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Abstract

In this note I will report about my summer project in the string group at DESY
Hamburg. In this project I worked on a topic within the so called AdS/CFT
correspondence, which is a duality between a gravitational- and a quantum field
theory. After a short introduction, in section II I will review the basics of the
AdS3/CFT2-correspondence [1], which is one of the most studied and elaborated
version of the conjecture. Section III shows the first calculation of an at the moment
unknown four point correlator in this theory. In section IV we show a recursion
relation for a general p-point function, which we will prove by using a worldsheet
operator product expansion introduced in [19].
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1 Introduction

The major problem of the AdS/CFT-correspondence is that it is only a conjecture. There
are a few non-trivial ideas on how one could prove this conjecture, but no proof at all.
However, one can test the duality by comparing correlation functions computed in the
bulk of the AdS space with the corresponding ones in the conformal field theory on the
boundary of the AdS space. For a long time, it was not known how to relate correlators
in the AdS3/CFT2 duality. In [2, 6] extremal and non-extremal three-point functions of
chiral primary operators in the worldsheet theory for string theory on AdS3 × S3 × T 4

were successfully matched to the corresponding correlators in the dual boundary theory.
Recently, also four-point correlators were tested in [3].

In this project, we will extend the test to higher p-point functions. In principle, we
could just repeat the procedure for five-, six-, etc. point functions, but this may be cum-
bersome due to the complexity of the correlators. Instead we will construct an operator
product expansion (OPE) for chiral primary operators on the worldsheet. The idea is to
use this OPE to find a simple recursion relation for the p-point correlators.

2 Basics of the AdS3/CFT2-correspondence

The AdS/CFT correspondence can be understood as an gauge theory/gravity correspon-
dences, because it describes a duality between a AdSn×M string theory (M := manifold
with dim(M) = 10 − n) and a supersymmetric CFT in n − 1 space-time dimensions. It
is worthy of mention that the gauge group of the CFT depend on the choice of the man-
ifold M. The prototype of this correspondence [1] is the exact equivalence between type
IIB string theory compactified on AdS5×S5, and four-dimensional N = 4 supersymmet-
ric Yang Mills theory. This was first worked out and proposed by Juan Maldacena in 1997.

Quit general, AdSd/CFTd−1 relates a d-dimensional theory of gravity on AdSd to a d−1-
dimensional conformal quantum field theory on its boundary. This will now be explained
in the special case of an AdS3 space.

2.1 Anti-de Sitter space

The Anti-de Sitter space is a maximally symmetric solution of the Einstein equations
with a negative cosmological constant. The AdS3-space which was used by us is a three
dimensional manifold

−X0 −X1 +X2 +X3 = L2

embedded in a four-dimensional space with metric,

ds2 = −dX2
0 − dX2

1 + dX2
2 + dX2

3

The boundary ofAdS3 is a 2-dimensional Minkowski space-time of an anti-de Sitter space
is an example of a warped space: in a suitable local coordinate system,

ds2 = L2(dr2 + e2r(nµνdx
µdxν)),

where r is the radial direction and xµ (µ = 0, 1) the coordinate on the boundary. In the
above equation the factor of L is just a scale factor. The boundary of the anti-de Sitter
space could be reached by the limit r →∞. Here the warp factor e2r blows up. On this
boundary we expect the boundary field theory to live.
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2.2 Maldacenas conjecture

To derive the AdS/CFT correspondence like Maldacena did it in [1] one has to understand
the notion of Dp-branes, where the p stands for the (spatial) dimension of the brane. A
Dp-brane is a p+ 1 dimensional hyperplane where open strings end with Dirichlet bound-
ary conditions.

For his conjecture Maldacena used a D3-Brane. This has a description both in terms
of open and closed strings. In the limit of vanishing string length ls → 0, the open strings
on the D3 generate a N = 4 super Yang Mills theory with the gauge group U(N) and
gauge coupling constant g2

YM . On the other hand the D3-branes also emit closed strings,
which generate an AdS5 × S5 space. For our consideration we identify the following
parameters:

gs = g2
YM , (L/ls)

4 = 4πg2
YMN = 4πλ

Hence the AdS/CFT correspondence is an open-closed string duality.

2.3 WZW-model of Lie Groups

In our case we are looking at a AdS3×S3×T 4 string theory, which we will describe by using
the WZW-formulation (cf. [5]), where WZW stands for Wess-Zumino-Witten. For the
construction of the WZW-model we will follow [6] and [2]. The Lagrangian formulation
of the WZW model is given by

S = − k

8π

∫
K
(
γ−1∂µγ, γ−1∂µγ

)
dx2 + 2πS̃(γ) (2.1)

In this Lagrangian γ : C→ G is a G-valued function which lives on the complex plane. In
this report we are only looking at Lie Groups G . We are also use the partial derivative
∂µ = ∂

∂xµ
in the Euclidean metric the Killing form of the Lie Algebra g of G.

K(x, y) =
Tr(adxady)

2h∨
x, y ∈ g. (2.2)

If g is an Lie Algebra then ad : g → End(g) is the adjoint map, and is defined by
adxy := [x, y] ∈ g. The number h∨ which arises in eq. (2.2) is an integer which is fixed
by the algebra g and is called Coexter number of g. The second term of the action (2.1)
is the Wess-Zumino term,

S̃(γ) =
−1

48 π2

∫
B3=∂S2

d3y εijkK
(
γ−1 ∂γ

∂yi
,

[
γ−1 ∂γ

∂yj
, γ−1 ∂γ

∂yk

])
(2.3)

where yi, i = 1, 2, 3 denote the coordinates of B. These models are exactly solvable
by affine Lie algebras which are given by the currents. If one determines the conserved
currents by make use of the Noether theorem one obtains

J := −k∂zγγ−1 , J̄ := kγ−1∂z̄γ

Expanding J =
∑

a t
aJa one obtains that the singular part of the operator product

expansion (OPE) of two currents is equal to

Ja(z)J b(w) ∼ δabk

(z − w)2
+
ifabc J c(w)

(z − w)
(2.4)
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This OPE is equivalent to an affine Lie algebra. To see this we expand the currents by
the Laurent series

Ja(z) =
∑
n∈Z

(z − w)−1−nJan(w),

Jan(z) =

∮
z

dw (w − z)nJa(w).

