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Motivation

In 2014 European X-ray free electron laser (XFEL) will start operating. It has
some essential differences from the synchrotron source, thus it needs new optics.
Monochromator for synchrotron radiation is a well known device, which should
extract exact energy from the continual spectrum of synchrotron radiation.
Usually Si perfect crystals in Bragg geometry are used for this purpose. The
width of crystal reflection curve is typically in order of 10*-10° rad, which is
sufficiently lower than beam divergence.

For XFEL source the peak brilliance, and thus the peak heat loads, are much
greater. To stand in this condition one should use diamond crystals in Laue
geometry. Another change is that the divergence of XFEL pulses is very small,
so incident beam angular width is substantially less than the reflection curve of
the crystal. Also the beam is nearly fully coherent. For such source Gaussian
beam seems to be a good model. But usually plane or spherical wave
approximation is used in dynamical diffraction theory [2]. Recently a general
approach that allows to consider crystal diffraction of a pulse limited in space
and time was developed [1].

Originally 1t was planned that XFEL pulse will have average wavelength of 1
A. However, for most applications it is necessary to operate with a range of
energies. Thus it is interesting to know, how successfully the device designed
for a particular photon energy will operate at various energies.

The main purpose of this project was to simulate propagation of the
Gaussian beams of energies within range 8-20 keV from source to a Laue
double crystal monochromator, between crystals and further to the detector.

Some facts from dynamical diffraction theory

In order to understand the principles of a double crystal monochromator
one has to go into dynamical diffraction theory. Now we will consider the very
basic equations of this theory, which were used in the program.

We shall consider diffraction reflection and transmission of a pulse of X-
ray radiation

E, (x,0) =4, (x,0) exp( iK o, x —ieqn), (1)

which is the field incident on a single-crystal plate of thickness d on the crystal
surface z = 0. In this equation 4, (x.?) is a slowly varying complex amplitude
(the envelope of a wave packet), Kox = Kosin®o, Ko = wo/c and c is the speed of
light in vacuum; the axis x is directed along the crystal surface and the axis z is
directed inside the crystal along the normal n to the surface (Fig. 1). The angle
of incidence of the radiation to the normal n is ®) =y- O- A®, where Oy is the
Bragg angle for the central (average) frequency ®,, which is determined by the
expression (2) Kesin ®s = h (Laue condition), where h is the modulus of the
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reciprocal lattice vector, A® is the deviation from the exact Bragg angle, and v
is the inclination angle of reflecting crystal planes to the normal n.
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Fig. I Geometry in real space of X-ray pulse diffraction in the Bragg and Laue cases.

1: incident pulse Ein(r, t);

2: transmitted pulse Eo(, t);

3: reflected pulse Ei(r, t) in the Bragg case;

4, reflected pulse Ei(t, t) in the Laue case;

5, the crystal;

® and Oy, are the angle of incidence of the initial pulse and the angle of reflection of the diffracted
pulse, respectively, relative to the axis z.

Let us now write the field £, (x,t) in the form of a two-dimensional Fourier
integral,

E, (.0) =[[E, (k. e iko.x —icd)dk, . dc (2)
where

E, (koo €3 =797 [[E, (x.0) e ik, x —ico)doxdt , 3)
Here and further on, all integrations are carried out over the infinite limits from

-0 to +oo. Substituting the field £ (x, t) (1) into (3) and introducing new
variables



q =ko, —K,,, Q=cw—a, “4)
one obtains a set of Fourier amplitudes of the field, £ (ko..cQ =4, (q.£d  with
4,(q. € =757 [ [, (x.0) exp( —ige +iSX)dxe , (5)

Expression (2) describes a set of plane monochromatic waves with amplitudes
A4,,(q.<  wave-vectors ko = (kox, ko,) and frequencies .

