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Motivation

In 2014 European X-ray free electron laser (XFEL) will start operating. It has 
some essential differences from the synchrotron source, thus it needs new optics. 
Monochromator for synchrotron radiation is a well known device, which should 
extract  exact  energy  from  the  continual  spectrum  of  synchrotron  radiation. 
Usually Si perfect crystals in Bragg geometry are used for this purpose.  The 
width of crystal reflection curve is typically in order of 10-4-10-5  rad, which is 
sufficiently lower than beam divergence.

For XFEL source the peak brilliance, and thus the peak heat loads, are much 
greater.  To stand in this  condition one should use diamond crystals  in  Laue 
geometry. Another change is that the divergence of XFEL pulses is very small, 
so incident beam angular width is substantially less than the reflection curve of 
the crystal. Also the beam is nearly fully coherent. For such source Gaussian 
beam  seems  to  be  a  good  model.  But  usually  plane  or  spherical  wave 
approximation is used in dynamical diffraction theory [2]. Recently a general 
approach that allows to consider crystal diffraction of a pulse limited in space 
and time was developed [1].

Originally it was planned that XFEL pulse will have average wavelength of 1 
A. However, for most  applications it is necessary to operate with a range of 
energies. Thus it is interesting to know, how successfully the device designed 
for a particular photon energy will operate at various energies.

The  main  purpose  of  this  project  was  to  simulate  propagation  of  the 
Gaussian  beams  of  energies  within  range  8-20  keV from source  to  a  Laue 
double crystal monochromator, between crystals and further to the detector. 

Some facts from dynamical diffraction theory

In order to understand the principles of a double crystal monochromator 
one has to go into dynamical diffraction theory. Now we will consider the very 
basic equations of this theory, which were used in the program. 

We shall consider diffraction reflection and transmission of a pulse of X-
ray radiation 

),exp(),(),( 00 tixiKtxAtxE xinin ω−=                                                            (1)

which is the field incident on a single-crystal plate of thickness d on the crystal 
surface z = 0. In this equation ),( txAin  is a slowly varying complex amplitude 
(the envelope of a wave packet), K0x = K0sinΘ0, K0 = ω0/c and c is the speed  of 
light in vacuum; the axis x is directed along the crystal surface and the axis z is 
directed inside the crystal along the normal n to the surface (Fig. 1). The angle 
of incidence of the radiation to the normal n is Θ0 =ψ- ΘB- ΔΘ, where ΘB is the 
Bragg angle for the central (average) frequency ω0, which is determined by the 
expression (2) K0sin ΘB = h (Laue condition), where h is the modulus of the 
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reciprocal lattice vector, ΔΘ is the deviation from the exact Bragg angle, and ψ 
is the inclination angle of reflecting crystal planes to the normal n.

Fig. 1 Geometry in real space of X-ray pulse diffraction in the Bragg and Laue cases. 
1: incident pulse Ein(r, t); 
2: transmitted pulse E0(r, t); 
3: reflected pulse Eh(r, t) in the Bragg case; 
4, reflected pulse Eh(r, t) in the Laue case; 
5, the crystal;
Θ0 and Θh are the angle of incidence of the initial pulse and the angle of reflection of the diffracted 
pulse, respectively, relative to the axis z.

       Let us now write the field inE (x,t) in the form of a two-dimensional Fourier 
integral,

,)exp(),(),( 000 ωωω dkdtixikkEtxE xxxinin ∫∫ −=                                      (2)

where

,)exp(),()2(),( 0
2

0 xdtdtixiktxEkE xinxin ∫∫ −= − ωπω                                (3)

Here and further on, all integrations are carried out over the infinite limits from 
-∞ to  +∞.  Substituting  the  field  inE (x,  t)  (1)  into  (3)  and  introducing  new 
variables 
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one obtains a set of Fourier amplitudes of the field, ),( 0 ωxin kE  = ),( ΩqAin , with

,)exp(),()2(),( 2 xdtdtiiqxtxAqA inin ∫∫ Ω+−=Ω −π                                   (5)

Expression (2) describes a set of plane monochromatic waves with amplitudes 
),( ΩqAin , wave-vectors k0 = (k0x, k0z) and frequencies ω . 

For each single component wave in (2) transmitted (T) and reflected (R) 
coefficients  can  be  calculated  using  the  plane-wave  dynamical  diffraction 
theory.  Not going into details,  let  us  take the solution well  known from the 
dynamical diffraction theory (so called pendulum solution):
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In these equations y is convenient angular variable, hχ  - Fourier transformation 
of polarisation, d – thickness of the crystal, Lext – extinction length. 