Using this and the operator product expansion one obtains for the commutation relation
of two Jan(w) [

Jan(z), J bm(z)
]

= ifabcJ cn+m + knδm+n,0. (2.5)

One could do the same for the current operators J̄ and obtains that the WZW-model of
a compact Lie group G is solved by a direct sum of two ĝ

⊗
ĝ affine lie algebras.

2.4 The AdS3 × S3 × T 4 case

Now we are able to construct the N = 1 supersymmetric worldsheet theory for string
theory on AdS3×S3×T 4. We may forget about the T 4 since it is only four times the well
known free boson/fermion on a circle, a free U(1)4 theory. In this review of the string
theory we will follow [6].

The supersymmetric SL(2, R)k model (where k is the level of the affine algebra) has
symmetries generated by the currents ψA + θJA, A = 1, 2, 3. The relevant operator
product expansions are

JA(z)JB(w) ∼
δAB k

2

(z − w)2
+
iεABC JC(w)

(z − w)
,

JA(z)ψB(w) ∼ iεABC ψC(w)

(z − w)
,

ψA(z)ψB(w) ∼
k
2
ηAB

(z − w)
.

In the above equations ε123 = 1 is the structure constant, and ηAB = diag(1, 1,−1).
The second model is the one of the supersymmetric SU(2)k which is constructed by the
supercurrents χa + θKa, a = 1, 2, 3 with the ope’s

Ka(z)Kb(w) ∼
δab k

2

(z − w)2
+
iεabc Kc(w)

(z − w)
,

Ka(z)χb(w) ∼ iεabc χc(w)

(z − w)
,

χa(z)χb(w) ∼
k
2
δab

(z − w)
.

Since we will use them later we show how the WZW currents JA, Ka are split into bosonic
and fermionic currents

JA = jA + ̂A = jA − i

k
eABC : ψBψC : ,

Ka = ka + k̂a = ka − i

k
eabc : χbχc : ,
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where : AB : is the normal ordering of the operator product of A and B which is defined
by

: AB : (z) =
1

2πi

∮
z

dw

w − z
A(w)B(z). (2.6)

It is also usefull to rewrite the current operator by

J± = J1 ± iJ2, ψ± = ψ1 ± iψ2,

K± = K1 ± iK2, χ± = χ1 ± iχ2.

For more information on how these models are constructed take a look for SU(2) at [28]
and for SL(2, R) at [27],[26],[6] or [3].

The chiral primary operators of SL(2) and SU(2) are denoted by Φh,m,m̄(z) and Φ′j,m,m̄(z).
Sometimes it is usefull to rewrite the primary fields in the notation of mode expansion

Φh(x, z) = Φ
SL(2)
h (x, z) =

∑
m,m̄

Φ
SL(2)
h,m,m̄x

−h−mx−h−m̄,

Φ′j(y, z) = Φ
SU(2)
j (y, z) =

∑
m,m̄

Φ
SU(2)
j,m,m̄y

j+myh+m̄.

These satisfy the equations

JanΦj = ĴanΦj = 0 for n > 0

J2
0 Φj = ηabJa0J

b
0Φj = j(j + 1)Φj

J̄2
0 Φj = ηabJ̄a0 J̄

b
0Φj = j(j + 1)Φj

Similarly, there is a mode expansion for the currents

J(x, z) = −J+(z) + 2xJ0(z)− x2J−(z)

ψ(x, z) = −ψ+(z) + 2xψ0(z)− x2ψ−(z)

K(x, z) = −K+(z) + 2yK0(z)− y2K−(z)

χ(x, z) = −χ+(z) + 2xχ0(z)− x2χ−(z)

2.5 Spectrum of chiral operators

In the following we summarize the chiral primaries of the worldsheet theory [23, 22, 6].
Therefore we drop the z- and z̄-dependence of the holomorphic and anti-holomorphic
operators respectively, because every operator has this dependence. The chiral operators
are constructed from the conformal dimension zero operator

Oj(x, y) = Φh(x)Φ′j(y) with h = j + 1, j = 0, 1/2, . . . ,
k − 2

2
(2.7)

The fact that O has conformal scale dimension zero follows immediately from ∆(j) =
j(j + 1)/k and

∆(h) = −h(h− 1)/k =︸︷︷︸
h=j+1

−j(j + 1)/k.
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In eq. (2.7) Φh(x) and Φ′j(y) are the mode expanded Primaries of the SL(2) and SU(2)
respectively. Quit generally, in any string theory [30] there exist two sectors, NS and RR.

In the holomorphic sector there are three families of chiral primaries. In the −1 (−1/2)
picture of the NS (R) sector they are obtained by multiplying Oj(x, y) by any of the op-
erators e−φ ψ(x), e−φ χ(x), e−φ/2 sa(x, y) a = 1, 2. The s(x, y) operators appear, because
of spin operators which we need for the construction of the R-sector primaries (c.f [3]).
Since we do not need the R sector chiral primaries we will not explain how they could be
constructed and why they are in the spectrum. Below we will list all chiral primaries of
the theory and in which picture they are :

Pic. Op. Expansion

−1 O(0)
j = e−φOj(x, y)ψ(x)

0 Õ(0)
j =

(
(1− h)ĵ + j + k

2
ψ(x)χa(y)P a

y

)
Oj(x, y)

 (NS sector)

−1
2
O(a)
j = e−φ/2Oj(x, y)sa−(x, y)

−3
2
Õ(a)
j = −

√
k(2h− 1)−1e−φ3/2Oj(x, y)sa+(x, y)

}
(R sector)

−1 O(2)
j = e−φOj(x, y)χ(y)

0 Õ(2)
j =

(
hk̂ + k + k

2
χ(y)ψA(y)DA

x

)
Oj(x, y)

}
(NS sector) (2.8)

To complete the discussion about the chiral primaries we have to multiply the anti-
holomorphic and holomorphic operators,

O(0,0̄)
j (x, x̄; y, ȳ) = O(0)

j (x, y, z)O(0̄)
j (x̄, ȳ, z̄).

