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Abstract

We study some aspects of the theory and modern experimental results of neutrino
physics from oscillation experiments, cosmology, beta-decay and neutrinoless double
beta decay both in the cases of Dirac and Majorana masses (generated by see-saw type
I mechanism) and discuss bounds on the neutrino masses.
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1 Introduction

Neutrino is the only electrically neutral fermion known so far. It was suggested by Pauli in
1930 to explain the continuous spectrum of beta-decay. Pauli thought that neutrinos will
never be observed, but they were discovered 25 years later. Now neutrino telescopes are
widely used in astrophysics, and also neutrino physics is one of low-energy frontiers of the
physics beyond the Standard Model (SM). In SM neutrinos are massless, but from neutrino
oscillation observations we know that neutrinos have masses. So, we should replace the
massless neutrinos in the SM by the massive ones to describe the observations. It is very
likely that new physics in large scales exists, described by so-called Grand Unified Theories
(GUT), and our low-energy extensions of the SM should be a part of this extended theory.
The next question is why neutrino masses (or couplings with the Higgs field) are so small.
One may propose very small Dirac masses of the neutrinos, but it is likely that neutrinos
are Majorana particles (proposed by E.Majorana in 1937, [1]).

In this review we will consider a model with heavy right-handed Majorana neutrinos
(see-saw type I [2]). See-saw mechanism naturally appears in some of GUT theories (for
example, with gauge group SO(10)[3]). Also, there are many other (more exotic) theories
of the origin of neutrino masses, which we have not considered in this review. For example,
see [3, 4].

In the see-saw model we can propose such phenomena as neutrinoless double beta decay
and Leptogenesis in the Early universe. We will also consider cosmological conditions on
neutrino masses (both in the cases of Dirac and Majorana neutrino masses), compare them
with direct experimental measurements and put constraints on the neutrinoless double beta
decay rate and Leptogenesis.

We start by recalling some basic properties of the Dirac and Weyl spinors and define
Majorana spinors.

2 Dirac, Weyl and Majorana spinors

Let us consider Dirac equation for free particle:

(iγµ∂µ −m)ψ = 0, (1)

where γ-matrices satisfy the conditions:

{γµ, γν} ≡ γµγν + γνγµ = 2gµν, (2)

γ0γµγ0 = γ†µ. (3)

There are many representations of γ-matrices, the widely used one is the chiral representa-
tion:

γµ =

(
0 σµ

σ̄µ 0

)
. (4)
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Here σµ = (1, ~σ) and σ̄µ = (1,−~σ), ~σ are the Pauli spin matrices. We can write massless
Dirac equation in chiral representation:

(
0 iσµ∂µ

iσ̄µ∂µ 0

) (
ξL
ξR

)
= 0. (5)

Here ξL and ξR are two-component Weyl spinors.

Four-component spinors ψL =

(
ξL
0

)
and ψR =

(
0
ξR

)
satisfy the massless Dirac

equation. Any Dirac spinor can be considered as a sum of two Weyl spinors: ψD = ψL + ψR

Also, we have a general way to distinguish the right and left Weyl spinors. First, define
γ5 = iγ0γ1γ2γ3 and projectors PL = 1−γ5

2
and PR = 1+γ5

2
. We can see (it is simple to check

it in chiral representation) that:

PLψL = ψL, PLψR = 0,

PRψL = 0, PRψR = ψR. (6)

These equations can be considered as definition of the left and right Weyl fermions.
Dirac mass term mψ̄ψ can be considered in terms of Weyl fermion as mψ̄LψR +mψ̄RψL.

The terms ψ̄LψL and ψ̄RψR are equal to zero.

2.1 Charge conjugation

Charge conjugation of the spinor field, by definition (see [6]), is a conversion, which inverses
vector and axial-vector currents and does not change free Lagrangian. So, the terms

Lv = ψ̄γµψ, Lav = ψ̄γµγ5ψ (7)

should change sign by C-conjugation (for example, ψ̄γµψ = −ψ̄CγµψC , here ψC is a C-
conjugated spinor), and the terms

Lk = iψ̄γµ∂µψ, Ls = ψ̄ψ, La = ψ̄γ5ψ (8)

should not be changed. We will try to find ψC in the form

ψC = Cψ̄T , (9)

and seek the conditions on the C-matrix. We can also notice that
(
ψC

)C
= ψ, so

ψ̄C = ψTC−1 T . (10)