Even if a crystal is infinitely thick, only the crystal volume within the 
extinction length contributes considerably to the diffraction in Bragg geometry. 
In Laue geometry extinction length is not so demonstrative, but determines the 
shape of the reflectivity curve (see (6) and (7)). It could be calculated as
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λ=   ),cos( hh Θ=γ                                                                (8)

where g=0,h. 
As one can see at fig. 2, this solution represents a series of interchanging 

maxima and minima,  which can be understood as interchanging of dominant 
beam (reflected or transmitted). 

It is clear from equations (6) and (7), that the shape of the reflectivity 
curve determined by the ratio d/Lext  .  In Laue case the reflection coefficient is 
maximal if the crystal thickness satisfies the condition

),2(
2

nLd ext

π=                                                                                                  (9)

where n =0,1,2,… is an integer.
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If condition (9) is satisfied, one will see the picture like fig. 2a with broad 
central maximum, otherwise it will take form of fig. 2b. In practice one can use 
side  maxima  to  find  reflection  in  the  last  case,  but  the  intensities  will  be 
significantly smaller. 

Transmitted coefficient can be determined as T=1-R. Now we can obtain 
the distribution  of  field  Eg(x,  z,  t)  for  transmitted  (g=0)  and reflected  (g=h) 
pulses at any point of space (x, z) outside the crystal and at any moment of time 
t,

,)exp(),(),(),( Ω−ΩΩ=∫∫ qddtirikqAqBtrE gingg ω                                  (10)
where B0=T, Bh=R.
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Fig. 2 Reflected intensity for the case of fulfilled (a) and not fulfilled (b) condition (9).



Gaussian beam

As it was already mentioned, we consider that our beam is Gaussian. In 
this chapter the main properties of it are discussed. 

The geometry and behaviour of a Gaussian beam are governed by a set of 
beam parameters, the most important are the radius at which the field amplitude 
drops to 1/e of its axial value w(z), angular divergence Θ and  wavelength  λ 
(see fig. 3). The parameter w0 = w(0), named waist size, and also is frequently 
used for the description of Gaussian beam. The parameter  w(z) approaches a 
straight  line  for  big  distances.  The  angle  between  this  straight  line  and  the 
central  axis  of  the  beam is  called  the  divergence of  the  beam  Θ.  It  can  be 
calculated as

0wπ
λθ ≅ ,                                                                                                     (11)

where θ is given in radians.
In  our  case  energy  (or  wavelength)  was  shifted  at  each  iteration  and 

source size was kept constant during the operation, but could be changed in the 
input  file  Laue_2x.d  (variable  r0W).  Angular  divergence  was  recalculated 
automatically.
       
      
     

7

Fig. 3 Gaussian beam geometry



Results and discussion 

Using the programs, which were described in chapter ‘program manuals’, 
following results  were obtained.  Firstly,  let’s  take a  look at  Fig.4 where the 
reflection from one crystal is shown. 

This picture is typical for our simulations and was calculated for a 98 um thick 
diamond  crystal.  It  represents  a  wiggling  curve  with  maxima  and  minima 
corresponding  to  condition  (9).  The  purpose  of  this  work  was  to  find  nice 
construction of a double crystal monochromator. By looking at fig. 4 one can 
say, that there are energies at which crystal doesn't reflect at all, thus it can’t be 
used. If crystal thickness will be changed, maxima and minima of reflectivity 
changes, so it is possible to find optimal crystal thickness for the given energy 
range. But in real cases one cannot change the monochromator for each energy 
during  the  experiment,  so  those  minima  about  1  keV  range  can  become  a 
problem.
For  better  understanding  of  these  results  one  should  look  at  the  angular 
distributions of the incident beam in comparison with reflection curve of the 
crystal.  Fig.  5  shows  it  for  energies  13,25  and  16  keV (this  energies  have 
minimum and maximum peak intensities at fig. 4). The green line shows the 
spectrum of the beam. As one can see at 16 keV the green line lies in the middle 
of the main peak of the crystal reflection curve, thus most of the intensity goes 
into the reflected beam. Unlike the 13,5 keV case the beam is located between 
two side maxima, thus nearly all the intensity goes into the transition wave. 
Following this approach one can find a simple way to get intensity even in the 
case of Fig.5.b. The crystal reflectivity curve can be displaced by rotating the 
crystal as it is shown at Fig. 6. In this case the intensity will not be as high as, for 
example, at 16 keV, but will be significantly increased. 
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Fig. 4 Distribution of intensity of the beam reflected from the single crystal.



Fig. 5 Reflection curves (red lines) and angular distribution of the beam intensity (green lines) 
in case of different energies:

a. E=16  keV   b.   E= 13.25 keV
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Fig. 6 Reflection curve (red line) and angular distribution of the beam intensity (green line) in 
case of energy E=13.25 keV and inclination angle of the crystal α=2.5 arc. sec.

