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1 Introduction

Since invention of alternating—gradient focusing there are still several ques-
tions which do not have strict mathematical answers yet:

1. Isit possible to obtain an arbitrary block—diagonal 4 by 4 beam transfer
matrix using only drifts and quadrupoles?

2. If the answer to the question above is positive, could it be done with
the number of quadrupoles which does not depend on input beam transfer
matrix? Note, that from practical point of view this second question is even
more important than the first one, because even in the case of positive answer
on the first question there is a possibility, such that for every natural n there
exists an input transfer matrix which cannot be represented with less than
n quadrupoles. What is the practical meaning of the positive answer on the
first question, if , for example, the needed beam transfer matrix can not be
constructed with less then 100 quadrupoles?

3. If again the answer to the question above is positive, what is the min-
imum number of quadrupoles required and could we get analytical formulas
for quadrupole strengths and lengths of field free spaces (drifts)?

Surprisingly, the answers to these questions are not known not only for
quadrupoles but also for the situation when instead of quadrupoles their
thin—lens approximations are used.

In this work we will try to answer these questions in the case when thin—
lens approximation for quadrupole focusing matrices is used.

2 Problem Formulation

Let M be an arbitrary real four by four block diagonal matrix of the form

constrained additionally by symplecticity requirement

det(M,) = det(M,) = 1, 2)
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and let Qo(k) and Do (1) be 2 by 2 matrices of thin lens quadrupole and drift
space respectively:

aw = (1 1) po=(g1) 3

The problem of representation of given beam transfer matrix is: are there a
natural number n, real numbers &y, ..., k,, and non—negative reals [y, ..., [,,
such that the following equality is held:

{ Qa2(k1)Dy(1y) . .. Qa(kn)Ds(l,) = M,

(4)
QQ(_kl)DQ(Zl) c. QQ(_kn)DQ(ln) = My.

There are several papers, whose authors tried to find solution of this prob-
lem in the form of exact analytical formulas, with most advanced probably
being [1] and [2]. For example, authors of the paper [1] give formulas for
k—values and drift lengths in the case of three thin lenses and three variable
field free spaces, i.e., in the case of the equations:

{ Q2(k1) Da(11)Qa(k2) Da(l9)Qa (k) Da(ls) = M,
Q2(—k1)Da(11)Q2(—Fk2) Do (12)Q2(—ks3) Da(l3) = M,,.

Unfortunately, the given solution contains roots and denominators, and it
is clearly visible that these denominators can be equal to zero for some input
matrices and, due to presence of roots, some solutions can become unphysical
(complex roots). And actually, as it is shown in the appendix A, three drifts
and three thin lenses are insufficient for representation of an arbitrary beam
transfer matrix.

(5)

2.1 Ouwur Problem and Systems of Polynomial Equa-
tions

After multiplying all matrices on the left—hand side of the equations (4) we
obtain the following system of eight equations (plus 2 symplecticity condi-
tions for the matrix M):

f1<k1>l17 .- '7knaln) - mfl = 0,
f8<k17l17 .. 'uknyln) - mgQ = 0



Here the functions fi,..., fs are polynomials of variables k; and [; of degree
not more than 2n, i.e., we have to solve the system of non-linear polynomial
equations.

2.2 What is Known about Solutions of the Polynomial
Systems

Let us consider first the linear system (system of first order polynomial equa-
tions):
a1 + ... + a1, T, = by,
(7)

A1 L1+ oo + ATy, = by,

For linear systems there is a complete theory, which in algorithmic way
allows to answer the questions about the number of its solutions (unique
solution, many solutions, solution does not exist at all). This algorithmic
way, based on the process which is called Gaussian elimination, allows to
construct triangular system, which is equivalent to the original one and can
be easily analyzed (and solved).

Surprisingly, for general polynomial system there exists the similar al-
gorithm, which allows to construct the equivalent system, which is called
Grobner basis (see [3]), and it is an analogy of triangular form of linear sys-
tem. So, for general polynomial system one can also answer in algorithmic
way about absence or existence and number of its solutions. Nowadays, the
reduction of original system to its Grobner form can be done with the help
of computers using such formula manipulators as Maple or Mathematica.