The term ψ̄ψ converts as:

ψ̄CψC = ψTC−1 TCψ̄T = −ψ̄CTC−1ψ = ψ̄ψ. (11)
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Here we used anticommutation relations of spinor fields, and finally we obtain:

C = −CT . (12)

The mass term and the vector current convert as:

ψ̄CψC = ψTγT
0 C

†γ0Cψ̄
T = −ψT ψ̄T = ψ̄ψ, (13)

ψ̄Cγµψ
C = ψTγT

0 C
†γ0γµCψ̄

T = ψTγT
µ ψ̄

T = −ψ̄γµψ. (14)

From theese conditions we obtain:

γT
0 C

†γ0C = −1, γT
0 C

†γ0γµC = γT
µ . (15)

Finally,
C−1γµC = −γT

µ . (16)

γ5 is a product of even γ-matrices, so C−1γ5C = γT
5 . It means that the axial-vector current

Lav should be inversed under C-conjugation, and the term La should not be inversed. Also,
from the condition (16) we can prove that the kinetic term Lk should not be inversed under
C-conjugation.

2.2 Majorana fermions

Firstly, let us check that C-conjugated Weyl spinor is a Weyl spinor with another chirality:

1 + γ5

2
ψL = 0. (17)

After conjugating this equation we obtain:

γ0C
1 + γ∗5

2
ψ∗

L =
1 − γ5

2
ψC

L = 0. (18)

So, ψC
L is right-handed Weyl spinor.

Now we can define Majorana spinors - by definition, they are self-C-conjugare Dirac
spinors. Dirac spinors are ψD = ψL + ψR, so Majorana spinors are

ψM =
1√
2

(
ψWeyl + ψC

Weyl

)
. (19)

Factor 1√
2

normalizes the kinetic term. In the literature Majorana spinors are often described

in terms of left-handed Weyl spinor ψL and its C-conjugated partner ψC
L .

Majorana mass term can be written in terms of Weyl spinors as m
2
ψ̄C

LψL + h.c. There is
no reason why Majorana mass should be real. So, in the general case it is complex.

4



3 See-saw mechanism

Standard Model is a very good theory, describing our nature. Its dynamics is defined by
the gauge symmetries SU(3) × SU(2)L × U(1)Y of the Lagrangian. So, if we want to add
some new terms to the SM Lagrangian, we should not break these symmetries. Left-handed
leptons are SU(2)L-doublet, and left-handed neutrinos have U(1)Y -hypercharge Y = 1. They
transforms under U(1)Y as νL → eiα(x)νL. The Lagrangian should not change under U(1)Y

transformation.
So, let us try to transform Majorana mass term of left-handed neutrinos by U(1)Y . We

obtain:
mν̄Cν +m∗ν̄νC → e2iα(x)mν̄Cν + e−2iα(x)m∗ν̄νC . (20)

So, Majorana mass term is forbidden for left-handed neutrinos. Only neutral (singlet
by any gauge group) fermions can have Majorana mass. Right-handed neutrinos are such
neutral fermions, and we can add them to the SM.

Let us notice that Majorana mass term of right-handed neutrino breaks global (non-
gauge) U(1)L symmetry νL → eiLνL. But it does not change SM dynamics (also, U(1)L is
broken in SM on quantum level too[5]). This effect means that it can exist some processes
without lepton number conservation, such as neutrinoless double beta decay and leptogenesis.

It is also allowed by SM symmetries that right-handed neutrinos can interact with left-
handed leptons and Higgs doublet f l̄aφ

aνR + h.c. When Higgs field develops a VEV, we
obtain Dirac mass term mDν̄LνR + h.c.

Thus, we obtain the following Lagrangian for the neutrinos:

L = iν̄Lγ
µ∂µνL + iν̄Rγ

µ∂µνR −mν̄RνL − M

2
ν̄C

RνR + h.c. (21)

We can rewrite the mass term in (21) as:

Lm = −1

2

(
ν̄C

L ν̄R

) (
0 m
m M

) (
νL

νC
R

)
+ h.c. (22)

When we study neutrino propagation we should consider neutrino mass eigenstates. So,

we should diagonalize the mass matrix MD+M =

(
0 m
m M

)
. The matrix MD+M is real

and symmetric, so it can be presented in the form

MD+M = OmdiagO
T , (23)

where mdiag is a diagonal matrix, and O is an orthogonal matrix, parametrized as

O =

(
cosφ sinφ
− sin φ cosφ

)
. (24)

