I S

DESY Summer Student programme report

Access to CMS data - analyze and optimize

Andrzej Wronka ®*

a) AGH University of Science and Technology, Marian Miesowicz Faculty of Physics

Reymonta 20, 30-059 Krakow, Poland

September 9, 2010

*andrzejwronka@gmail.com

Acknowledgments

My sincere thanks are due to my supervisor, Hartmut Stadie, who supported me in my task and
made that work in DESY was an interesting experience that I'll always be happy to be recalled.
Also | would like to thank Christoph Wissing, with whom | had the pleasure to cooperate. His

professionalism and commitment gave meaning to my work and helped in the achievement of
the objective.

1 Introduction

This paper contains a report on the work done during the DESY Summer Student programme in
the year 2010. The presented results are part of the analysis of the Tier's 2 performances made
for the CMS Computing Project.

1.1 CMS experiment

The Compact Muon Solenoid (CMS) experiment is designed as a general-purpose particle
physics detector built at the Large Hadron Collider (LHC) at CERN to observe a wide range of
particles and phenomena produced in high-energy s=14TeV proton-proton collisions.

1.2 The Computing Project

The CMS Computing is based on Grid technologies and is organized in a so called Tier
structure, with one Tier-0 at CERN at the location of the experiment, 7 Tier-1 centers and 40
Tier-2 centers round the world. DESY is hosting one of the Tier-2 centers, which is operated in
close collaboration with the DESY-IT staff and CMS members from the University of Hamburg.
The CMS Tier-2 centers are used for centrally managed production of Monte Carlo events and
analysis of CMS data by individual users.

To complement the Grid based computing and storage resources DESY runs the National
Analysis Facility (NAF) for the German user community. The basic structure of NAF is shown in
Fig. 1.

| P
gsissh n - AFS/Kerberos
t
qsub =
r scp
o SRM
'n
n
e
c
t
E 2 P
Grid-ftp, SRM

Rl

Fig. 1. : NAF overview.

DESY Grid
dCache
Storage

2 Data analysis

Perfomrance tests of analyzing and storage data in computer grid are significant for each HEP
experiment. We are always looking for the best configuration of the computer storage system
to make the analysis more efficient.

My project concerning data analysis of DESY's Tier's 2 performances. Specially | focused on
retrieving parameters of NAF-GRID - DESY-GRID (Fig. 1) transfer. | worked on CMSSW (CMS
SoftWare) version 3.6.1 and used glite32 Ul.

2.1 CMS data and configuration

| have worked on data from CMS Dataset Bookkeeping System (DBS), which is a database and
user API that indexes event-data data for the CMS Collaboration.

Used dataset: /Mu/Run2010A-PromptReco-v4/RECO

Main tool used by me in analysis was CRAB (CMS Remote Analysis Builder). CRAB provides a
utility for creating and submiting CMS jobs for input datasets. Fig. 2 shows an overview schema
of CRAB working. Jobs were run with the configuration (crab.cfg):

Scheduler: SGU (Sun Grid Engine)

Lumi mask: Cert_132440141961_7TeV_StreamExpress_Collisions10_JSON.txt
Lumis per job: 20

Parameter set file: patTuple_standard_cfg.py

crab —create -submit

Fig 2. : Basic workflow of CRAB.

2.2 Physics analysis

As output of CRAB. PAT Tuple ROOT files are created. To produce histograms with physics
analysis, | have used FWLiteAnalyzer. Plots are contained in analyzePatBasics.root files. We
could retrive useful statistics only the sample is large, so usually it is necessary to do 'summary’
histograms - we need merge plots for all jobs set. For this purpose we have used the program
hadd:

hadd analyzeAll.root @out ,
where @out is a list with names of output root files and analyzeAll.root will contain the

merged histograms.

An example plot is shown the di-muon invariant mass spectrum. It was drawn for 253 crab's
jobs, which corresponds to more than 500k events.

muonMinv
Entries 503143
Mean 5159
L . 1 RMS 5.633
= H
S 10
@ ~
104 E_
102 E_
10—
1E
0

Fig. 3. : dimuon inv mass.

In Fig. 3 we can notice peak around 92 GeV, which corresponds to u* u pairs from to
Z - decay.

2.3. Framework job reports analysis

In addition to ROOT files, CRAB produces as output Framwork Job Reports (FJR), which contain
useful storage and performance statistics. To extract the information it is necessary to parse
the FIR files (I wrote script in python) — these are XML documents.

The following variables were studied:

exetime - running time of the job,

readtime - time spent for reading data,

size of read data,

number of events,

operation number - number of times the operation was attempted,

maximum and minimum readtime - the smallest and the biggest time an operation
took,

number of dcap operations — number of reads from the dCache area.

Fig. 4 shows an example histogram with amount of data read per event.

| sizelevents | h_evSize
Entries 253
22r Mean 0.04423
- RMS 0.002979
20
18|
16
14
12
10
8-
6
al-
21
l';:"' . .!ﬂﬂH.I'I.I_II._II'I.H;‘....I'M
0.04 0.045 0.05 0.055 0.06
MB

Fig. 4. : read data per event for the test dataset.