Unfortunately, this equivalence of original system and its Grébner form
takes place only over the field of complex numbers and appears to be not
very useful for us, as far as we are interested in physical (real) solutions.

Nevertheless, the use of computer assistance is not completely useless
in our problem. Because the absence of complex solutions means also the
absence of real solutions, computer helped us to construct examples of par-
ticular matrices, which can not be represented with certain number of thin
lenses.



3 Equally Spaced Quadrupoles

As far as the hope to give the main job to the computer failed, the only way
left to get some insides into the problem is to make hand calculations. For
this purpose we consider the system constructed from equally spaced thin
lenses. Such systems, as we will see, have very pleasant symmetry, which
significantly simplifies hand calculations.

3.1 Quadrupole Thin—Lens Sandwiched Between Two
Equal Drift Spaces
Let us introduce some notations first. As usual, we describe the action

of a thin—lens quadrupole on the four dimensional transverse phase space
(%, sz, y, py) by means of a block-diagonal four-by-four matrix

aw = (49 0 ®)

and use the transfer matrix

o = (7" o) )

for the field free space (drift) of the length .

As an elementary building block for representation of arbitrary beam
transfer matrices we will use the matrix of the quadrupole thin-lens sand-
wiched between two equal drift spaces of the length [, i.e. we will use the
matrix

Buy(k,1) = Da(1)Qa(k)Da(l). (10)
Using the identity

By(k, 1) = Da(1)Q2(k) D (1) = Sa(1) Pa(a) S5 (1), (11)

Sy(l) = %(1;@7 ;/\é_%),Pg(a) _ (_al é),a:2~|—2kl, (12)

we can represent the matrix B, in the form

Bulk 1) = ( SQO(Z) 520(1) ) ( P2éa) P2(4O— a) ) ( SZO(Z) 520(1) >_1 13)



Denote

Sull) = (SQO(Z) SQO(Z)) > Fala) = (P2é“) P2(40— a)) (14

In notation (14) we can rewrite (13) as

By(k,1) = Sa(1) Ps(a)S; (1) (15)

3.2 Representation of an Arbitrary Beam Transfer Ma-
trix by Equally Spaced Thin Lenses

Substituting representation (15) into formulas (4), we obtain

Py(ay)Py(as) ... Py(a,) = S (1)MS4(1) = M. (16)
If we know elements of the matrix M, the elements of the matrix M can be
calculated as follows. Let us denote

M, = (mn mw) I, = (77—111 mn) ' (17)

Mo1  Mag Mo1 Moo

1111 these notations the connection between elements of the matrices M, and
M, takes the following form

M. — 1 ( Mi1 — Mgy — Mg + Mgz (M1 — Mgy + Mg — m22))
2 \ (M + Mgy — Mg — Ma2) /1 My + Mg + Mg + Moy
M . i ( lm11 + 12m21 + mio + lm22 —lmu — l2m21 + mio + lng)
T2l \=lmay 4 Pmgr — mag + Imas Imay — P — maa + Imag
(18)
with formulas for M, and M, being completely analogous. Note, that in the
following for simplification of notations we will skip bar on the top of the
matrix M, which should not lead to any essential confusions, i.e., now our
problem takes the form Py(ay)Py(az) ... Psy(a,) = M for complete 2D case
and the form Py(aq)P(as) ... Py(a,) = M, for its 1D version.

4 Three and Four Lens Solutions of One—Dimensional
Problem

Let us consider first the one dimensional problem, when we are interested,
for example, only in horizontal motion. This consideration is useful not only
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from methodological point of view but we will use it later for the solution of
complete 2D problem.