The picture of the operators are important, because the correlators have to be in −2
picture. This means that we have to take care that the sum of all picture numbers is
equal to −2.

3 Extremal four-point correlator

In this section we calculate a particular four point correlation function of chiral primaries.
This correlator was not calculated before, but was expected to be equal to the corre-
sponding correlator in the boundary conformal field theory (bcft). The computation
follows closely that in [3]. In the boundary theory, this correlator is given by [6]

〈O(2,2)†
n4

O(0,0)
n3

O(0,0)
n2

O(0,0)
n1
〉 =

1

N

n
1/2
4√

n1n2n3n4

, (3.1)

where O
(0,0)
n are the chiral primary operator’s in the bcft. Roughly speaking, we identify

the operator On in the field theory with those in the worldsheet theory by

On(x) =

∫
dz2Oj(x, z),

where n = 2j + 1, . In order to get (3.1) from the worldsheet, we need to show

G(0,0)
4 (x, x̄) = g−2

s

∫
d2z
〈

O(2,2)
j4

(x4, y4)O(0,0)
j3

(x3, y3)Õ(0,0)
j2

(x2, y2)Õ(0,0)
j1

(x1, y1)
〉

=
1

N

(2(j1 + j2) + 1)√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

, (3.2)
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where gs/k is identified with N by

gs
k

=
1

N1/2
.

3.1 Preliminary

We begin by computing the correlator

g−2
s

∫
d2z1

∫
d2z2

∫
d2z3

∫
d2z4

×
〈
O(2,2)
j4

(x4, y4)O(0,0)
j3

(x3, y3)Õ(0,0)
j2

(x2, y2)Õ(0,0)
j1

(x1, y1)
〉

Using the modular invariance and sending z4,3,2,1 =∞, 1, z, 0 as well as x4,3,2,1 =∞, 1, x, 0
the above equation becomes

G4(x, x̄) = g−2
s

∫
d2z
〈
O(2,2)
j4

(∞, y4)O(0,0)
j3

(1, y3)Õ(0,0)
j2

(x, y2)Õ(0,0)
j1

(0, y1)
〉

(3.3)

For simplification we only look at the holomorphic part of the correlation function and
take at the end the modulus squared of the equation. The holomorphic part of the chiral
primaries which appear in the four point function (3.3) are

O(2)
j = e−φ(z)Oj(x, y)χ(y)

O(0)
j = e−φ(z)Oj(x, y)ψ(x)

Õ(0)
j =

(
(1− h)ĵ(x) + j(x) +

2

k
ψ(x)χaP

a
y

)
Oj(x, y)

By looking at the list (2.8) one obtains that the total ghost number of the correlator is
−1 − 1 + 0 + 0 = −2. Now it is possible to decompose the correlator (3.3) into objects
which could separately be calculated. So that we could write (3.3) as

G4(x, x̄) = g−2
s

∫
d2z
〈
O(2,2)
j4

(x4, y4)O(0,0)
j3

(x3, y3)Õ(0,0)
j2

(x2, y2)Õ(0,0)
j1

(x1, y1)
〉

holom.︷︸︸︷
=

〈
e−φ1e−φ2

〉
〈Oj4(x4, y4)χ(y4)Oj3(x3, y3)ψ(x3)

+

(
(1− h2)ĵ(x2) + j(x2) +

2

k
ψ(x2)χaP

a
y2

)
Oj2(x2, y2)

+

(
(1− h1)ĵ(x1) + j(x1) +

2

k
ψ(x1)χaP

a
y1

)
Oj1(x1, y1)

〉
(3.4)
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G4(x, x̄) = g−2
s

∫
d2z
〈
e−φ1e−φ2

〉
[

+
(1− h2)

k

〈
ψ(x3)ĵ(x2)ψ(x1)

〉
[〈χ(y4)χ(y1)〉 ∂y1 − j1∂y1 〈χ(y4)χ(y1)〉]

〈
n=4∏
i=1

Oji(xi, yi)

〉

+
1

k
〈ψ(x3)ψ(x1)〉 [〈χ(y4)χ(y1)〉 ∂y1 − j1∂y1 〈χ(y4)χ(y1)〉]

〈
j(x2)

n=4∏
i=1

Oji(xi, yi)

〉

+
(1− h1)

k

〈
ψ(x3)ĵ(x1)ψ(x2)

〉
[〈χ(y4)χ(y2)〉 ∂y2 − j2∂y2 〈χ(y4)χ(y2)〉]

〈
n=4∏
i=1

Oji(xi, yi)

〉

+
1

k
〈ψ(x3)ψ(x2)〉 [〈χ(y4)χ(y2)〉 ∂y2 − j2∂y2 〈χ(y4)χ(y2)〉]

〈
j(x1)

n=4∏
i=1

Oji(xi, yi)

〉
]

(3.5)

In the above equation we use the fact that [3]

2χaP
a
yi

= χ(yi)∂yi − ji∂yiχ(yi) (3.6)

as well as the fact that correlation functions which include an odd number of ψ or χ fields
vanish.

3.2 Correlators and simplifications

To give the reader a better understanding how we calculate a correlation function we
calculate every summand separately. Before we are able to do this we have to list the four
point correlators of the SL(2) and the SU(2). The four point correlator of the SL(2) is
given by〈

n=4∏
i=1

Φhi(xi, zi; x̄i, z̄i)

〉
= |x24|−4(h2)|x14|2(h3+h2−h4−h1)|x34|2(h1+h2−h4−h3)|x13|2(h4−h3−h2−h1)

× |z24|−4(∆2)|z14|2(ν1)|z34|2(ν2)|z13|2(ν3)FSL(2)(x, z; x̄, z̄)
(3.7)

In the above equation we used the following notation for the exponent of the z and the x
and z.

ν1 = ∆2 + ∆3 −∆1 −∆4 ν2 = ∆1 + ∆2 −∆3 −∆4 ν3 = ∆4 −∆2 −∆1 −∆3

x =
x12x34

x13x24

z =
z12z34

z13z24

xij = xi − xj zij = zi − zj

The function FSL(2)(x, z; x̄, z̄) which appears in our ansatz is expressed by an integral over
all possible values of the representation [27].