2.4. Caching

An interesting effect on the performance analysis is a caching method.

To steer the 1/O layer in CMSSW jobs we using 1/O adaptors. In this project | have used
TFileAdaptor — the interface between CMSSW and ROOT. To run the jobs for various type of
caching it is necessary to set a value for cacheHint parameter. This can be done in configuration
file (patTuple_standard_cfg.py), by adding the following code:

[o.]

process.AdaptorConfig = cms.Service("AdaptorConfig"”,
cacheHint=cms.untracked.string("lazy-download"),

cacheHint=cms.untracked.string("storage-only"),

readHint=cms.untracked.string("auto-detect"))
[...]

Tests were conducted for the following values of cacheHint:
* default (application-only) - ROOT does the caching.
* Lazy-download -Remote files will be downloaded to a local shadow file in 128MB
segments. ROOT reads from this local file.

* Storage-only - ROOT drives the caching using a prefetch list, but will not allocate a
cache of its own.
The readHint indicates how I/O reads should be performed.

(auto-detect: default and requests optimum read-ahead buffering given the other 1/0
choices.)

3 Results

Below are the result obtained for the analysis done on the NAF.

exetime readtime/i000 readtime
— default Entries 252 defaut Entries 252
— Mean 4213 — Mean 3189
| — lazy RMS 4489 00— | — tazy ERMS 4581
00— exefime o readtime
[|7 storaee Entries 251 [|—— storage Enfries 251
[Mean 1151 0 Mean 1351
al RMS 4011 RMS 755
= exetime -
- readiime
i Entries 252 200 Enfies 252
wll Mean 2308 Mean 1278
| RMS 1025 RMS 818
L 150
anH
i 00—
204
L 50
Uﬁl 1 Iir-1 h | Il h 1 Il \Jrlan n:n rhrun\ 1 1 1
0 5000 10000 15000 2000 25000 00 300016000 15000 - 20000 25000 30000 35000 20000 25000 30000
exetime(s] .
readtime[s]
Fig. 5. : Runtime of jobs. Fig. 6. : Readltime.

7

Fig. 5 and Fig. 6 show the amount of time used by the individual jobs in the whole analysis
process and reading from inputs. We can easily notice that lazy-download setting requires the
shortest time to analyze jobs; mean time for one job is 1151 sec (about 20 minutes). Also we
want that reading part was as short as possible — for lazy-download setting we get the best
performance (mean about 135,1 sec, which corresponds only 10% of the whole analysis time).
Default setting is characterized by the worst performance — more than hour analysis of which
about 75% is spent for reading data.

sizeltim h_MBps events/time | h_eps
: default Entries 252 \— — e Entries 252
— Mean 0.3062 — Mean 6955
oo — lazy RMS 0.1655 2 | jay RMS 3.811
16— h_MBps r h eps
O | storage Entries 251 | |~ storage Entries 251
e Mean 07067 10— Mean 16.06
C RMS 009243 L RMS 241
12 h_MBps L h eps
F Enties 252 B— Entries 252
T Mean 0.3905 B Mean 8883
C RMS 0.14 L RMS 33
8— b
6— "
C -
s B
3 I t
\ ‘ ‘ ||||” I
o AL D00 UM
0 o4 02 03 04 05 05 07 08 09 1
0 5 10 15 20 25
size/time[MB/s] eventsitime[s]

Fig. 7. : transfer (MBps). Fig. 8. : transfer (eps).
Histograms on Fig. 7 and Fig. 8 show data transfer rate to the NAF. The best performance is

obtained for lazy-download setting; about 0,7 MB per second which is corresponds to 16 read
events per second.

dcap_numOneration read dcap_nO max_readtima | max_readiime
\—_ — default J Entries 252 \—' —— default Entries 252
] Mean 1.482e+05 160=1 Mean 4763
00— | — 1y RMS 2523e+04 O — lay RMS 6273
L dcap nO C max_readiime
[| storaee Enfries 251 10— | — storage Enftries 251
50— Mean 49.35 I Mean 6969
L RMS 1527 120~ RMS 6186
B dcap nO I max_readtime
200~ Entries 282 100l Enties 252
L Mean 1.476e+05 i Mean 1787
B RMS 2544e+04 I RMS 1794
150|— iy
r (1] 1N
100— I
r 40
50— i
- 20 =
U_J L1 | L1 | ‘ L L) J 1 \JJ L1l { lal \J.J "] LJMHH&H_;_J.‘LL_L_L_X‘IOJ U_ 1 r‘l_""“‘rrtl-r‘—LIIJ\ll\l\ II—\lL\I\ |I\II‘I\ \I‘I\ 11 ><103
20 4 60 80 100 120 140 160 180 200 0 10 2 30 4 50 60 70 8 90 100
dcap_OpNum max_readtime[ms]

Fig. 9. : number of dcap operations. Fig. 10. : maximum readtime.