4.1 Three Lens Solution and its Incompleteness

We start from consideration of three lens system and show that 3 lenses
are insufficient for representation of an arbitrary 2 by 2 matrix with unit
determinant. Note, that instead of matrices Pz(a) in (12) we will consider

matrices of the form
a c
PQ(CL’C) - _1 O ) (19)

c
where ¢ # 0 is an additional parameter. This generalization we will need
later when we will solve 2D problem by its reduction to two uncoupled 1D

problems.
Let us consider a system of equations with three such matrices:

PQ(ahCl)PQ(az,CQ)PQ(ag,03) =M= (mij)7 i, ] = m (20)

After multiplying all matrices on the left—hand side of (20) we obtain

C1 C2 C1C3

10203 — A3— — A1— A1G02C3 — ——
2 C3 c _
a9203 Co a92C3 -

i ml?) .21

Ma1 M2

C1 C1C3 C1



The complete solution of the system (21) is

_ p e
mo1 —— | C3
C1C3
az = )
mo2
ma2Cy
1. oo 7& 0, a9 = — ,
C3
C1C3
Y
a; = — 2
\ MmaaCy
(22)
ag = O,
Ca
2. TMos = 0 and Mo = ;, c Co
1 az3— +a;— = —myy,
Co C3
&)
3. Moy = 0 and mg; # ——, ,
L C1C3

and one sees that independently from the values of ¢, ¢a and c3 there are
three possibilities: unique solution, one—parameter family of solutions, or
solution does not exist at all. The presence of the third variant (absence of
solution) shows us that 3 thin lenses are insufficient for representation of an
arbitrary 2 by 2 symplectic matrix.

4.2 Four Lens Solution

In the previous subsection we have shown that 3 lenses are insufficient for
existence of solution of 1D problem. One more free parameter is required.
It could be the distance between lenses [ or, as we prefer in this paper, one
additional lens.

Let us now consider the system

Pz(al, Cl)Pz(az, C2)P2(CL3, C3)P2(CL47 C4) =M = (mz‘j)‘ (23>



By multiplying both sides by matrix P; (a4, cs) we obtain

mio
——  —M11C4 + Mi204

C4 mir Mo
P2(a1,Cl)Pz(GQ,Cz)Pz(a:%,C?)) = Moy = (m21 m22)
——  —Ma1C4 + MGy
Cq4
(24)
Because ms; and moy can not be equal to zero simultaneously, we can
choose a4 in such a way that mos = —maicy + maosay # 0 and therefore can
use formulas (22) with m;; replaced by m;; as solution of our problem.
Because a4 satisfying the condition msgs # 0 is non—unique, the solution
of 1D problem with 4 lenses is also non—unique, and that can be used, for
example, for minimization of the lens strengths.

5 Solution for an Arbitrary Block—Diagonal
Four by Four Beam Transfer Matrix

Though 1D problem can be solved by hand, the complete 2D problem still
remains too complicated for the hand solution. It is mainly connected with
the fact that thin lens can not act in two planes independently; if it focuses
beam horizontally, then it defocuses beam vertically and vice versa.

The way which we have found for solution of 2D problem is its decompo-
sition into two 1D problems with subsequent usage of solution of 1D problem
described in the previous section. Such problem decomposition can be made
in different ways. First, we present 7 lens block combination which in one
transverse plane is equal to a single thin lens and in the other plane produces
constant matrix equal to 2 by 2 symplectic unit matrix Jo. And second, we in-
troduce 4 lens block which could act independently in both transverse planes.
And though its action in each plane is not exactly the action of a single thin
lens, this block still allows to find solution of complete 2D problem.

5.1 Block from 7 Thin Lenses

Let us denote by
R:r — P2(6,1>P2(C_L2)...P2<C_L7), (25)

R,=Py(4—a1)Py(4 —as)... Po(4 —ar) (26)



the block constructed from 7 lenses with parameters a; chosen as follows

a; =4+ 2v3 — (7T+4V3)a, — ar,
67222—\/§,
as = 2 + /3,
as =2+ /3,
ag = 2 — /3.

_ (0 1\ 4 (1 0\
Ro= (0 o) = a= (g )=t

28 —16v3+8vV3as 1
e S N B %)

Then we obtain

where w = 28 — 16v/3 + 8v/3ay.
Let us denote our 7 lens block as

0

1 0
_ R, 0 [ -1 0
-1

1
0

and let us consider quadrupole system of the form:
R(wlu W, W3, w4>p(al7 as, as, 0’4)7

where

R(wl, Wy, W3, w4) == R(U}1>R(w2>R(U}3>R(W4>

is a combination of four 7 lens blocks and

P(ay,as,as3,a4) = Py(ay)Py(as)Py(as)Py(ay)

is a combination of our usual elementary matrices.
Introducing notation

ﬁx(ala az,as, a4) = P2(a1)P2(02)P2(G3)P2(a4),

ﬁy(al,ag,ag,cu) = P2(4: — CI,1>P2(4 — GQ)P2(4 — CL3)P2<4 — CL4),

10
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we can rewrite our system in the form

ﬁx(wla cee ,U}4) ﬁx(aflv cee ,(14) == MCC)

J/

=1 (36)

Ry<w1, e ,w4)Py(a1, N ,(14) = My.

