The object of study here is a dissipative dynamics of a two-level system (TLS)

coupled linearly to a set of harmonic oscillators (bath) and driven by a strong exter-

nal electromagnetic �eld. This dynamics is represented by a multi-dimensional wave

packet with up to 14 spatial degrees of freedom. The propagation is implementated

within the multi-con�guration time-dependent Hartree method (MCTDH). We in-

vestigate opportunities for suppression of dephasing in a damped TLS by means a

strong external �eld.
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1 Introduction

Many physical phenomena can be described by a model system consisting of only

one or few variables in contact with an environment with many or even in�nit number

of degrees of freedom. The interaction between such open quantum system and the

environment brings dissipation into the system. One of the most challenging tasks of

quantum mechanics is to understand how to suppress dissipation in these open systems.

The external control can be provided by application of a strong periodic laser �eld. The

dynamics of the system can be changed from coherent to incoherent, and even decoherence

can be completely suppressed. Moreover, this problem arises in many areas of physics as

well as in chemistry, aimed at understanding the detailed dynamics of quantum systems

that are exposed to a strong external �eld.

Currently, much attention is focused on the creation of quantum computers, i.e. de-

vices for computation that make direct use of quantum mechanical phenomena. The

controlling quantum decoherence represents a challenge for practical realization of quan-

tum computers, since they are expected to rely heavily on the undisturbed evolution of

quantum coherences. Simply speaking, they require that coherent states are preserved,

in order to actually perform quantum computation.

For the description of a variety of phenomena the model of a two-level system (TLS)

is widely used, i.e. of quantum system whose Hilbert space can be e�ectively restricted

to a two-dimensional space. There are many examples such as electron transfer reactions,

proton tunneling, macroscopic quantum coherence in Josephson solid-state devices. Such

types of system are frequently in contact with an environment. Usually, the environ-

ment is modeled as a bath which consists of a large set of harmonic oscillators. In most

applications the bath is linearly coupled to the TLS.

Without laser-�eld driving, such dissipative dynamics of a TLS coupled to a bath has

been investigated since the late 1950s. In particular, Magilanskij pioneered the so-termed

'quantum Langevin equation' by starting from the full system-plus-bath Hamiltonian. On

the other hand, the driven isolated TLS has also a long history, the �rst work must be

attributed to Rabi for the linearly polarized �eld in so-called rotating-wave approximation

(RWA). Physical phenomena occurring in the driven TLS coupled to the environment have

been the object of strong interest until now [Wei08].
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2 MCTDH

A quantum mechanical study can be done in the time-dependent picture by propaga-

tion of a wavepacket. The multicon�guration time-dependent Hartree method (MCTDH)

is an e�cient algorithm for the solution of the time-dependent Schrodinger equation and

for discription of multi-dimensional quantum dynamics. The MCTDH program has been

created to perform quantum wavepacket propagations using this method. For a calcula-

tion the Hamiltonian operator and the input parameters must be de�ned. The variety of

programs included in the MCTDH package serve to analyse the results of a calculation

and compute observable quantities, which can be directly plotted with the help of external

program.

As the program name indicates, a wave function with usually many degrees of freedom

is written as a sum of a Hartree product basis set

Ψ(Q1, ..., Qa, t) =
∑
J

AJ(t)ΦJ(t) , J = (j1, ..., ja) (1)

ΦJ(t) =
a∏
k=1

φkjk(Qk, t) (2)

where a is the number of degrees of freedom, Q1, ..., Qa are the coordinates, the AJ denote

the time-dependent expansion coe�cients and the single particle functions φjk form the

time-dependent basis functions for degree of freedom k. They in turn are de�ned on a

time-independent primitive grid. In general, a discrete variable representation (DVR) is

used as primitive basis to present these single-particle functions. For large system, or

even certain degrees of freedom are strongly coupled, it may be advantageous to combine

degrees of freedom together and use multi-mode single-particle functions, due to it the

number of the expansion coe�cients AJ is signi�cantly reduced that we made in our

calculations.

Also for a quantum dynamical calculation, an initial wavefunction Ψ(0) is required.

Usually, Ψ(0) is a simple Hartree product, i.e. a product of one-dimensional functions.

Our choice for the one-dimensional initial functions are Gaussian functions corresponding

to the ground states of the uncoupled system.

The set of analyzing programs of MCTDH can be used to obtain information from a

calculation. For our investigations they allow to observe the evolution of the TLS and

the bath. One of the analysis programs had to be modi�ed to provide information about

decoherence of our system.
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3 The Hamiltonian

Because of the discreteness of the system, the dissipative dynamics of a TLS exposed

to a strong �eld can be written in terms of 2 × 2 - Pauli matrices. In the presence of

interaction with a bath and in�uence of the �eld, the Hamiltonian is

H(t) =
1

2
εσz +

∑
a

wa
2

(− ∂2

∂Q2
a

+Q2
a)I +

∑
a

λaQaσx + E(t)σx (3)

The �rst term HTLS = 1
2
εσz describes the dynamics of the isolated TLS , where

ε = w1 − w2 is the energy gap between two levels of this system. Here we restrict

ourselves to a two-dimensional system but it is possible to generalize the formalism to

higher-dimensional cases.