So if we consider mixed neutrinos
(
νa

νb

)
= O

(
νL

νR

)
=

(
cos φ sin φ
− sinφ cosφ

) (
νL

νR

)
, (25)
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we will obtain a Lagrangian with diagonal mass matrix:

Lm = −1

2

(
ν̄C

a ν̄b

) (
m1 0
0 m2

) (
νa

νC
b

)
+ h.c., (26)

where m1 and m2 are:

m1,2 =
1

2

(
M ±

√
M2 + 4m2

)
. (27)

If we should obtain a small Majorana mass of one of neutrinos, we should take a large
value of M (and it agree GUT predictions) and usual (about lepton masses) value of mass
m. In this case we can simplify this formula. So,

m1 ≈ − m
M2 ,

m2 ≈ M. (28)

We can consider (iψa) as a fermion field, so the mass term of this model in the mass-basis
neutrino is:

Lm = −1

2
|m1| (iν̄a)

C(iνa) −
1

2
m2ν̄

C
b νb + h.c. (29)

So, we obtain a small Majorana mass of our ”quasi-left-handed” neutrinos.

4 Mixing and oscillations

Many independent recent experiments showed that neutrinos can convert from one flavour
state to another during propagation in Vacuum. These conversions were called neutrino
oscillation. The explanation is in term of the neutrino flavor mixing. We have flavour basis

|νf〉 =




νe

νµ

ντ


 and mass basis |νm〉 =




ν1

ν2

ν3


, transition matrix U is defined by equation

|νf〉 = U · |νm〉. (30)

In the case of Majorana neutrinos, Majorana mass term is ν̄C
i M

ijνj, where i, j = 1..3
means number of (flavour) families, M ij is a hermitian non-diagonal mass matrix. We should
diagonalize mass matrix and not change kinetic term. So, we have (D is a diagonal positive
matrix):

U †U = 1, U †MU = D. (31)

The second conditions is checked automatically from the first by simple linear algebra. So,
U is an unitary matrix, called PMNS (Pontecorvo[7], Maki,Nakagava, Sakata[8]), and after
rotating phases of fermion fields it parametrizes as

U =




1 0 0
0 c23 s23

0 −s23 c23







c13 0 s13e
iδ

0 1 0
−s13e

−iδ 0 c13







c12 s12 0
−s12 c12 0

0 0 1







eiα1 0 0
0 eiα2 0
0 0 1


 .

(32)
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Here cij = cos θij, sij = sin θij. δ is CP-violating phase. The last term is a phase of Majorana
masses.

It is a similar situation in the mixing matrix of Yukawa couplings (or, Dirac masses).
The difference is that left and the right neutrinos converse with different unitary matrices
(|νR,flavour〉 = A|νR,mass〉 and |νL,flavour〉 = B|νL,mass〉), and the mass matrix M in unitary
basis may be non-hermitian. We should make double unitary transformation:

A†MB = D. (33)

Here D is also diagonal positive matrix, PMNS matrix has the same form as in thr Majorana
case, without the last term, because pure Dirac masses should be real.

4.1 See-saw mechanism in the case of 3 generations

Previously we considered see-saw mechanism only for one generation for simplicity. Let us
generalize it on the realistic case of three generations. The starting Lagrangian is:

L = iν̄a
Lγ

µ∂µν
a
L + iν̄a

Rγ
µ∂µν

a
R − ν̄a

Rm
ab
D ν

b
L − 1

2
ν̄a,C

R Mabνb,C
R + h.c. (34)

Here a and b are flavour indices. The mass term of Lagrangian (34) can be rewritten as
(analogy to (35), but now neutrinos have 3 generation components):

Lm = −1

2

(
ν̄C

L ν̄R

)(
0 mD

m†
D M

) (
νL

νC
R

)
+ h.c. (35)

After diaganalization of 6-component mass matrix by neutrino fields rotation we obtain:

M see−saw
diag =

(
−mDM

−1m†
D 0

0 M

)
. (36)

So, effective mass matrix of our (quasi-left-handed) neutrinos is ML = mDM
−1m†

D.
Let us notice, what if we want to work with chiral states, it is simpler to use diagonal

mass matrix of right-handed neutrinos. Really, we rotate only right-handed neutrinos to
diagonalize matrix M :

(
0 mD

m†
D M

)
7→

(
1 0
0 U †

)
·
(

0 mD

m†
D M

)
·
(

1 0
0 U

)
= (37)

=

(
0 mDU

U †m†
D u†MU

)
=

(
0 m̃D

m̃†
D Mdiag

)
.