At first we solve the first equation of the system (36) with respect to
unknowns ay, . . ., a4 using formulae (22) with ¢; = ¢ = ¢3 = ¢4 = 1. Because
R, = I, the system (36) becomes equivalent to the second equation

Ry(wl,...,w4) :Myﬁy_l(al,...,cu). (37)

Here P, (ay, ..., a4) is a known matrix and R, is equivalent to "usual four
lens combination” and therefore formulas (22) are still applicable. Hence
we have obtained solution with 32 quadrupoles (28 for R and 4 for P) for
representation of an arbitrary beam transfer matrix.

5.2 Four Lens Block

The solution presented in the previous subsection solves the question of pos-

sibility to represent an arbitrary beam transfer matrix by finite number of

thin lenses by complete reduction of 2D problem to two identical four—lens

1D problems. In this subsection we introduce new four—lens block which

allows to make an essential reduction of the number of thin lenses needed.
Let us consider 4 lens combination

Rx = P(al)P(a2)P(a3)P(a4), (38)
Ry == P(4 — CL1>P(4 — (IQ)P(4 — CL3)P(4 — CL4),
where ay = 2—v/3 and a3 = 2++/3. By multiplying matrices on the left-hand
side of (38) we obtain

( . (1_(2—\/§)a1—(2+\/§)a4 _(2+\/§)) _ ml 23
z Vo 0 pemy

(—15 + Q2+ VB + (2 - V3a —(2- \/5)) B o 243
0

R, =
2+3 0 ——
\ -2+/3

(39)

11



where R, and R, are matrices of the form (19) and parameters r, and r, can
be varied independently because the determinant of the Jacobian matrix of
the coordinate transformation from a;, a4 to 75, r, is non-degenerated:

’_22:&%3 P ‘ = —2- V3’ + 2+ V3P =8VB£0  (40)

Now consider the system

{ Rm(T;)Rm(Ti)Rx(T§>P2(a4 = M,, (41)
Ry(ry)Ry(ry) Ry(ry) P2(4 — as) = M,.
We can rewrite (41) in the form
{ Ry (1) Re(r2) Ro(r3) = MwPQ_ll (a), (42)
Ry(ry)Ry(ry) Ry(ry) = My Py (4 — a4).

If it will be possible to find such a4 that matrices in the right sides of (42)
have non—zero m3, and mj, simultaneously then we can use our 1D solution
(22) for solution of complete 2D problem. Consider right-hand sides of (42):

x x
mi; mip) (0 =1} _ [ *
x xr xr €T

(43)
mi; mip\ (0 =1\ _ (= *
my, miy ) \1 4—ay x  —my + (4 — aq)md,
Now we want to show that it is possible to choose a4 such that
mipas —mi # 0, 44
{ iy + (4 — ag)mly # 0. (44)
System (44) is equivalent to
aqmisy 7 My, 45
{ agmi, # 4ms, — ms;. (45)

Since (m3y)% + (m3)?* # 0 and (m},)? + (m4;)? # 0 due to the symplecticity
of the matrices M, and M,, the necessary a4 can always be found.

So, we have obtained solution, which requires 13 quadrupoles (12 for
R, (r) and R,(r}) and 1 for Py(as) and P,(4 —ay4)), and setting of 6 of them

12



is fixed and does not depend on input matrices M, and M,. Although the
total number of lenses used in this solution is probably still not the minimal
possible, we have simple explicit formulas for the lens strengths as functions
of the coefficients of the input transfer matrix. And as concerning number
of variable parameters in our system (7 parameters), it is the minimum pos-
sible value because we have an example of transfer matrix which can not be
represented by using six lenses with fixed distance between them.