For each single component wave in (2) transmitted (T) and reflected (R)
coefficients can be calculated using the plane-wave dynamical diffraction
theory. Not going into details, let us take the solution well known from the
dynamical diffraction theory (so called pendulum solution):

_| x| sin2ay1+»2)
where
. d
A=, (7)

ext

In these equations y is convenient angular variable, .X; - Fourier transformation
of polarisation, d — thickness of the crystal, L. — extinction length.

Even if a crystal is infinitely thick, only the crystal volume within the
extinction length contributes considerably to the diffraction in Bragg geometry.
In Laue geometry extinction length is not so demonstrative, but determines the
shape of the reflectivity curve (see (6) and (7)). It could be calculated as

Vs vl

R ;)|

I, =2 v, =cos( ), (8)

where g=0,h.

As one can see at fig. 2, this solution represents a series of interchanging
maxima and minima, which can be understood as interchanging of dominant
beam (reflected or transmitted).

It is clear from equations (6) and (7), that the shape of the reflectivity
curve determined by the ratio d/L.. . In Laue case the reflection coefficient is
maximal if the crystal thickness satisfies the condition

d =§Lm 2n), )]

where n =0,1,2,... is an integer.
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Fig. 2 Reflected intensity for the case of fulfilled (a) and not fulfilled (b) condition (9).

If condition (9) is satisfied, one will see the picture like fig. 2a with broad

central maximum, otherwise it will take form of fig. 2b. In practice one can use
side maxima to find reflection in the last case, but the intensities will be

significantly smaller.

Transmitted coefficient can be determined as T=1-R. Now we can obtain
the distribution of field E (x, z, t) for transmitted (g=0) and reflected (g=h)
pulses at any point of space (X, z) outside the crystal and at any moment of time

t,

E,(r.0) =[[B, (a4, (q, e ik ,r —ico)dad
where Bo=T, B,=R.

(10)




Gaussian beam

As it was already mentioned, we consider that our beam is Gaussian. In
this chapter the main properties of it are discussed.

HR““HH_ b -

-\""-\-\._\_\_\_ i

— ________-i"i. W(E)
"'-.|r2 WI WI:J_I_ Illl o 7

Fig. 3 Gaussian beam geometry

The geometry and behaviour of a Gaussian beam are governed by a set of
beam parameters, the most important are the radius at which the field amplitude
drops to 1/e of its axial value w(z), angular divergence ® and wavelength A
(see fig. 3). The parameter w0 = w(0), named waist size, and also is frequently
used for the description of Gaussian beam. The parameter w(z) approaches a
straight line for big distances. The angle between this straight line and the
central axis of the beam is called the divergence of the beam ®. It can be
calculated as

(11)

Tw,’

where & is given in radians.

In our case energy (or wavelength) was shifted at each iteration and
source size was kept constant during the operation, but could be changed in the
input file Laue 2x.d (variable rOW). Angular divergence was recalculated
automatically.



Results and discussion

Using the programs, which were described in chapter ‘program manuals’,
following results were obtained. Firstly, let’s take a look at Fig.4 where the
reflection from one crystal is shown.
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Fig. 4 Distribution of intensity of the beam reflected from the single crystal.

This picture is typical for our simulations and was calculated for a 98 um thick
diamond crystal. It represents a wiggling curve with maxima and minima
corresponding to condition (9). The purpose of this work was to find nice
construction of a double crystal monochromator. By looking at fig. 4 one can
say, that there are energies at which crystal doesn't reflect at all, thus it can’t be
used. If crystal thickness will be changed, maxima and minima of reflectivity
changes, so it is possible to find optimal crystal thickness for the given energy
range. But in real cases one cannot change the monochromator for each energy
during the experiment, so those minima about 1 keV range can become a
problem.

For better understanding of these results one should look at the angular
distributions of the incident beam in comparison with reflection curve of the
crystal. Fig. 5 shows it for energies 13,25 and 16 keV (this energies have
minimum and maximum peak intensities at fig. 4). The green line shows the
spectrum of the beam. As one can see at 16 keV the green line lies in the middle
of the main peak of the crystal reflection curve, thus most of the intensity goes
into the reflected beam. Unlike the 13,5 keV case the beam is located between
two side maxima, thus nearly all the intensity goes into the transition wave.
Following this approach one can find a simple way to get intensity even in the
case of Fig.5.b. The crystal reflectivity curve can be displaced by rotating the
crystal as it 1s shown at Fig. 6. In this case the intensity will not be as high as, for
example, at 16 keV, but will be significantly increased.