Here we mean Dirac mass matrix as mD = y · v√
2
, y is a matrix of Yukava couplings with

Higgs field. We can use representation (37) also in the case of interactions with Higgs field.
But if we want to study neutrino propagation, it is convenient to use the diagonal Majorana
mass basis (36).
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4.2 Neutrino oscillations

Let us look at neutrino propagation. Free neutrino with defined mass propagates to a
distance L as

|νi(t, L)〉 = e−i(Eit−piL)|νi(0, 0)〉. (38)

Neutrino masses are very small, so all neutrinos we can observe are ultrarelativistic. So,

pi = Ei − m2
i

2E
, t = L, and neutrino propagates as:

|νi(L)〉 = e−i
m2

i
2E |νi(0)〉. (39)

When neutrino interacts with charged leptons, it is a neutrino in flavour basis. So, both
emitted and adsorbed neutrinos are in flavour basis, but they propagate in the mass basis.
Transition amplitude from one flavour neutrino |νβ〉 to another |να〉 is

A =
∑

i

〈νβ|νi(L)〉〈νi(0)|να〉 =
∑

i

e−i
m2

i
2E 〈νβ|νi〉〈νi|να〉 =

∑

i

Uβie
−i

m2
i

2E U∗
iα. (40)

Transition probability is the square of the probability amplitude. For simplicity, in the case
of two generations, probaility of transitions from electron neutrino to muon neutrino is:

P (νe 7→ νµ) = sin2 θ12 sin2

(
∆m2

12

4E
L

)
. (41)

So, if we know the distance to neutrino source and if we can measure its energy, we can
determine the mixing angles θij and mass squared differences ∆m2

ij.
There are some types of experiments to detect neutrinos of different generations to mea-

sure mixing angles and mass squared differences. First kind of experiments is to detect
neutrinos from the Sun (solar neutrinos have the largest flux of observable neutrinos than
neutrino from other sources). In thermonucleus reactions in the Sun a lot of electron neu-
trinos are emitted, but detectors measure only 1/3 of predicted flux. Experiments of this
type are Kamiokande, Super-K (Japan), SNO (Canada), SAGE (Russia) etc. Electronic
antineutrinos from nuclear reactors are measured in KamLAND experiment in Japan. Theis
experiment yields the following values for the mixing angles and the mass difference squared
[9]:

∆m2
12 = (7.59 ± 0.21) · 10−5eV2, tan2 θ12 = 0.47 ± 0.05. (42)

In experiments with atmosheric neutrino(Super-Kamiokande, MINOS etc.), other mixing
parameters are measured [10]:

∆m2
23 = (2.43 ± 0.13) · 10−3eV2, sin2 (2θ23) > 0.92. (43)

For the last mixing angle θ13, only an upper limit from the CHOOZ experiment[11] is
obtained:

sin2 (2θ13) < 5 · 10−2, (44)
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and there is no significal constraint on the CP-violating phase δ.
Future experiments, such as T2K[12] and RENO[13] can improove sin2 (2θ13) to sensitiv-

ity 0.006, sin2 (2θ23) to sensitivity 0.01 and ∆m2
23 to 10−4 eV2[12].

From (43) we obtain widely used value
√

∆m2
23 = (4.9± 0.2) · 10−2 eV, and for simplicity

we will use the estimation 0.05 eV. We also notice that |∆m2
12| � |∆m2

23|,so ∆m2
13 ≈ ∆m2

23.
Thus, from our data we can propose two variants of neutrino spectrum:

1. Normal spectrum: m1 < m2 < m3,

2. Inverted spectrum: m3 < m1 < m2,

3. Quasi-degenerated spectrum: m1 ≈ m2 ≈ m3.

Let us notice that oscillation observations accurately measure the lower bound on the sum
of neutrino masses (

∑
imi > 0.05 eV). Other processes we will considered make estimations

on its upper bound.

5 Direct searches for neutrino mass

From oscillation observations we can observe only mass squared difference, but not absolute
values of neutrino masses.

An obvious approach for a direct mass determination of the electron neutrino is to ex-
amine very precisely the end region of the electron spectrum in tritium beta-decay.