5.3 Example of Transfer Matrix which can not be Rep-
resented by Less Than Seven Equally Spaced Thin
Lenses with Fixed Distance between Them

We used Maple 13 and Mathematica 7.0 for calculations of the Grobner bases
for the matrix

M, = M, = (_01 é) . (46)

These bases were constructed for different number of quadrupoles. For all
systems with less than 7 quadrupoles their Grobner bases contained constant
and it means that system is inconsistent and has no solution. And for 7
quadrupoles Grobner basis (in terms of matrices Py(a;) and Pa(4 — a;)) is:

f1 = —239 + 2220as — 5547a3 + 2240aj — 120ag — 48ag + 4ag,

fo = —1726 + 33as + T126as — 4402a2 + 467a3 + 100ag — 10a2,

f3 = —10030 + 594a, + 44821ag — 28252a2 + 3002a3 + 640ag — 64ag,

f1 = 1198 + 99a3 — 6994as + 4402a% — 467a3 — 100ag + 10a?,

f5 = 3188 + 99a, — 14285a¢ + 8804a — 934ai — 200ag + 20a,

fo = —4286 + 594a; — 1669ag + 1840a% — 200ag — 40ag + 4ag + 594ay.

(47)

Equation f; = 0 has real roots (checked with Maple) with respect to variable
ag. After fixing value of ag and substituting it into remaining equations (47)
we obtain a linear system for unknowns aq, as, as, a4, as, a7, which has a
triangular form and is solvable. So our matrix (46) can be represented with
7 lenses and can not be represented with smaller number of them.

13



6 Beam Matching Problem and Its Solution

In this section we will consider the beam matching problem and will find the
solution using equally spaced thin lenses.

6.1 Problem Formulation

Let us assume that we have two sets of Twiss parameters

me (% ) me () e
-l v, -« Yy

Y

given in the two points of a beam line. The beam matching problem is the
problem of finding symplectic transfer matrix A = diag (A4,, A,), such that
the following identity holds:

Tt T

22 = A, DL AT
N2 = A, ¥LAT (#)
Y Y=y Ty

6.2 General Solution

The first question is if this problem has symplectic solution at all for arbitrary
two sets of Twiss parameters. Because the system (49) is uncoupled between
horizontal and vertical degrees of freedom, let us consider only one equation

of the form
22 = AZlAT, (5())

in which subscripts x and y are omitted. Because the matrices Y; are sym-
plectic and positive definite, we can make their symplectic Cholesky decom-
position

Y= LL], i=1,2, (51)

where L; are lower triangular symplectic matrices

Li:(_a\i//ﬁ\i/@ 1/3@), i=T2. (52)

By substituting this decomposition into our equation (50) we obtain:

LyLY = AL, LT A™. (53)

14



We can rewrite system (53) in the form
Ly (A")H(Ly) ™" = Ly ' ALy, (54)
which is equivalent to the equation
(LyPAL)(LyPAL)T =1 (55)

The equation (55) shows that the matrix Ly AL, is orthogonal, and because
this matrix has determinant equal to one, it is a rotation matrix:

Ly*AL, = ( costt Sm’“‘) : (56)

—sing  cos i
Let us denote '
w0 = (5 ) &
Then our system (50) is equivalent to the equation

Ly'ALy = R(p), (58)

where p is an arbitrary real parameter. So, we see that matching problem
always has symplectic solution given by the following formula

A= LyR(u)Ly". (59)
And in terms of the original system (49) its symplectic solution is

{ Ax = L12R<,ux)L;117
Ay = LpR(p,) Ly}

ylo

(60)

where 1, and p,, are two arbitrary real parameters, which are called phase
advances.

Because our previous solution for an arbitrary transfer matrix certainly
gives also the solution of the matching problem, our current goal is to solve
matching problem with less thin lenses using freedom in choosing the phase
advances. We will use the same scheme as before and will find first the
number of thin lenses required for solution of 1D problem, and then we will
use our four-lens blocks for solution of complete 2D problem.