The second and third terms describe the environment as a set of harmonic oscillators

linearly coupled in bath coordinates Qa =
√
mawaxa to the system via the interaction

term Hint =
∑

a λaQaσx. Here wa is the frequency of each harmonic oscillator of the bath

and λa is the corresponding coupling parameter. Without the last term Hfield = E(t)σx,

the dissipative TLS is known as spin-boson model.

Finally, the last term describes the �eld and its coupling to the quantum system. In

case of a periodic �eld we have

E(t) = A(t) cos(wf t+ ϕ0). (4)

The Pauli matrices are de�ned as

σx =

(
0 1

1 0

)
, σz =

(
1 0

0 −1

)
and I is the unit matrix .

The Hamiltonian (3) is written in atomic units (~ = 1).

We introduced the simplest model Hamiltonian which describes a TLS coupled linearly

to a bath and driven by an external �eld. It is known that dissipative processes induce

loss of coherence and our task is to outline methods of suppression of these quantum

e�ects, in general.

From the solution of the time-dependent Schrodinger equation

i
dϕ(t)

dt
= Hϕ(t) (5)

we can calculate the density matrix

ρσσ′(t) =

∫
dQa ϕ

∗(σ,Qa, t)ϕ(σ′,Qa, t). (6)

The appropriate density matrix ρσσ′ is a 2× 2 matrix elements where σ and σ′ are 0
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or 1. We denoted the diagonal matrix elements of the density matrix as ρ00 and ρ11, the

o�-diagonal elements (so-called coherences terms) as ρ01 and ρ10. The diagonal elements

describe the population of the levels. It provides direct information about the evolution

of the TLS. The o�-diagonal elements give information about the order of decoherence in

a quantum system. We consider the factor

cij =
|ρij|√
ρiiρjj

i, j = 0, 1 i 6= j , (7)

which indicates the level of coherence in the TLS. This factor varies in the range from 0

to 1 and reaches 1 for a completely coherent state of the system.
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4 Results and Discussion

4.1 The coupling to a low-frequency bath

We start from the equally populated levels of the TLS ρ00 = ρ11 = 0.5 and consider

the 12 bath frequencies wbath in range from 0.005 to 0.06 with the step 0.005. In Figure 1

with the red curves we display the population ρ00 of the lower state of the TLS, induced

by the bath only. The green curves present this population in case of interplay between

an environment and a �eld. It is seen, that the higher the coupling parameter λ, the

faster transition of the population between the two levels of the system. In the presence

of constant �eld, the population is stabilized and it is faster (see (b) ) for a strong coupling

caused by the bath.

The degrees of coherence for three di�erent coupling parameters are shown in Figure

2(a). It is obviously clear that the strong coupling (blue curve, (a)) tends to destroy

coherence of the TLS. Comparing the cases (b), (c), (d) in Figure 2, we can conclude

that the stronger the TLS interacts with the environment the more di�cult to suppress

decoherence (see (d)).
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Figure 1: The time evolution of the TLS (the population ρ00 of the lower state as a
function of time t) for di�erent coupling parameters: (a)λ = 0.01 and (b)λ = 0.02. The
cases without �eld E(t) = 0 (red curves) and with constant �eld E(t) = A = 1 (green
curves) are calculated with the following parameters: the energy gap of the TLS ε = 0.1,
wbath ∈ [ 0.005 ; 0.06 ].
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Figure 2: The degree of coherence of the TLS plotted as function of time t: (a) for di�erent
coupling parameters , E(t) = 0 and for each parameter separately
(b) λ = 0.01 , (c)λ = 0.02 and (d)λ = 0.05 under conditions of zero �eld and
constant �eld E(t) = A = 1.
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Figure 3: The degree of coherence of the TLS plotted as function of time t. The coupling
parameter λ = 0.02. Red curve: E(t) = 0. Green curve: E(t) = A cos(wf t) , A = 1 ,
wf = 0.01. Blue curve: E(t) = A = 1
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In the case of the periodic �eld, while the cosine vanishes every half-period we see only

the e�ect of environment: in Figure 3 with the green curve we show the rapid losses of

coherence in the TLS.