Current results, from Meinz[14] and Troitsk[15] groups, are:

mνe
< 2.1 eV. (45)

The next generation experiment is KATRIN (the KArlsrue TRItium Neutrino experi-
ment) [16]. It will be able to achieve sensitivity

δmνe
= 0.20 eV. (46)

Let us define more exactly what means the value mνe
, measured in this type of exper-

iments. Precisely, mνe
is not defined, and in theese experiments we measure m1, m2 and

m3. But even KATRIN sensitivity is significally more than difference in neutrino masses
δm > 0.05eV , so if KATRIN seek a positive signal, it means that we have quasi-degenerate

spectrum of neutrino masses, and mνe
≈ m1 ≈ m2 ≈ m3 ≈

P

i mi

3
.

6 Cosmological constraints on neutrino mass

According to the big bang theory there exists a huge amount of neutrinos in the Universe
left over from the big bang, the so-called cosmic background (CMB) neutrinos. If neutrinos
are massless, their contribution to the energy density of the Universe is negligibly small (see
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[17]), but contribution of massive neutrinos to energy density can be significant and can
influence the expansion of the Universe. We know the energy density of the Universe very
well because our Universe is flat, so we can calculate constraints on the neutrino masses.

In the process of the expansion of the Universe, CMB neutrino decoupling occurs when
the average time between neutrino interactions (and a time of departure from thermal bath)
is approximately the Hubble time, or the life-time of the Universe. After that these neutrinos
did not interact with the rest. Neutrinos at the decoupling time were ultrarelativistic (we
will check it later) and were just in thermal bath, so their average time between interactions
is

τ ≈ 1

G2
FT

5
≈ M∗

PL

T 2
= H−1. (47)

Here GF is the Fermi constant, H is the Hubble constant, and M ∗
PL = MPL

1.66
√

g∗
. g∗ is the

number of degrees of freedom for the SM fields, which were in thermal bath at the moment
of the neutrino decoupling. So, neutrino decoupling temperature is about 2 MeV, which
means that neutrinos were really ultrarelativistic at that moment. But by the expantion
of the Universe neutrinos cooled, and their effective (because they are not in the thermal
bath now) temperature is 2 · 10−4eV . So, at least two of the neutrino types should be
non-relativistic.

Thus, neutrino energy density is ρν =
∑

imi · nν. Here nν is a density of neutrinos,
nν ≈ 112cm−3. Critical energy density is ρc = h2 ·10−5 GeV

cm3 . Neutrinos can make contribution
to dark matter, so

Ων =
ρν

ρc
≈

(∑
imi

eV

)
· 10−2h−2 < 0.2. (48)

Using the value h = 0.7, we obtain:

∑

i

mi < 10 eV. (49)

But now we can significally improve this criterium. Firstly, neutrinos cannot make up the
dominant fraction of the dark matter. Most part of dark matter should be non-relativistic at
the decoupling time (cold dark matter) to form cluster structure of the Universe. Secondly,
theory of primordial Nucleosynthesis predicts accurate estimation of the rate of Universe
expansion at that moment. Also, anisotropy in CMB (measured by WMAP and now being
measured by Planck) and redshift galaxy observations can make a contribution to theese
data. So, modern path to determine sum of neutrino masses includes statistical analysis of
amounts of experimental data [18].

Modern estimation of the upper bound on the sum of the neutrino masses is[18]:

∑

i

mi < 0.5 eV. (50)

Analysis, made in [19] yield: ∑

i

mi < 0.28 eV. (51)
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But it should be checked by another measurements.
Future astrophysical measurements can decrease the upper limit on neutrino masses.

Planck will measure the CMB anisotropy more accurately than WMAP, galaxy and cluster
observations can yield more precise data about the rate of expansion of the Universe. So,
one anticipates to reach a sensitivity 0.05 eV within the next decade.

7 Neutrinoless double beta decay

Previously described processes can occur both in cases of Dirac and Majorana neutrino
masses. The following process, neutrinoless double beta decay, can occur only if neutrinos
are Majorana particles.