15



6.3 Matching Problem in New Variables

Representing matching matrix A as a product of matrices of equally spaced
thin lenses

A = S4(1)Py(a1) Py(as) . .. Py(an) Sy (1) (61)

and substituting this representation in the system (50) we obtain

S D)a(S71 ()" = Paar) - Pa(an) Sy (DZ1(Sy (D) (Pa(ar) - .. Paan))”
b i o
(62)
Hence, after change of variables we obtain system of the same form
¥y = AN AT, (63)

So, further we will try to solve the system (63) and for simplification of
notations we will skip all bars on the tops of ¥; and A. And for transfer
between solutions of (63) and (50) there exists formulas (62) and (61).

6.4 One Dimensional Solution

Again for simplification of notations let us use the equation (50) as a formu-
lation of 1D problem. Denote

L-YAL, — g1 912 ' 64
2 ' (921 922 (64)

Because the matrix on the right-hand side of (64) must be a rotation matrix,
the matching problem is equivalent to the system

{ gll - 922) (65)

g12 = —g21,

and substituting into (65) the elements of the matrices A = (a;;) and L we
obtain

{ Brain — (o + ag)aig — Paage = 0, (66)

aofran + ﬁlﬁﬂm — 1 02G12 — Oélﬁzam +ajp = 0.

In general, one has to add to this system symplecticity condition for the
matrix A, but because we will try to find this matrix as a product of our ele-
mentary symplectic matrices, the matrix A will be automatically symplectic.

16



Because, as before, later on we will use solution of 1D problem for 2D
case, let us consider matrix A as a product of matrices P(ay, cx) depending
on additional parameters ¢;. Substituting A = Ps(ay, ¢1)Py(ag, ¢2) into (66)
we obtain

{ crcafraray — crci(on + ag)ar — ¢ + 30, =0,

C1Co000 101Gy — 165010001 — Cof}1 P02 + 16301 + 3o o — GanBy = 0
(67)

After multiplying first equation by —asy and summing it with the second one

we have:

—c1c5(as 4+ 1)ay + cof1faay + caanBs — caay B = 0. (68)

Remembering that G272 — a3 = 1 and after dividing this equation by c,3s we
obtain:
—C1C9Y2a1 + Prag + caag — oy = 0. (69)

From this it follows that
Bras = ca(o — ) + c1627204. (70)

Substituting it in the first equation of the system (67) and making simplifi-
cation we obtain quadratic equation for the unknown a;

(c1¢0)?y0a] — 2c1C500a1 — 31 + 532 = 0. (71)

This equation has real solution

a1 = (e £/ 10172 — ¢3)/(c1c272), (72)

if B172 > ¢2/c?, and does not have real solution otherwise. If there is a real
solution for a; then a, is given by the following formula

a9 — (02061 :]: A/ C%ﬁl’)@ — C%)/ﬁl (73)

Again we see that we one more parameter is needed in order to match
two arbitrary sets of Twiss parameters. And again we can choose between
adding one more thin lens or using as additional parameter the distance [
between thin lenses. Here we also prefer the first variant.

17



Let us add one more lens to the matrix A, i.e., let A = Py(aq, c1)Py(as, ca)Pa(ag, c3).
Writing the equation (50) in the form:

dg = PQ(CL1,01

~—

Py(ag, c2) Po(as, c3)Xq1 Pa(as, 03)T1(P2(a1, c1)Py(ag, co))t (74)

o\

g

b}

w04

where the matrix A is constructed from two lenses and

$, = B~ _ Pra3 — 2csanas + 3y —Pras/cs + o (75)
-1 M —fhas/cz + aq B/

is the new set of incoming Twiss parameters, we will try to choose as, such
that the inequality 5172 — c¢3/c? > 0 is satisfied. In terms of 3, oy, 71 and
ag this inequality takes the form

Bra3 — 2czaaz + 3y — 5/ () > 0, (76)

where the left—-hand side is quadratic polynomial with respect to the vari-
able a3. Because the leading coefficient of this polynomial is positive, with
appropriate choice of az the inequality (76) always can be satisfied.

So, for solution of 1D matching problem 3 thin lenses are sufficient.

6.5 Two—Dimensional Problem

For solution of complete 2D problem we will use, as before, two four-lens
blocks plus one additional lens for satisfying the conditions 81v? > 1 and
8,72 > 1. In terms of strength a of this additional lens, these conditions can
be rewritten in the form:

{ Bra® = 2050+ 7} —1/77 >0,

B4 - a)? — 203(4—a) 11— 1/72 > 0. (77)

Because the leading coefficients of quadratic polynomials on the left—hand
sides of (77) are positive, it is clear that such a always can be found.