FSL(2)(x, z; x̄, z̄) =

∫
1
2

+iR
dhC(h) |Fh(x, z)|2 (3.8)

It is worthy of mention that the function Fh(x, z) could be expressed in terms of a series in
x (cf. [3, 18, 27]). For simplification we use the notation of u = z/x. Maldacena derived
in [18] the following expansion for Fh(x, z).

Fh(x, z) = x(∆(h)−∆(h1)−∆(h2)+h−h1−h2)u(∆(h)−∆(h1)−∆(h2))

∞∑
n=0

gm(u)xm
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It was also shown by Teschner [27] that g0(u) is a solution of the hypergeometric equation.
The solution of the hypergeometric equation is a series in u,

g0 = F (a, b, c|u) = Fh(u) =
∞∑
n=0

H(a, b, c, n)un, (3.9)

where we use the function

H(a, b, c, n) =
Γ(a+ n)Γ(b+ n)Γ(c)

Γ(a)Γ(b)Γ(c+ n)Γ(n+ 1)
,

a = h1 + h2 − h, b = h3 + h4 − h, c = k − 2h.

In the same manner as got the four point correlator for the SL(2) we get the four point
correlator for the SU(2) chrial primaries with the difference that representations of the
SU(2) are finite dimensional. We will skip the derivation of the four point function and
refer this to [3].〈

n=4∏
i=1

Φ′ji(yi, zi; ȳi, z̄i)

〉
= |y24|4(j2)|y14|2(j4+j1−j3−j2)|y34|2(j4+j3−j1−j2x)|x13|2(j1+j2+j3−j4)

× |z24|−4(∆′2)|z14|2(ν′1)|z34|2(ν′2)|z13|2(ν′3)

×
∑
j′,n′

|z|2(∆(j′)−∆(j1)−∆(j2)+n′)

|y|2(j−j1−j2+n′)
C ′(j′)D(j1, j2, J)D(j3, j4, J),

(3.10)

where we use the limits y � 1 and z � 1 as well as we make use of the notation

ν1 = ∆′1 + ∆′3 −∆′2 −∆′4, ν2 = ∆′1 + ∆′2 −∆′3 −∆′4, ν3 = ∆′4 −∆′2 −∆′1 −∆′3,

y =
y12y34

y13y24

, z =
z12z34

z13z24

3.3 Calculation of single correlators

In this section we are interested in some correlators which we need for the computation
of the whole correlator G4(x, x̄). We will first derive all correlators and then make use of
the modular invariance to fix x, y. The first correlator we look at is

〈
ψ(x3)ĵ(x2)ψ(x1)

〉
=

n=3∑
i=1,i 6=2

D(−1)
2i 〈ψ(x3)ψ(x1)〉 =

2kx12x13x23

z12x23
(3.11)

For this computation we used (A.3). The next factor of the first summand is this 2χaP
a
yi

which acts on the SU(2) four point function by (3.6). Before we are able to give the
result we multiply this by (3.11) and make use of the modular invariance (y, z, x)1,2,3,4 =
0, x, 1,∞ and a small cross ratios y, z, x � 1. Therefore it follows that the first term of
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(3.5) is

(1− h2)

k

〈
ψ(x3)ĵ(x2)ψ(x1)

〉
[〈χ(y4)χ(y1)〉 ∂y1 − j1∂y1 〈χ(y4)χ(y1)〉]

〈∏
i=1

Φ′ji(yi, zi; ȳi, z̄i)

〉

=

(
2k(h2 − 1)(j′(y − 1) + j1 + j2 + y(j3 − j4) + (y − 1)n′

yz
+

2k(h2 − 1)(j′(y − 1) + j1 + j2 + y(j3 − j4) + (y − 1)n′

y
+O(z1) +O(x2)

)
×

〈
n=4∏
i=1

Φ′ji(yi, zi; ȳi, z̄i)

〉
,

(3.12)

where we made use of the SL(2) and SU(2) two point functions (A.1) and (A.2) respec-
tively. With the aid of an interchange of the indices 2 ↔ 1 we find the third term of
(3.5).

(1− h1)

k

〈
ψ(x3)ĵ(x1)ψ(x2)

〉
[〈χ(y4)χ(y2)〉 ∂y2 − j2∂y2 〈χ(y4)χ(y2)〉]

〈
n=4∏
i=1

Oji(xi, yi)

〉

=

(
2k(h1 − 1)(j′ − j1 − j2 + n′)

yz
+O(z1) +O(x2)

)〈n=4∏
i=1

Oji(xi, yi)

〉
(3.13)

In the remaining terms we need the following correlator.〈
j(x2)

n=4∏
i=1

Φhi(xi, yi)

〉
For the calculation of the above correlator we need the derivation (A.3). The remaining
factors of the second term are known from the calculation of the first term. Hence (3.14)
leads to

1

k
〈ψ(x3)ψ(x1)〉 [〈χ(y4)χ(y1)〉 ∂y1 − j1∂y1 〈χ(y4)χ(y1)〉]

〈
j(x2)

n=4∏
i=1

Oji(xi, yi)

〉

=

(
k(h− n− h3 − h4)(j′(y − 1) + j1 + j2 + y(j3 − j4) + (y − 1)n′)

y
+O(z1) +O(x1)

)
×

〈
n=4∏
i=1

Oji(xi, yi)

〉
. (3.14)

In the same way as we did it in (3.14), by interchanging of the indices 2↔ 1, we get the
fourth term of (3.5), which is :

1

k
〈ψ(x3)ψ(x2)〉 [〈χ(y4)χ(y2)〉 ∂y2 − j2∂y2 〈χ(y4)χ(y2)〉]

〈
j(x1)

n=4∏
i=1

Oji(xi, yi)

〉

=

(
−k(j − n− h3 − h4)(J − j1 − j2 + n′)

y
+O(z1) +O(x1)

)〈n=4∏
i=1

Oji(xi, yi)

〉
. (3.15)
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3.4 The correlator and the intermediate channel

To get further with the computation of the four point correlation function we have to
think about the chiral operators in the intermediate channel. From the fusion rules [6]