Beta-decay (single beta-decay) is a process, in which neutron in unstable nuclei decays
to proton, electron and electron antineutrino:

(A,Z) → (A,Z + 1) + e− + ν̄e. (52)

In some nuclei (76Ge,82 Se,100 Mo,130 Te,136 Xe etc.) single beta-decay is energetically for-
bidden, but concerning beta-decay of virtual (A,Z+1)-nuclei, we obtain double beta decay:

(A,Z) → (A,Z + 2) + 2e− + 2ν̄e. (53)

Double beta decay (2νββ) is a very rare process, suppressed by G2
F . But if neutrino is a

Majorana particle, we should also consider another process, where two electrons are emitted
from a nucleon without any neutrinos. This process is called neutrinoless double beta decay
(0νββ, see Fig.1):

(A,Z) → (A,Z + 2) + e− + e−. (54)

The mass of the nucleon is many times more than the electron mass, so the electron energy
spectrum is very close to a delta-function. So, it can be detected on continuous double beta
decay spectrum background. Let us discuss the matrix element of the neutrinoless double
beta decay. This process is low-energy (∆E ≈ 2MeV �MW ), so we can use effective Fermi
theory to describe it. The Lagrangian is:

Lint = 2
GF√

2
· p̄Γµn · ēLγµUeiνi,L +mν̄C

i Lνi L + h.c. (55)

Here Uei is the first row of the PMNS matrix, associated with electron neutrino, νi L are
mass-basis neutrinos, Γµ is a nuclear formfactor.

Further we will call p̄Γµn as hadronic current Jµ. So, tree-level S-matrix element is

M =
4

2!

GF√
2

2

〈Nf ēē|
∫
d4xd4yJµ(x)ēL(x)γµUeiνi L(x)Jλ(y) (ēL(y)γλUeiνi,L(y))T |Ni〉. (56)

We use the Wick theorem and obtain (in k-space):

M =
4

2!

GF√
2

2 (
〈Nf |T

(
JµJλ

)
|Ni〉ū(p1)PRUeiγµ〈0|T

(
νi L(k)νi L(k)T

)
|0〉γT

λU
T
eiP

T
R ū

T
L(p2) − (p1 ↔ p2)

)
.

(57)
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Figure 1: Quark-level diagram of 0νββ-decay

Here p1 and p2 are 4-momenta of the final electrons, k is a 4-momentum of the virtual
neutrino. Let us consider the neutrino propagator:

〈0|T
(
νi,L(k)νT

i,L(k)
)
|0〉 =

1 − γ5

2
〈0|T

(
νi(k)ν

T
i (k)

)
|0〉1 − γT

5

2
, (58)

where νi(k) is a 4-component Majorana spinor. From conditions (10) and (12) we obtain:

νT
i = −ν̄i(k)C. We also notice, that 〈0|T (ν(k)ν̄(k)) |0〉 = i k̂+m

k2−m2 is the Dirac fermion
propagator. Finally, the Majorana propagator (58) can be presented as:

〈0|T
(
νi,L(k)νT

i,L(k)
)
|0〉 = i

mi

k2 −m2
i

1 − γ5

2
C. (59)

The average momentum of virtual neutrino can be approximated by the uncertainty relation:
|k| ≈ 1

r
, where r is the average distance between two neutrons in nucleus. Thus, r ≈ 1fm, and

we have |k| ≈ 200MeV � mν . So, we can neglect m2
i in the denominator of the Majorana

propagator. So, transition matrix element M depends on neutrino mass parameters as

M ∝
∑

i

U2
eimi ≡ mββ. (60)

Its absolute value |mββ| is called effective Majorana mass. Also S-matrix element depends
on nuclear matrix elements, but computing them is very complicated, see [20].

Thus, the half-life (associated with 0νββ-decay) of some nuclei is proportional to the
inverse square of the effective Majorana mass:

T 0ν
1/2 ∝

1

|mββ|2
. (61)

So, if we measure some events of 0νββ-decay in a 2νββ-decaying nucleus (for example,
76Ge), we count the half-life, and calculate the effective Majorana mass |mββ|.
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Taking into account PMNS-matrix parametrization (32) and a negligible small value of
θ13, we obtain:

|mββ| =
∣∣m1 cos2 θ12e

2iα1 +m2 sin2 θ12e
2iα2 +m3 sin2 θ13

∣∣ . (62)

We do not have any other sources to measure the Majorana phases αi, so they are free
parameters. Mass of (for example) the first neutrino m1 is a free parameter too. Previously
we have considered three types of neutrino mass spectrum. Let us consider effective Majorana
mass in theese three cases.