So we have obtained the solution of the beam matching problem which
uses 9 thin lenses, 4 of them are set to the constant values and only 5 pa-
rameters depend on Twiss functions. And in the following subsection we will
give an example which proves that 5 variable parameters is the minimum
number needed in order to match arbitrary two sets of Twiss parameters.

18



6.6 Example of Twiss Parameters which can not be
Matched by Less Than Five Equally Spaced Thin
Lenses

We found two sets of T'wiss parameters

i 1/3 0 i 10
m-n=(05), m-m=(; ). (78)

which can not be matched with less than five thin lenses. We used Grobner
bases in Maple program for proving it. For all systems with less than 4
quadrupoles Grobner bases contained constant and it means that system is
inconsistent. And for 4 quadrupoles the Grobner basis is (in terms of matri-
ces Py(a;) and Py(4 — a;)):

fi = 1659952448 — 288469273644 + 330789056002 — 276038409645 + 1834149068a—
100249126443 + 46030505648 — 1792941444} + 5952057243 + 4010200a0—
797664al! — 168073924 + 129332412 — 16464al® + 1548al* — 96l + 3al®,

fo = —57292862894004430112 + 99410699439079666032a, — 117374598008235424952a%+
100177210244188013684a3 — 655503819435198314564a; + 34551266471131239024a3—
14966720248682032760a$ + 5374237484360774884a] — 1601922925204511280a§—
79161365231907112a;° + 12678342805492540a " + 394492844152254648a—
1573549041137424a? + 144855092875104a;® — 9035783133030a}* + 301192771101a}’+
4145078674445042880as,

13 = 3028052975370508570224a, + 62176180116675643200a, — 3788813401131633401144a2+
3376470508745557517108a3 — 2338447762822116051232a; + 1311452796362207738928a3 —
607841242839236653880a$ + 235405014659106440068a; — 76308771921368930160a3 —
4593018797400368104a;° + 825769279317099100a! + 20620430997709031256a3 —
115499873410956528a? + 11822189594425488a;> — 790702154027910a+
26356738467597a1% — 1440504373144352765984,

J1 = —33865454271352153152a, + 1036269668611260720a; + 39471191925206878232a3 —
33611734595500272644a3 + 22608437332356479296a; — 12471408080055248064a]+
5739763288953333800a$ — 2224533690630644044a] + 725549734134995280a%+
44682334346370952a}° — 8151956031330700al! — 198031802810244168a]
+1156768131825384a}? — 119808491147964a;® + 8069722409430a}* — 268990746981’
+14124996950565758432.
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One can check that the first equation f; = 0, which depends only on a4, does
not have real solutions (we have checked that with Maple). It means that
we cannot match our two sets of Twiss parameters (78) by less than 5 thin
lenses.

7 Summary

It is proven that an arbitrary beam transfer matrix and the problem of match-
ing of arbitrary Twiss parameters can be solved with finite number of thin
lenses.

We have found a solution for representation of transfer matrix, which uses
13 thin lenses (or 12 lenses plus variable space between them). From this
13 parameters 6 are independent from the elements of the input matrix. We
also have found an example of the matrix, which can not be represented with
less than 7 parameters.

We have found a solution of matching problem, which uses 9 thin lenses
(or 8 lenses plus variable space between them). From this 9 parameters 4
are independent from the elements of the input matrix. We also have found
an example of Twiss parameters, which can not be matched with less than
5 parameters.
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A Example of Transfer Matrix which can not
be Represented by Three Thin Lenses and
Three Arbitrary Drift Spaces

Consider the matrix:
1 1
M, =M, = (_1 0) . (79)

This matrix can not be represented with less than 5 thin lenses and 4 variable
drift spaces (in total, 9 parameters). This example was found with the help
of Maple and checked once more using Mathematica program. This example
clearly shows that the simple degree—of—freedom count not always leads to
the correct answers and three thin lenses with variable distances between
them are insufficient for representation of an arbitrary beam transfer matrix.
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