(0, 0)× (0, 0) = (0, 0) + (2, 2)

we conclude that there are two possible c configurations of chiral operators which could be
in the intermediate channel. Hence our sum over j′ has two summands one with j = j1+j2

and one with j = j1 + j2 − 1. This follows also from, the fusion rules. From the first
constraint it follows that the integrand of (3.3) is equal to

2k(j1 + j2)

u
+ 2j3 +O(u) +O(x) (3.16)

We need to investigate this formula further. What we did first was to sum up all parts of
the integrand. After that we use u = z/x, the extremal condition j4 = j1 + j2 + j3−1, the
relation between h and j hi = ji + 1 and the constraint from the fusion rules j = j1 + j2.
As well as the above relations we only take care about the first summands. This follows
from the limit of small x and u. In the last step we skip all descendants by choosing
n′ = 0. We will call this summand of the integrand the 1-particle (0, 0) contribution. It
was shown in [18] that by make use of the resticted integration

∫
|u|<ε the only contribution

is that of the one particle state in the intermediate channel. For further investigations of
G4(x, x̄) we forgot about the second term. So that (3.5) becomes

G
(0,0)
4 (x, x̄) = g−2

s (2(j1 + j2) + 1)2k2

∫
du2

∫
dhC(h)C ′(j)

∣∣∣∣H(a, b, c|0)

u

∣∣∣∣2
× |x|2(∆(h)−∆(j))u2(∆(h)−∆(j))

(3.17)

The integration Before we do the integral over h we integrate over u. Therefore the
relation listed below would be helpful∫

|u|<ε
du|u|2(λ−1) =

π

λ
ε2λ

For further computations we refer to the residue theorem. So it is possible to calculate the
integral over h by make use of∮

dhf(h) = 2iπ
∑
i

Res(f, h0)

Here is h0 a pole of the function f(h). We consider only the pole λ = 0. The argumen-
tation why we could do this is given in [3] and [18]. Therefore we only have to determine
the residuum of the function f(h). This could be done by

Res(f, h0) =
πε2(λ(h0))

∂hλ(h)|h=h0

Now it is possible to calculate G
(0,0)
4 (x, x̄) by taking the limit ε → 0 and with the

identification λ = ∆(h)−∆(j) . Before we present the result of the two integrations it is
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worthy to mention that the product structure constants C(h) and C ′(j) of the SL(2) and

the SU(2) respectively, is equal
c
1/2
µ

2π

∏n=3
i=1

√
B(hi). Therefore G

(0,0)
4 (x, x̄) is given by

G
(0,0)
4 (x, x̄) = g−2

s (2j + 1)2k2 |H(a, b, c|0)|2︸ ︷︷ ︸
=1

cν
4π2

n=4∏
i=1

√
B(ji + 1)

2π2

∂hλ(h)|h=h0

∣∣∣∣∣∣
j=j1+j2

(3.18)

In the above formula cν = 1
2π4k3 and 2π2/(∂hλ(h)|h=h0) = 2π2k/(2j + 1). Before we are

able to compare the four point function of AdS3 theory with the corresponding one of the
bcft we have to appropriately rescale the operators. The correct normalization of the two
point functions are [3]

O(0,0̄)
j1

(x, x̄) =

√
2π2√

kB(h)(2h− 1)
gsO(0,0̄)

j1
(x, x̄) (3.19)

and

O(2,2̄)
j1

(x, x̄) =

√
2π2√

kB(h)(2h− 1)
gsO(2,2̄)

j1
(x, x̄) (3.20)

Subsituting this normalization into (3.18) we are allowed to give a result of (3.3) which
could be compared to the bcft once.

G(0,0)
4 (x, x̄) = g−2

s

∫
d2z
〈

O(2,2)
j4

(x4, y4)O(0,0)
j3

(x3, y3)Õ(0,0)
j2

(x2, y2)Õ(0,0)
j1

(x1, y1)
〉

=
4π4√

k4
∏n=4

i=1 B(ji + 1)(2ji + 1)
g4
s

×
〈
O(2,2)
j4

(x4, y4)O(0,0)
j3

(x3, y3)Õ(0,0)
j2

(x2, y2)Õ(0,0)
j1

(x1, y1)
〉

⇒ G(0,0)
4 (x, x̄) =

1

N

(2(j1 + j2) + 1)√
(2j1 + 1)(2j2 + 1)(2j3 + 1)(2j4 + 1)

(3.21)

If we now look at (3.21) we see that this is exactly what we expected. But it is worthy of
mention that we take a few limit to derive the correspondence. We worked in a limit in
which x� 1 as well as that we only integrate about a very small area of the z-plane.

4 Operator product expansion on the worldsheet

In this section we generalize the computation to arbitrary p-point correlation functions.
In particular, we derive a recursion relation for the p point correlator using appropriate
operator product expansions. Later, we will compare ourresults with a similar recursion
relation found in [20], in the bcft.

4.1 Worldsheet operator product expansion

In the next two subsections we derive an operator product expansion of two normalized
chiral primaries by argue that the four point function reduced to an product of two three
point functions (cf. [3]). So that we could make an ansatz by relating the four point
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function to the three point function. The most general form of a worldsheet OPE is, in
the limit z → 0, [19]:

Oj1(0)Oj2(x, x̄, z, z̄) =
∑
j

∫
dh

∫
C
d2x′

F (ji, j, hi, h)O(0,0)
j (x, 0)

|x1|α|x− x′|β|x′|γ
|z|2(∆(h,j)−∆1−∆2) + desc.

The d2x integral simplifies by the assumption that x is very small and by the substitution
y = x′/|x|.

=
∑
j

∫
dh
F (ji, j, hi, h)|z|2(∆(h,j)−∆1−∆2)

|x|2(α+β+γ−2)

×
∫

C
d2y

O(0,0)
j (|x|y, 0)

|1− y|β|y|γ
+ desc.

The expected x and z dependence of the operator product expansion is immediately
determind by performing a scale transformation on both sides of the equation. Hence we
get

α + β + γ − 2 = h1 + h2 + h

To evaluate the d2y integral we perform a Taylor expansion of the operator O(0,0)
j .