It is worth to consider separately an interesting case of resonance (Figure 4), i.e. the

�eld frequency coincides with the TLS's one ε = wf = 0.1. The system oscillates at the

well known Rabi frequency, which depends only on the intensity of the �eld amplitude

under these resonant conditions [Tan07]. By increasing the amplitude of the �eld it is

possible to maintain or even enhance (see case at A = 20) a coherence of the TLS and

thereby suppress the decoherence caused by the environment.

To understand the dynamics of this phenomenon we consider the time evolution of

environment. The one-particle density matrix for each coordinate of bath gives us infor-

mation about the bath evolution. We demonstrate observations which correspond to the

frequency wbath1 = 0.005, so for bath coordinate Q1 we have:

ρ(Q1, t) =
∑
σ=0,1

∫
dQ2 . . . , dQ12 ϕ

∗(σ,Qa, t)ϕ(σ,Qa, t) , a = 1, 12 (8)
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Figure 4: The degree of coherence of the TLS plotted as function of time t for di�erent
amplitudes of periodic �eld and in the absence of �eld. The resonance case : ε = 0.1 ,
wf = 0.1
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Figure 5: The one-particle density matrix plotted as function of bath coordinates for two
random times (t1 = 140 au - blue curve, t2 = 340 au - red curve), the coupling parameter
λ = 0.02. There are three di�erent cases of the �eld :
(a)E(t) = 0 (b)E(t) = A = 1 (c) E(t) = A cos(wf t) , A = 1 , wf = 0.01

In Figure 5, the one-particle density matrix for two di�erent times is presented in the

absence of �eld (a), in the presence of constant �eld (b) and periodic �eld (c). Without

�eld the bath only oscillates around an equilibrium position, takes energy from the TLS

and gives it back. If the TLS is exposed by a constant �eld, then this acts on the bath

through the TLS. That's why the bath mode moves (see (b)).

We also �nd the eigenvalues for the Hamiltonian (3) at one bath degree of freedom

from the equation(
ε
2

+
w1Q2

1

2
λ1Q1 + E(t)

λ1Q1 + E(t) − ε
2

+
w1Q2

1

2

)
ϕ̃ = ε̃ϕ̃ . (9)

The time-dependent eigenvalues of driven TLS coupled to one bath harmonic oscillator

are

ε̃± =
1

2
(w1Q

2
1)±

√
ε2 + 4(λ1Q1 + E(t))2 (10)
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Figure 6: The eigenvalues of the TLS coupled to one harmonic oscillator plotted as
functions of bath coordinates for the following cases: (a)E(t) = 0 , (b)E(t) = A = 1 and
(c)E(t) = A = −1. Blue curve shows the eigenvalue of the upper state, pink curve - the
eigenvalue of the lower state, green one - the potential of bath harmonic oscillator.

In Figure 6, it is shown how the environment interacts with the TLS (see (a)) in

absence of �eld, it changes the eigenvelues of the system's states. Also it is clear, the

�eld provides the energy shift between the states of the TLS ((b), (c)). In the case of

periodic �eld E(t) = A cos(wf t), while the �eld changes sign we see the splitting in the

one-particle density matrix (Figure 6, (c)).
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4.2 The coupling to a high-frequency bath
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Figure 7: The degree of coherence of the TLS plotted as function of time t for di�erent
amplitudes of constant �eld and in the absence of �eld. The coupling parameter λ = 0.1

.

Up to now, we have discussed the low-frequency (in comparison with the energy

di�erence ε = 0.1 in the TLS) set of bath oscillators wf < ε. The degree of coherence at

the high-frequency range wbath ∈ [ 0.5 ; 0.555 ] is depicted in Figure 7.

We already understand that the constant �eld controls the energy di�erence ε between

two states of the TLS. Changing the intensity of constant �eld we can make the energy

gap closer to bath frequency range or farther from it. If the gap of the TLS has the same

order as the bath energy we see a strong coupling, which increases a decoherence in the

system. Otherwise, if the value of the gap ε is quite di�erent from the bath modes, the

system is weakly coupled to the environment, therefore the TLS becomes more coherent.

These points that we have discussed are clearly presented in Figure 7. In case A = 1

(green curve), it is seen a strong in�uence of the bath, in consequence of that we have a

sharp loss of coherence. For A = 5 (blue curve), a constant �eld increases the energy gap

between states of the TLS more, makes it closer to the bath frequency range and thereby

enhances a coherence in the system.

5 Summary

In general conclusion, we explored dissipative dynamics of a two-level system coupled

linearly to a bath as a set of harmonic oscillators and driven by an external �eld. It is

worth to point out the following:

• a constant �eld controls the energy gap of a TLS, which can be set in resonance or

out of resonance with bath modes;
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• for a periodic �eld, complete supression of decoherence has not been achieved with

our model, even for quite large �eld amplitude. The oscillating nature of the �eld

makes it possible that some decoherence occurs while the �eld changes sign.
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