Angular distribution
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Fig. 5 Reflection curves (red lines) and angular distribution of the beam intensity (green lines)
in case of different energies:
a. E=16 keV b. E=13.25keV




Angular distribution
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Fig. 6 Reflection curve (red line) and angular distribution of the beam intensity (green line) in
case of energy E=13.25 keV and inclination angle of the crystal a=2.5 arc. sec.

Now let’s look at the picture for two crystals (Fig. 7). Both crystals have
the same thickness of 107 um.
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Fig. 7 Distribution of intensity of the beam reflected from two crystal monochromator.
Crystal thicknesses 107 um.

This picture is quite similar to the one from the single crystal, but has
lower intensities. It’s more demonstrative to look at a 2D graph with integral
intensities. The red line at Fig. 8 shows integral intensities for non-rotated
crystal and the green one corresponds to the case of rotating by 2 arc. sec. (in
order to have maximum intensity at 14 keV).
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Fig. 8 Integral intensities of the beam reflected from inclined (green line) and not inclined
(red line) crystals.

One can do such realignment for every energy of incoming beam to investigate
what intensity can be achieved by alignment crystals with given thicknesses and
energy of incident beam. Results of simulations for 107 um thick crystals

(optimal thickness for 1 A) are shown at Fig. 9.
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Fig. 9 Integral intensity of the beam reflected from not inclined (blue line) and optimally
inclined (red line) crystals.

One more thing in which we were interested in was comparison of different
thicknesses: in order of 100 um and 400 um. Simulations shows, that oscillation
of diffraction reflection curves become more frequent with increasing of
thickness. Fig.6 shows reflectivity from two 400 um thick crystals in the same
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scale as at Fig. 7. According to this one can say, that 100 um crystal looks more
suitable for our purposes. However, for thicker crystal the main peak of
diffraction reflection curve becomes narrower, compatible with angular
divergence of incoming beam. 2D model should be used for crystals with
thicknesses 400 um and bigger.
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Fig. 9 Distribution of intensity of the beam reflected from two crystal monochromator.
Crystal thicknesses 400 um.

Natural spectral bandwidth of XFEL beam AE ~ 10 eV is much less than period
of oscillations at Fig. 8 and 9, and does not affect the results.

Conclusions

One of the important conclusions answers the question how strong slight
deviations of parameters from the ideal case will effects to the resulting
intensities. Simulations shows that deviations of inclination angles within few
degrees, deviations from Bragg angle within fractions of urad, deviations in
thicknesses within few microns does not lead to critical changes in relation to
ideal case.

Small thickness crystals (about 100 um) seems to be more suitable.

Crystal thickness cannot be optimized for entire energy range (8-20 keV).

Environment for Laue DCM optimization was developed and can be used
for further simulations.
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Appendix

A1l Manual for the program Laue 2x.for *
* Original core of the program (calculations of reflection curve) was written by V.A. Bushuev

The program Laue 2x.for was written for a line source, infinite in y direction
and Gaussian in x direction, i.e. 1D case is assumed. The amplitude of the
electric field can be written as

As(x, z=0) = exp[-(x/ro)* + iQo(x/r0)*], (12)

where 7y 1s a parameter, which describes source size in transverse direction. It
can be connected with FWHM (full width at half maximum) by simple equation
re = 1.1774* ro, 0y — phase parameter, which describes parabolic curvature of
wave front and additional angle divergence:

A >
AQD;JH% , (13)

0

Intensity of the beam (11) in the maximum decreases as 1/z while distance z
increases, which differs from the 1/ z* law usually used for 2D beam