=
∑
j

∫
dh
F (ji, j, hi, h)|z|2(∆(h,j)−∆1−∆2)

|x|2(α+β+γ−2)
O(0,0)
j (0, 0)

×
∫

C
d2y

1

|1− y|β|y|γ
+ desc.

where ∆(h, j) denotes the weight of the operator O(0,0)
j . The dependence on z and x is

completely determined by conformal invariance. For the moment, we ignore the contribu-
tion of descendants. Let us consider the OPE of the chiral primary operator Oj1 = O(0,0)

j1
,

which is in the −1 picture, and the corresponding operator Oj2 = Õ(0,0)
j2

in 0 picture.
Their worldsheet conformal weights are ∆(1) = ∆(2) = 1. For further simplification of
the OPE, we take the limit of small x. In this limit, we have

O(0,0)
j1

(0)Õ(0,0)
j2

(x, x̄, z, z̄) =
∑
j

∫
dh |z|2(∆(h,j)−1)|x|2(h−h1−h2+1)F (hi, h)O(0,0)

j (0) (4.1)

where

F (hi, h) =
gs

2π2k2
(h+ h1 + h2 − 2)2 (2h− 1)1/2

(2h1 − 1)1/2(2h2 − 1)1/2
(4.2)

and ∆(h, j) = ∆(h) + ∆(j)∗ . After the argumentation and the proof that the p point
function reduce to the product of a three point function and p− 1 point function we will
show how we could exactly compute this operator product expansion.

∗x-dep.: h(0) − h
(0)
1 − h

(0)
2 . Use h(0) = h− 1.
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4.2 Specifically relating three- to four point functions

As a first application we will substitute the ope into the four point function for relating it
to a three point function. This allows us to simplify the proof of the algorithm of reducing
a p-point function to the product of a three-point function and a p−1-point function. We
also know from [2] and [3] that the three- and four-point functions, respectively, of chiral
primaries of the AdS3×S3×T 4 string-theory are equal to the chiral operator correlator of
the bcft. Since that and the fact that Packman et.al. showed how to calculate the n-point
function on the bcft side it is possible to proof the identity of the p-point correlators of
chiral primary operators.
But before this is done consider the four point function and reduce it to the product of
two three point functions as Kirsch did it in [3, Sec. 4.3]. The four point function which
is considered here is

G4(x, x̄) = g−2
s

∫
d2z
〈

Õj4(∞)Oj3(1)Õj2(x, x̄; z, z̄)Oj1(0)
〉

(4.3)

The substitution of eq. (4.1) into the above equation leads to

G4(x, x̄) = g−2
s

∑
j

∫
1
2

+iR
dh

∫
d2z|z|2(∆(h,j)−1)|x|2(h−h1−h2+1)

× gs
2π2k2

(h+ h1 + h2 − 2)2
√

(2h− 1)√
(2h1 − 1)(2h2 − 1)

〈Oj4(∞)Oj3(1)Oj(0)〉
(4.4)

The z- and h-integral are computed exactly as shown in section 3. Hence G4(x, x̄) is

G4(x, x̄) =︸︷︷︸
h=j+1

1

gsk

∑
j

|x|2(j−j1−j2) (j + j1 + j2 + 1)2√
(2j1 + 1)(2j2 + 1)(2j + 1)

× 〈Oj4(∞)Oj3(1)Oj(0)〉

= g−2
s

〈
Oj4(∞)Õj3(1)Oj(0)

〉〈
Õj2(x, x̄)Oj1(0)Oj(∞)

〉
= G3(x, x̄)

〈
Õj2(x, x̄)Oj1(0)Oj(∞)

〉
, (4.5)

where G3(x, x̄) is given by

G3(x, x̄) =
gs
k

(j1 + j2 + j + 1)2√
(2j2 + 1)(2j1 + 1)(2j + 1)

|x|−2j12 (4.6)

The last step requires the knowledge of the three point function. We therefore refer to [2].
As well as we make use of the three point function we used the fact that only operators
with j = j1 + j2 could stay on the intermediate channel.

4.3 Recursion relation for worldsheet p-point functions

We consider the worldsheet p-point function of the (rescaled) operators Oj = O(0,0)
j (in

the following we drop the index (0, 0)) given by

Gp = g−2
s

∫
d2z

〈
Õjp(∞)Ojp−1(1)

(
p−2∏
i=3

∫
d2zi Õji(xi, x̄i; zi, z̄i)

)
Õj2(x, x̄; z, z̄)Oj1(0)

〉
.

(4.1)
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Modular invariance has been used to to fix three of the p worldsheet points as z1,p−1,p =
0, 1,∞. Similarly, the continuous SL(2) representation labels are chosen as x1,p−1,p =
0, 1,∞. The x labels will later be identified with the complex coordinates in the boundary
conformal field theory [24]. The correlator Gp involves p − 2 ghost number zero and 2

ghost number −1 operators, Õ(0,0)
j and O(0,0)

j , respectively. Note that the total ghost
number of a correlator on a genus-g surface must be −χ = −(2− 2g), which is −2 on the
sphere.
Since it is known that there is a certain identity for the two, three and the four point
function of the AdS3 × S3 × T 4 and a 2 dimensional bcft it was a big goal to calculate n
point functions. A few lines below we will show exactly the following identity, with the
aid of our ansatz (4.1) :

Gp =
〈

Oj(∞)Õj2(1)Oj1(0)
〉

Gp−1 . (4.2)

It is interesting to compare this relation with the corresponding relation in the bcft found
in [20],

Cp
ñ

np
=
〈
O

(0,0)†
ñ (∞)O(0,0)

n2
(1)O(0,0)

n1
(0)
〉
Cp−1 , (4.3)

where ñ = n1 + n2 − 1. Both recursion relations are identical, apart from the additional
factor ñ

np
in (4.3). This factor is coming from two-particle contributions in the intermedi-

ate channel. To obtain this factor, we would have to integrate z from 0 to ∞. At present
its not known how to compute z over this region. We therefore can only compute the
contribution from one-particle states in the intermediate channel.

