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1 Introduction

This paper contains a report on the work done during the DESY Summer Student programme in
the year 2010. The presented results are part of the analysis of the Tier's 2 performances made
for the CMS Computing Project.

1.1 CMS experiment

The Compact Muon Solenoid (CMS) experiment is designed as a general-purpose particle
physics detector built at the Large Hadron Collider (LHC) at CERN to observe a wide range of
particles and phenomena produced in high-energy s=14TeV proton-proton collisions.

1.2 The Computing Project

The CMS Computing is based on Grid technologies and is organized in a so called Tier
structure, with one Tier-0 at CERN at the location of the experiment, 7 Tier-1 centers and 40
Tier-2 centers round the world. DESY is hosting one of the Tier-2 centers, which is operated in
close collaboration with the DESY-IT staff and CMS members from the University of Hamburg.
The CMS Tier-2 centers are used for centrally managed production of Monte Carlo events and
analysis of CMS data by individual users.

To complement the Grid based computing and storage resources DESY runs the National
Analysis Facility (NAF) for the German user community. The basic structure of NAF is shown in
Fig. 1.
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Fig. 1. : NAF overview.
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2 Data analysis

Perfomrance tests of analyzing and storage data in computer grid are significant for each HEP
experiment. We are always looking for the best configuration of the computer storage system
to make the analysis more efficient.

My project concerning data analysis of DESY's Tier's 2 performances. Specially | focused on
retrieving parameters of NAF-GRID - DESY-GRID (Fig. 1) transfer. | worked on CMSSW (CMS
SoftWare) version 3.6.1 and used glite32 Ul.

2.1 CMS data and configuration

| have worked on data from CMS Dataset Bookkeeping System (DBS), which is a database and
user API that indexes event-data data for the CMS Collaboration.

Used dataset: /Mu/Run2010A-PromptReco-v4/RECO

Main tool used by me in analysis was CRAB (CMS Remote Analysis Builder). CRAB provides a
utility for creating and submiting CMS jobs for input datasets. Fig. 2 shows an overview schema
of CRAB working. Jobs were run with the configuration (crab.cfg):

Scheduler: SGU (Sun Grid Engine)

Lumi mask: Cert_132440141961_7TeV_StreamExpress_Collisions10_JSON.txt
Lumis per job: 20

Parameter set file: patTuple_standard_cfg.py

crab —create -submit

Fig 2. : Basic workflow of CRAB.



2.2 Physics analysis

As output of CRAB. PAT Tuple ROOT files are created. To produce histograms with physics
analysis, | have used FWLiteAnalyzer. Plots are contained in analyzePatBasics.root files. We
could retrive useful statistics only the sample is large, so usually it is necessary to do 'summary’
histograms - we need merge plots for all jobs set. For this purpose we have used the program
hadd:

hadd analyzeAll.root @out ,
where @out is a list with names of output root files and analyzeAll.root will contain the

merged histograms.

An example plot is shown the di-muon invariant mass spectrum. It was drawn for 253 crab's
jobs, which corresponds to more than 500k events.
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Fig. 3. : dimuon inv mass.

In Fig. 3 we can notice peak around 92 GeV, which corresponds to u* u pairs from to
Z - decay.



2.3. Framework job reports analysis

In addition to ROOT files, CRAB produces as output Framwork Job Reports (FJR), which contain
useful storage and performance statistics. To extract the information it is necessary to parse
the FIR files (I wrote script in python) — these are XML documents.

The following variables were studied:

exetime - running time of the job,

readtime - time spent for reading data,

size of read data,

number of events,

operation number - number of times the operation was attempted,

maximum and minimum readtime - the smallest and the biggest time an operation
took,

number of dcap operations — number of reads from the dCache area.

Fig. 4 shows an example histogram with amount of data read per event.
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Fig. 4. : read data per event for the test dataset.



2.4. Caching

An interesting effect on the performance analysis is a caching method.

To steer the 1/O layer in CMSSW jobs we using 1/O adaptors. In this project | have used
TFileAdaptor — the interface between CMSSW and ROOT. To run the jobs for various type of
caching it is necessary to set a value for cacheHint parameter. This can be done in configuration
file (patTuple_standard_cfg.py), by adding the following code:

[o.]

process.AdaptorConfig = cms.Service("AdaptorConfig"”,
cacheHint=cms.untracked.string("lazy-download"),

# cacheHint=cms.untracked.string("storage-only"),

readHint=cms.untracked.string("auto-detect") )
[...]

Tests were conducted for the following values of cacheHint:
* default (application-only) - ROOT does the caching.
* Lazy-download -Remote files will be downloaded to a local shadow file in 128MB
segments. ROOT reads from this local file.

* Storage-only - ROOT drives the caching using a prefetch list, but will not allocate a
cache of its own.
The readHint indicates how I/O reads should be performed.

(auto-detect: default and requests optimum read-ahead buffering given the other 1/0
choices. )

3 Results

Below are the result obtained for the analysis done on the NAF.
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Fig. 5. : Runtime of jobs. Fig. 6. : Readltime.
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Fig. 5 and Fig. 6 show the amount of time used by the individual jobs in the whole analysis
process and reading from inputs. We can easily notice that lazy-download setting requires the
shortest time to analyze jobs; mean time for one job is 1151 sec (about 20 minutes). Also we
want that reading part was as short as possible — for lazy-download setting we get the best
performance (mean about 135,1 sec, which corresponds only 10% of the whole analysis time).
Default setting is characterized by the worst performance — more than hour analysis of which
about 75% is spent for reading data.
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Fig. 7. : transfer (MBps). Fig. 8. : transfer (eps).
Histograms on Fig. 7 and Fig. 8 show data transfer rate to the NAF. The best performance is

obtained for lazy-download setting; about 0,7 MB per second which is corresponds to 16 read
events per second.
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Fig. 9. : number of dcap operations. Fig. 10. : maximum readtime.



On Fig. 9 we can easily see, that the number of dcap operations for lazy-download setting is
the smallest (almost three orders of magnitude difference). This is directly related to the
largest maximum readtime (Fig. 10) for this setting; in this case ROOT reads only 128-MB's
segments of local shadow file (these big parts are read in relatively long time, but there is only
a dozen such operations).

4 Summary

During the Summer Student Programme 2010 in DESY | have made an analysis of the
performance for CRAB jobs on the NAF. | tested the behavior of various caching methods.
Proved to be the most efficient method lazy-download, which download a remote files to a
local shadow file and reads only it.

5 Appendix

In this part | attach plots obtained during the analysis performed for test area 10 GE.
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Fig. 13. : 10GE - transfer (MBps) Fig. 14. : 10GE - transfer (eps)
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Fig. 15. : 10GE - max readtime Fig. 16. : 10GE - number of dcap operations

Below | present short description of my scripts.

run.pl: PERL script used to retrieve histograms from ROOT files and merging them.
parsefjr.py: Python script used to parse fjr.xml files and save useful statistics in text files.
draw.C: ROOT macro used to create tree and output histograms.

All_plots.C: C macro used to create comparative plots (for various cache-hint).

Whole of my work was saved in directory: /afs/naf.desy.de/group/cms/perftests
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