As(x, v, z=0) = exp[-(x/ro)* - (/ro)* + i0lo(x/ro)* + iClo(¥/r0)*]. (14)

Such a beam should be registered by 2D detector. However, all calculations in
the program can be considered as ones for propagation of the beam with
detection of its intensity integrated along y direction. While free space
propagation is under consideration it will be correct to multiply intensity profile
in x direction (which is calculated by the program) by the same profile in the y
direction (like in eq. 2). But in crystals it becomes much more complicated. Still
one can use the same multiplying procedure for reflected beam, if the beam
angular divergence in both directions is much less then the width of the main
peak of the diffraction reflection curve. Such assumption is fulfilled in XFEL in
case that crystal thickness is in order of 100 um, and spoils while the thickness
increases.

The program Laue 2x.for can be used to calculate propagation of
Gaussian beam in the route source — 1% Laue crystal — 2" Laue crystal —
detector. All reasonable distances and parameters can be set up in the input file
Laue 2x.d. There are short descriptions and coded names of correspondin
variables for each parameter in this file in order to make communication with
the program comfortable. Only the first paragraph should be filled with
reasonable data before running the program, the others are calculated and filled
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in automatically by the program. The example of input file can be found in
appendix A.

Let's briefly clarify some points. Psi_1 and Psi_2 are inclination angles,
i.e. angles between surface and reflection planes for the first and the second
crystals. They are positive then rotated counterclockwise (in this case
asymmetry coefficient »=YVy/y, is less than one, where Y,=cos(6s + ),
Vi = cos(0s - ) ). Angular deviations from Bragg angle are positive than rotated
counterclockwise (i.e. when the angle increases from normal to surface). Value
CXmax shows maximum of coordinate of the incident beam in transverse
direction in units of beam size. Boundaries for the angle Cq should be set in such
way, that the entire angular spectrum could be described (Cq=3 is enough in
most cases).

Below the list of parameters for program Laue 2x.for is printed. All
number from the first paragraph done as example and can be shifted in
reasonable ranges.

Input file Laue 2x.d

30.000000 -rOW FWHM source size at z=0 (um)
0.000000 - alfa O in phase(x)=alfa 0*(x/r0)**2
2.000000 - dtetta 1 angle deviation of 1st crystal (urad)
0.000000 - Psi_1 inclination angle for 1st crystal (deg)
107.000000 - tc 1 Ist crystal thickness (um)
2.000000 - dtetta 2 angle deviation of 2nd crystal (urad)
0.000000 - Psi_2 inclination angle for 2nd crystal (deg)
107.000000 - tc 2 2nd crystal thickness (um)
3.500000 - CXmax in Xmax=CXmax*r1W/2
2.000000 -regim Cq: 1 - gMax=1/dx, 2 - qMax=Cq*(2/r1W)
3.000000 - Cq in gMax=Cq*(2/r1x)*sqrt(1+alfal**2)(regim Cq=2.)
900.000000 - number of points n over x and q (<901)
1.549800 - lamO wavelenght (A)
1.258300 - d interplanar spacing for (220) Diamond (A)
500.000000 - ZO0m distance between source and 1st crystal (m)
0.210000 - Z1 distance between two crystals (m)
500.000000 - Z2 distanse between 2nd crystal and detector(m)
-23.001999 - hi0r, real part of hiO (in E-06)
0.050120 - hiO1,imaginary part of hi0 (in E-06)
7.335800 - hihr, real part of hih (in E-06)
0.048562 - hihi,imaginary part of hi0 (in E-06)

calculated parameters
2.2795925 - dt 0 FWHM incident beam divergence (urad)
5.9633203 - dt mainl 1/2 width of main peak (urad)