Proof: Substituting (4.1) into Gp, we obtain

Gp =g−2
s

∑
j

〈
Õjp(∞)Ojp−1(1)

(
p−2∏
i=3

∫
d2zi Õji(xi, x̄i; zi, z̄i)

)
Oj(0)

〉

×
∫
d2z

∫
dh

gs
2π2k2

(h+ h1 + h2 − 2)2 (2h− 1)1/2

(2h1 − 1)1/2(2h2 − 1)1/2

× |z|2(∆(h,j)−1)|x|2(h−h1−h2+1)

The next step requires the evaluation of the z and the h integral which was allready been
done in section 4.2. Hence we only will mention the result of the integration and use the
three point function from [2].

=
∑
j

g−2
s

∫
d2zp−2

〈
Õjp(∞)Ojp−1(1)

(
p−3∏
i=3

∫
d2zi Õji(xi, x̄i; zi, z̄i)

)
Õji(xp−2, x̄p−2; zp−2, z̄p−2)Oj(0)

〉〈
Õj2(x, x̄)Oj1(0)Oj(∞)

〉
=
∑
j

Gp−1(xi, x̄i; zi, z̄i; ji, j)
〈

Õj2(x, x̄)Oj1(0)Oj(∞)
〉

=Gp−1(ji, j = j1 + j2) G3(j1, j2, j = j1 + j2)

(4.4)
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4.4 Exact computations

To verify the ansatz we do a direct computation of the operator product expansion of the
SL(2) and the SU(2) WZW model. The OPE of two SL(2) primaries is [27]

Φh2(x2, z2)Φh1(x1, z1) =

∫
1
2

+iR
dh

C(h2, h1, h)|z21|2(−∆21)γ(−2h)

(−π)γ(h2 − h1 − h)γ(h1 − h2 − h)B(h)

×
∫

C
d2x3|x21|−2(h1+h2+h+1)|x23|−2(h2−h1−h−1)

× |x13|−2(h1−h2−h−1)Φh(x3, z1). (4.5)

This operator product requires some attention. A significant distinction between the
ope which was used by Teschner and the one of Eq. (4.5) is that we do not care about
descendents. The C arising in the above equation is the structure constant of the three
point function which we had seen already during the calculation of the four point function.
The second functions which appears is B(h) it is structure constant of the two point
function. We also need a closer look to the γ function, since we use some of its properties.
There exist an invers of the γ function

γ(x) =
Γ(x)

Γ(1− x)
⇒ γ(x)−1 = γ(1− x) (4.6)

This property can be used to show that the γ functions which appear in the ope (4.5) are
exactly the invers of the integral over x. Therefore we consider only the x integral

I =

∫
C
d2x3|x21|−2(h1+h2+h+1)|x23|−2(h2−h1−h−1)|x13|−2(h1−h2−h−1)Φh(x3, z1).

To derive the result we have to perform some substitutions. The first we use is y′ = x13.
Hence our integration measure becomes dy′ = dx3 and

I = |x21|−2(h1+h2+h+1)

∫
C
d2y′|x12 − y′|−2(h2−h1−h−1)|y′|−2(h1−h2−h−1)Φh(x1 − y′, z1)

The second substitution which we make use of is y′ = y/|x12|. Therefore our integration
measure becomes dy|x12| = d′y. We also use the Taylor expansion Φh(x1 − y|x12|, z1) ≈
Φh(x1, z1) + O(x1) for small |x12| � 1. Hence we finally find that the integral about dx3

is equal to

I = |x12|−2(h1+h2−h)Φh(x1, z1)

∫
C
d2y|y|−2(h2−h1−h−1)|1− y|−2(h1−h2−h−1)

This integral can be evaluated using [27]∫
C
d2t|t|2a|1− t|2b = −πγ(−1− a− b)

γ(−a)γ(−b)

This shows that the dx3 integral is the inverse of the factor of the three γ functions and
the −π. If we put everything together (4.5) leads to

Φh2(x2, z2)Φh1(x1, z1) =

∫
1
2

+iR
dh
C(h2, h1, h)|z21|2(−∆21)|x12|−2(h1+h2−h)

B(h)
Φh(x1, z1) (4.7)
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The next step towards an operator product expansion of the (normalized) chiral primary
operators is to consider the ope of the SU(2) primaries. This was first proposed in [29].

Φ′j2(y2, z2)Φ′j1(y1, z1) =
∑
j

C ′(j)|z12|−2(∆′12)|y12|2j12Φ′j(y1, z1)

Again putting everything together gives an operator product expansion of the chiral pri-
maries with zero conformal scaling dimensions.

Oj2(x2, y2)Oj1(x1, y1)

=
∑
j

∫
1
2

+iR
dh
C ′(j)C(h)|z12|−2(∆′12+∆21)|y12|2j12

B(h)|x12|2(h1+h2−h)
Φh(x1, z1)Φ′j(y1, z1)

=
∑
j

∫
1
2

+iR
dh
C ′(j)C(h)|z12|2(∆(h)+∆(j))|y12|2j12

B(h)|x12|2(h1+h2−h)
Oj,h(x1, y1) (4.8)

The above operator product expansion seems to be almost that what we expected. The
distinction between (4.8) and (4.2),(4.1) is that we are looking for an ope which consists
of ”dressed” and normalized operators (in sense of the two point function). The “dressed“
chiral primaries are given by (2.8). Inserting the operators, we are interested in, leads to

Õ(0)
j2

(y2, x2)O(0)
j1

(x1, y1)

=

(
(1− h2)ĵ(x2, z2) + j(x2, z2) +

k

2
ψ(x2, z2)χa(z2)P a

y2

)
Oj2(x2, y2)e−φψ(x1)Oj1(x1, y1)

Before we are allowed to make use of our operator product expansion we have to determine
the action of the ”dressings” on the primaries. Therefore we refer to the appendix (B.5)-
(B.9).