1. Normal spectrum, m1 � m2 < m3. So, m2 ≈
√

∆m2
12 and m3 ≈

√
∆m2

13. After
putting theese conditions and numerical values of PMNS matrix parameters in (62),
we obtain:

0.3 · 10−3 eV < |mββ| < 5.3 · 10−3 eV. (63)

2. Inverted spectrum, m3 � m1 < m2. Here we have m1 ≈ m2 ≈
√

∆m2
13. Concerning

numerical values, we have:

0.02 eV < |mββ| < 0.05 eV. (64)

3. Quasi-degenerate spectrum, m1 ≈ m2 ≈ m3 >>
√

∆m2
ij. So, we have:

0 < |mββ| <
∑

imi

3
. (65)

If we take into account cosmological estimates (50), we will have in all cases:

mββ < 0.16 eV. (66)

This is the current upper bound on the effective mass of 0νββ-decay.

7.1 Experiments searching 0νββ-decay

There are many experiments searching for 0νββ-decay using different nuclei, but there is no
strict evidence for it yet. These experiments yield only lower bound on the half-life of these
nuclei, and hence yield an upper bound on the neutrino masses.

The lowest upper bound on effective Majorana mass was achieved in the Heidelberg-
Moscow experiment. This experiment searched for the transition 76Ge →76 Se + e− + e−.
From its data the upper bound on the effective Majorana mass was obtained:

|mββ| < 0.35 eV. (67)

This bound does not contradict the cosmological predictions (66). But the future exper-
iments can have upgraded sensitivity than the bound (66), and possibly can detect 0νββ-
decay. New technique [21] will be used, and in the CUORE [22] experiment sensitivity
|mββ| ≈ 3 · 10−2 eV should be achieved, and EXO [23] expepiment will be able to measure
an effectve Majorana mass |mββ| > 1.5 · 10−2 eV.
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8 Leptogenesis

The origin of the matter-antimatter asymmetry in the Universe is one of the most important
questions in cosmology. This asymmetry can be quantatively described by the value

ηB =
nB − nB̄

nγ
≈ nB − nB̄

nB + nB̄

= (6.1 ± 0.3) · 10−10. (68)

It is unkilely to be primordial baryon asymmetry after inflation, it seems it was creating
during the hot Big Bang phase. The process creating baryon-antibaryon asymmetry is called
Baryogenesis. Sakharov [24] formulated three conditions for Baryogenesis.

1. Firstly, Baryon (or Lepton) number should be violated.

2. Secondly, one must have also C and CP - violation.

3. Thirdly, these processes should be out of thermal equilibrium.

So, if theese processes are in thermal equilibrium, no baryon asymmetry will be generated.
It is impossible to explain baryogenesis only in pure SM. There is UB+L(1)-violation in

SM on quantum level, but the probability of such processes at low energies is very small,
suppressed by

e−4παW ≈ 10−170. (69)

In thermal bath it changes dramatically: the rate of transitions with (B + L)-violation is

suppressed only by the Boltzmann factor e−
Esph(T )

T [26]. At values T > Esph there are classical
(B+L)-violating transitions. Here Esph(T ) is the energy of the sphaleron in the electroweaak
theory with Higgs doublet. Detailed calculation and comparison with the expansion rate of
the Universe shows [27] that this process happens at temperatures T > 100 GeV. So, if we
have (B − L)-asymmetry, created by non-SM processes, it follwos in thermal bath to [28]:

B = C · (B − L), L = C · (B − L). (70)

Here C ≈ 0.4.
This (B-L)-asymmetry may be created by the Leptogenesis (proposed by Fukugita and

Yanagida [25]). Let us consider the see-saw Lagrangian (34), considering Dirac mass term
as Yukawa couplings with Higgs doublet. Yukawa coupling matrix should have nonzero
CP-violating phase. Let us consider νR1 to be the lightest of right-handed neutrinos, so
asymmetry of the heavier neutrino decays will be washed out on thermal bath, and we
should count the decay rate of these processes: νR,1 → H + lj and νR,1 → H + l̄j. Taking
into account tree-level contribution and one-loop corrections, we will obtain:

Γ(νR1 → lH) ∝
∑

α

∣∣∣∣∣y1α +
∑

β,γ

D

(
M1

Mγ

)
· y∗1βyγαyγβ

∣∣∣∣∣

2

. (71)
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Figure 2: Tree-level and one-loop contribution to Leptogenesis

Here D(x) means one-loop contribution, f(x) = 8π · ImD(x).
We define microscopic lepton asymmetry as

δ = Γ(νR1→lH)−Γ(νR1→l̄H)
Γtotal

= (72)

= 1
8π

∑
γ=2,3 f

(
M1

Mγ

)
· Im(

P

αβ y1αy1βy∗

γαy∗

γβ)
P

α|y1α|2
.