On Fig. 9 we can easily see, that the number of dcap operations for lazy-download setting is
the smallest (almost three orders of magnitude difference). This is directly related to the
largest maximum readtime (Fig. 10) for this setting; in this case ROOT reads only 128-MB's
segments of local shadow file (these big parts are read in relatively long time, but there is only
a dozen such operations).

4 Summary

During the Summer Student Programme 2010 in DESY | have made an analysis of the
performance for CRAB jobs on the NAF. | tested the behavior of various caching methods.
Proved to be the most efficient method lazy-download, which download a remote files to a
local shadow file and reads only it.

5 Appendix

In this part | attach plots obtained during the analysis performed for test area 10 GE.

exetime readtime/1000_| readtime
—— default Entries 248 default Entries 248
C Mean 2.203e+04 O Mean 2.075e+04
60— |— lazy RMS 8852 o | lazy RMS 8756
r exetime F readtime
ol storage Entries 248 [|- storage Entries 248
50— Mean 1.178e+04 60— Mean 1.081e+04
r l RMS 3965 F RMS 3863
r exetime sof readtime
40— Entries 248 r Entries 248
C Mean 2.871e+04 - Mean 2.739%+04
C RMS 1.03e+04 40? RMS 1.017e+04
30— B
L -
20— C
B 0
10— C
L 10—
D‘HF‘L‘FH‘H‘HH | | 0 [O I T o oo 1 a1l 1 P [
0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000 0 5000 10000 15000 20000 25000 30000 35000 40000 45000 50000
exetime[s] readtime[s]
Fig. 11. : 10GE - runtime Fig. 12. : 10GE - readtime

size/time hMBps | eventstime | h_eps
— default Entries 24 — default Entries 248
] Mean 0.0413 T Mean 0.9322
10— | — lazy RMS 0.0170! | lazy RMS 0.3677
F h_MBps r h_eps
- | sterage Entries 24 100 | —— storage Entries 248
B Mean 0.0725 I Mean 1638
ot RMS 00244] RMS 05288
L h_MBps 80 h_eps
i Entries 24, M Entries 248
60 H- Mean 0.0304:] Mean 0.6855
H RMS 001100 gl RMS 02342
40 H
L 40H
20 20
0 }* | ﬁ L 1ol ‘ L1l ‘ L1l ‘ LI ‘ LI | L1l ‘ L1l ‘ LIl ‘ LI D b ﬂHn n | | L L ‘ | — 1 ‘ I I ‘ | I
0 01 02 03 04 05 06 07 08 09 1 0 5 10 15 20 25
size/time[MB/s] events/time[s”]

Fig. 13. : 10GE - transfer (MBps) Fig. 14. : 10GE - transfer (eps)

max re;&ﬂ'ﬁé max_readtime dcap njmﬂne[aﬂnn_tmr dcap_nO
= —— dofault Entries 248 \—' — default J Entries 248
F Mean 9098 w0 | Mean 1.473e+05
ol |l RMS 8255 [|—lay |[RMS _ 2.641e+04 |
L max_readtime r dcap_nO
[|~ storage Entries 248 [| Storage Entries 248
120 Mean 3.182e+05 250 Mean 49.02
RMS 6.704e+04 C RMS 1518
max_readtime L dcap_nO
100 — - 2001— " =
Entries 248 C Entries 248
i Mean 1.152e+04 F Mean 1.473¢+05
80— RMS 1.118e+04 L RMS 2.642e+04
I 150
60 L
I 100
40| L
H 50 ;
| J“ﬁl :
o_\\ L \I\\‘\\\\ ‘\\\\‘\ \\‘\ AI‘A\\ﬂJ_:_I-!-D-J\-IT‘m\ILlH\\ X103 071 L1 ‘ Ll | ‘ L \JJ Ly ‘ Ll \AL\ J.\J_IJ L L Ll ‘ Lol X103
0 50 100 150 200 250 300 350 400 450 500 0 20 40 60 80 100 120 140 160 180 200
max_readtime[ms] dcap_OpNum
Fig. 15. : 10GE - max readtime Fig. 16. : 10GE - number of dcap operations

Below | present short description of my scripts.

run.pl: PERL script used to retrieve histograms from ROOT files and merging them.
parsefjr.py: Python script used to parse fjr.xml files and save useful statistics in text files.
draw.C: ROOT macro used to create tree and output histograms.

All_plots.C: C macro used to create comparative plots (for various cache-hint).

Whole of my work was saved in directory: /afs/naf.desy.de/group/cms/perftests

10

References

[1] CMS Collaboration: CMS, The Computing Project - Technical Design Report, CERN, 2005/07.
[2] twiki, The CMS Offline SW Guide — https.//twiki.cern.ch/twiki/bin/view/CMS/SWGuide .

11

https://twiki.cern.ch/twiki/bin/view/CMS/SWGuide