Õ(0)
j2

(y2, x2)O(0)
j1

(x1, y1)

= (1− h2)e−φ
[
ĵ(x2, z2)ψ(x1)

]
Oj2(x2, y2)Oj1(x1, y1)

+ e−φψ(x1)Oj2(x2, y2) [j(x2, z2)Oj1(x1, y1)]

+
k

2
e−φ [ψ(x2, z2)ψ(x1, z1)]

[
(χ(y2)∂y2 − j2∂y2χ(y2))Oj2(x2, y2)e−φψ(x1)Oj1(x1, y1)

]
Where [. . . ] means, make use of the singular terms of the ope’s. Hence

Õ(0)
j2

(y2, x2)O(0)
j1

(x1, y1)

=

(
(1− h2)e−φ

(
D(−1)

21 ψ(x1)
)

+ e−φψ(x1)D(h1)
21 +

k2

2
e−φ

x2
12

z12

(χ(y2)∂y2 − j2∂y2χ(y2))

)
×Oj2(x2, y2)Oj1(x1, y1)

= 2(h1 + h2 − 1)
x12

z12

e−φψ(x1)Oj2(x2, y2)Oj1(x1, y1) (4.9)

+
x2

12

z12

∂x1Oj2(x2, y2)Oj1(x1, y1) +O(x2
21)
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It is now possible to construct the operator product expansion of the dressed and normal-
ized chiral primaries which we are looking for.

Õ(0,0̄)
j1

(x2, x̄2; y2, ȳ2)O(0,0̄)
j2

(x1, x̄1; y1, ȳ1)

=
2π2

k
√
B(h1)(2h1 − 1)B(h2)(2h2 − 1)

g2
sO

(0,0̄)
j1

(x2, x̄2; y2, ȳ2)O(0,0̄)
j1

(x1, x̄1; y1, ȳ1)

|x12|�1︷︸︸︷
=

∑
j

∫
1
2

+iR
dh
|z12|2(∆(h,j)−1)|y12|2j12

|x12|2(h12+1)

(h1 + h2 + h− 2)2(2h− 1)√
(2h− 1)(2h2 − 1)(2h1 − 1)

× gs
√

2π2 C ′(j)C(h)√
k B(h1)B(h2)B(h)

O(0,0̄)
j,h (x1, x̄1; y1, ȳ1). (4.10)

If we make use of the identity〈
Õ(0,0̄)
j1

(∞)O(0,0̄)
j2

(1)O(0,0̄)
j3,h3

(0)
〉

=
C(h)C ′(j) (2π)2√
B(h1)B(h2)B(h3) cν

〈
Õ(0,0̄)
j1

(∞)O(0,0̄)
j2

(1)O(0,0̄)
j3

(0)
〉
h3=j3+1

,

where hi = ji + 1, (i = 1, 2), then the OPE (4.10) is given by

Õ(0,0̄)
j1

(x2, x̄2; y2, ȳ2)O(0,0̄)
j2

(x1, x̄1; y1, ȳ1)

=
∑
j

∫
1
2

+iR
dh

(2h− 1)

2π2k

|z12|2(∆(h,j)−1)|y12|2j12
|x12|2(h12−1)

g−2
s

〈
Õ(0,0̄)
j1

(∞)O(0,0̄)
j2

(1)O(0,0̄)
j,h (0)

〉
O(0,0̄)
j,h (x1, x̄1; y1, ȳ1).

(4.11)

The above equation is not what we expected, but if we take a closer look to the integrand
we will find that it is the same in the case of h = j+ 1. Because in that case we can make
use of the identity

C ′(j)C(h) =
c

1/2
ν

2π

√
B(h)B(h1)B(h2),

where cν = 1/(2π4k3). Hence the ope becomes what we expected. Therefore the prove of
the recursion formula get its justification, because by make use of the above ope we get a
pole at h = j + 1.

5 Conclusion

In this report I showed how one could compute a four point function in string theory
on AdS background as well as how to compute extremal p point functions. Instead of
computing a p point function by a direct computation of the correlator we proved an
algorithm for reducing every correlator to a product of a three-point and a p − 1-point
function. This relation is given by (4.11), which is the main result of this project. Since
Gaberdiel and Krisch showed that there is a correspondence of the two, three and four
point functions the above mentioned reduction leads directly to the correspondence of all
p point functions of the AdS string theory and the bcft.

There is still one open problem. Since Pakman showed that there are also two parti-
cle contributions in the intermediate channel the correlators are equal up to a known
factor. Currently we are not in the position to calculate this factor. Therefore we refer
our correspondence test to the one particle contributions.
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A Correlators

Here we list all correlator which emerge often in this kind of calculations. For the most
of them we are refer to [3]

〈ψ(x1)ψ(x3)〉 = k
x2

12

z12

(A.1)

〈χ(y1)χ(y3)〉 = k
y2

12

z12

(A.2)

〈j(xk)ψ(x1)ψ(x3)〉 =
n=3∑

i=1,i 6=k

D(−1)
ki 〈ψ(x1)ψ(x3)〉 (A.3)〈

j(xk)
n∏
i=1

Φhi(xi, yi)

〉
=

n∑
i=1,i 6=k

D(hi)
ki

〈
n∏
i=1

Φhi(xi, yi)

〉
(A.4)

D(hi)
ki =

1

zki

(
x2
ki∂xi − hi2xki

)
B Singular terms of ope’s

As well as the correlators the singular parts of the ope’s of different currents with pri-
maries, other currents, etc. are important. Hence we will list them here and refer to
[3, 27] for more informations

j(xk)Φhi(xi) = (−j+ + 2xkj
3 − x2

kj
−)Φhi(xi)

∼ 1

zik

(
−D+

xi
+ 2xkD

3
xi
− x2

kD
−
xi

)
Φhi(xi)

=
1

zik

(
−x2

i∂xi − 2hixi + 2xk(xi∂xi + hi)− x2
k∂xi

)
Φhi(xi)

= D(hi)
ki Φhi(xi) (B.5)

j(x1)j(x2) ∼ (k + 2)
x2

12

z2
12

+D(−1)
12 j(x2) , (B.6)

̂(x1)̂(x2) ∼ −2
x2

12

z2
12

+D(−1)
12 ̂(x2) , (B.7)

̂(x1)ψ(x2) ∼ D(−1)
12 ψ(x2) , (B.8)

ψ(x2)ψ(x1) ∼ k
x2

12

z12

(B.9)
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