We note that lepton asymmetry does not directly depend on CP-violating phase δ in
PMNS matrix as we do not use flavour basis in Leptogenesis. In the case M1 �M2,3 we can
simplify equation (72):

δ = − M1

6π v2

1
∑

α |y1α|2
∑

αβ

Im
(
y1αm

∗
αβy1β

)
, (73)

where mαβ =
∑

γ=2,3 yγβ
v2

2Mγ
yγα, and v is VEV of the Higgs field.

Let us propose that the most part of lepton asymmetry was created near the decoupling
moment:

Γtot ≈ H(T = M1). (74)

Using values of the Hubble constant and the total decay rate, we obtain:

m̃1 ≈
4π

M∗
PL

· v2 ≈ 10−3eV, (75)

where

m̃1 ≈
∑

α

|y1α|2
2M1

· v2 ≥
∑

α

|y1α|2
2Mα

· v2 = m1. (76)

So, in this case the mass of the lightest neutrino should be smaller than 10−3eV. The
microscopic lepton asymmetry is

δ <
M1

6πv2
matm. (77)
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Lepton asymmetry ∆L can be calculated as ∆L ≈ δ
g∗

. So, from the condition (68) we

obtain M1 ≈ 108GeV. In this case sum of the neutrino masses is about matm = 0.05eV.
We can also consider the case where the proposal (74) does not hold, and we should

consider the processes of creating and washing out (B−L)-asymmetry in the thermal bath.
Detailed calculations [17] shows that the mass of lightest right-handed neutrino should be
108 − 1012GeV, and yields the upper bound on sum of neutrino masses

∑
imνi

< 0.3eV.
These data are in good agreement with the cosmology data from the Universe expansion!

9 Conclusion

In this review we defined Majorana neutrinos, considered see-saw mechanism, and reviewed
recent data from neutrino oscillations, beta-decay and neutrinoless double beta decay, and
cosmology. We also reviewed the bounds on the neutrino masses from them.

Both in the cases of Dirac and Majorana neutrinos we have a lower bound on the sum
of the neutrino masses matm ≈ 0.05 eV from the neutrino oscillation measurements.

In the case of Dirac neutrinos we can obtain an upper bound for the neutrino masses from
direct measurements (tritium beta decay) and cosmology. The first one is more direct, the
cosmology constraint can have large systemstic error. Not considering this probable error,
this method is the most accurate and made an upper bound for neutrino masses 0.5 eV. So,
it is unlikely that the future experiments (KATRIN) for direct searching neutrino masses
will succeed. But if it succeded, it will be a signal for something new in cosmology.

In the case of Majorana neutrino masses we reviewed also neutrinoless double decay
experiments. The past observations yielded no evidence for 0νββ-decay in agreement with
cosmological data. The measured value, |mββ|, consists Majorana phase, and 0νββ-decay is
an exclusive experiment to measure it. In future experiments we can observe 0νββ-decay if
we are lucky and Majorana phases act coherently, and will not be able to observe it if theese
phases lead to distinguish significally. If neutrinoless beta decay is established, it will be a
strong confirmation of the Majorana nature of the neutrinos. But the absence of 0νββ-decay
in future experiments is not able to reject theories with Majorana masses.

If neutrinos are really Majorana particles and they recieve their masses by see-saw mech-
anism, it seems natural that baryon-antibaryon asymmetry was created by Leptogenesis. We
can obtain an upper bound on the sum of neutrino masses

∑
imi < 0.3 eV. But it is not a

reliable method for make accurate estimation of the neutrino masses.
These measurements can succeed in near future only in the case of quasi-degenerate

neutrino masses. If we have strict hiearchy of neutrino masses, the present upper bounds
are far from the realistic sum of neutrino masses.

The present bounds on the sum of neutrino masses are 0.05eV <
∑

imi < 0.5eV. It is
not a large window. Future experiments can significantly improve these bounds. Firstly, we
wait for the progress in cosmology measurements. By optimistic proposals, one can decrease
the upper bound on the neutrino masses to 0.05 eV. It means we will really find this value.
If we are not so optimistic, we can decrease this bound too. Secondly, we are able to find
neutrinoless double beta decay. And may be we will suddenly find the evidence for the
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electron neutrino mass in the KATRIN experiment.
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