1140.1909180 - r1W FWHM beam size at z=Z0 1st crystal (um)
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37.9936104 - alfa 1 phase parameter at z=Z0
95.7155914 - max source intensity BeamO(x,z=0) (%)
2.6310306 - max incident intensity Beam(x,Z0) (%)
1.7001945 - Max reflected intensity BeamR1(x,Z1) 1st (%)
0.5996205 - Max reflected intensity BeamR2(x,Z2) 2nd (%)
1.0000000 - incident integral intensity at the source (a.u.)
0.4901979 - integral intensity 1st refl. BeamR1(x,Z1) (a.u.)
0.3075291 - integral intensity 2nd refl. BeamR2(x,Z2) (a.u.)
0.5786799 - cdo_1 for 1st crystal (plane wave)
0.5786799 - cdo 2 for 2nd crystal (plane wave)
8.3225679 - Lex1 extinction length for Ist crystal (um)
38.0123177 - tetO1 incident angle on st crystal (deg)
-38.0123177 - tethl reflected angle after 1st crystal (deg)
1.0000000 - bl asymmetry factor for 1st crystal
8.3225679 - Lex2 extinction length for 2nd crystal (um)
38.0123177 - tet02 incident angle on 2nd crystal (deg)
-38.0123177 - teth2 reflected angle after 2nd crystal (deg)
1.0000000 - b2 asymmetry factor for 2nd crystal

38.0123177 - tB Bragg angle for Diamond(220) (deg)
7.5597310 - dtB1 1/2 BRAGG width for 1st crystal (urad)
7.5597310 - dtB2 1/2 BRAGG width for 2nd crystal (urad)

13.1601076 - Z0_Fr Fresnel distance from the source (m)

9534.9990234 - Z1 Fr=2.*r1**2*gh/(lam0*b**2) (m)
-0.1641427 - sdvig 1 beam shift along x after 1st crystal (m)
390.8159485 - sdvig 2 beam shift after 2nd crystal (m)
20.3196049 - mu absorption factor (1/cm)
0.2759560 - mutl=mu*tc 1/g01

A2 Macros description

Before starting to work with the program, one should set the new
environmental system variable ‘“gplot” in order to make the graphical
representation of results available. It should contain the absolute path to the
executive file “gnuplot.exe”. It is assumed, that gnuplot / Octave program is
installed at your computer. You can download available version of this software
package for MS Windows following the link
http://sourceforge.net/projects/octave/files/Octave Windows%20-%20MinGW/ .

After setting up the input parameters run the program. You will see the
sign “everything is working fine” and the wavelength on the screen. Now file
Laue 2x.d contains a set of parameters which were calculated during operating,
they are listed in the second and third paragraphs (the first one contains input
data). Also a set of data files and pictures will be created by the program in the
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current directory. Namely, spatial intensity distribution of the beam before the
first crystal, incident and reflected beams after the first and second crystals, and
diffraction reflection curves for both crystals.

In many cases it is important to see, how results will be changed if
wavelength (or energy) is shifted. To obtain this information one should
continuously call Laue 2x.for, shifting energies in every step. Octave script
Laue scr.m can be used for this purpose. Some of the input parameters are
energy dependent, so it is essential to prepare one more input file
energy par.dat, containing tables with such parameters for each energy. All
necessary formulas to calculate them were given in chapter Theory. In our case
this parameters were taken from special web server XO0h [3]. To set up alother
input parameters edit file Laue shab.d (it should be filled in the same way as
Laue 2x.d).

As a result of running Laue scr.m a new directory “\Laue” will be added
(or replaced, if it already exists) to the current path. It will contain all
information that Laue 2x.for gives placed in a separate directory for each energy
(including Laue 2x.d with current wavelength and all recalculated parameters).

To visualize the results one can run the octave script 3dparam.m. It will
collect data from directories created by Laue scr.m and form files refll.d and
refl2.d with three columns: energy, coordinate and intensity of reflected beam
after first or second crystals. To extract any other parameter (such as integral
intensities, extinction depth etc.) as a function of energy one can use octave
script 2dparam.m.

Also one can use octave script ang_align.m to calculate the maximum
intensity which can be achieved by shifting angle deviations of both crystals
(dtetta 1 and dtetta 2).
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