Now let’s look at the picture for two crystals (Fig. 7). Both crystals have 
the same thickness of 107 um. 

This picture is quite similar to the one from the single crystal, but has 
lower intensities. It’s more demonstrative to look at a 2D graph with integral 
intensities.  The  red  line  at  Fig.  8  shows  integral  intensities  for  non-rotated 
crystal and the green one corresponds to the case of rotating by 2 arc. sec. (in 
order to have maximum intensity at 14 keV). 
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Fig. 7 Distribution of intensity of the beam reflected from two crystal monochromator. 
Crystal thicknesses 107 um.



 
Fig. 8 Integral intensities of the beam reflected from inclined (green line) and not inclined 
(red line) crystals.

One can do such realignment for every energy of incoming beam to investigate 
what intensity can be achieved by alignment crystals with given thicknesses and 
energy  of  incident  beam.  Results  of  simulations  for  107  um  thick  crystals 
(optimal thickness for 1 A) are shown at Fig. 9.

Fig. 9 Integral intensity of the beam reflected from not inclined (blue line) and optimally 
inclined (red line) crystals.

One more thing in which we were interested in was comparison of different 
thicknesses: in order of 100 um and 400 um. Simulations shows, that oscillation 
of  diffraction  reflection  curves  become  more  frequent  with  increasing  of 
thickness.  Fig.6 shows reflectivity from two 400 um thick crystals in the same 

11



scale as at Fig. 7. According to this one can say, that 100 um crystal looks more 
suitable  for  our  purposes.  However,  for  thicker  crystal  the  main  peak  of 
diffraction  reflection  curve  becomes  narrower,  compatible  with  angular 
divergence  of  incoming  beam.  2D  model  should  be  used  for  crystals  with 
thicknesses 400 um and bigger. 

Natural spectral bandwidth of XFEL beam ΔE ~ 10 eV is much less than period 
of oscillations at Fig. 8 and 9, and does not affect the results.

Conclusions

One of the important conclusions answers the question how strong slight 
deviations  of  parameters  from  the  ideal  case  will  effects  to  the  resulting 
intensities. Simulations shows that deviations of inclination angles within few 
degrees,  deviations  from Bragg angle  within  fractions  of  urad,  deviations  in 
thicknesses within few microns does not lead to critical changes in relation to 
ideal case.

Small thickness crystals (about 100 μm) seems to be more suitable.
Crystal thickness cannot be optimized for entire energy range (8-20 keV). 
Environment for Laue DCM optimization was developed and can be used 

for further  simulations.
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Fig. 9 Distribution of intensity of the beam reflected from two crystal monochromator. 
Crystal thicknesses 400 um.
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Appendix

A1  Manual for the program Laue_2x.for *

* Original core of the program (calculations of reflection curve) was written by V.A. Bushuev

The program Laue_2x.for was written for a line source, infinite in y direction 
and Gaussian  in  x  direction,  i.e.  1D case  is  assumed.  The  amplitude  of  the 
electric field can be written as 

AS(x, z=0) = exp[-(x/r0)2 + iα0(x/r0)2],                                                              (12)

where r0  is a parameter, which describes source size in transverse direction. It 
can be connected with FWHM (full width at half maximum) by simple equation 
rw = 1.1774* r0; α0 – phase parameter, which describes parabolic curvature of 
wave front and additional angle divergence:

  
2
0

0

1 α
π
λθ +≅∆
r ,                                                                               (13)

Intensity of the beam (11) in the maximum decreases as 1/z while distance z 
increases, which differs from the 1/ z2 law usually used for 2D beam 

 AS(x, y, z=0) = exp[-(x/r0)2 - (y/r0)2 + iα0(x/r0)2 + iα0(y/r0)2].                        (14)

Such a beam should be registered by 2D detector. However, all calculations in 
the  program  can  be  considered  as  ones  for  propagation  of  the  beam  with 
detection  of  its  intensity  integrated  along  y  direction.  While  free  space 
propagation is under consideration it will be correct to multiply intensity profile 
in x direction (which is calculated by the program) by the same profile in the y 
direction (like in eq. 2). But in crystals it becomes much more complicated. Still 
one can use the same multiplying procedure for  reflected beam, if  the beam 
angular divergence in both directions is much less then the width of the main 
peak of the diffraction reflection curve. Such assumption is fulfilled in XFEL in 
case that crystal thickness is in order of 100 um, and spoils while the thickness 
increases.

The  program  Laue_2x.for  can  be  used  to  calculate  propagation  of 
Gaussian  beam  in  the  route  source  –  1st Laue  crystal  –  2nd Laue  crystal  – 
detector. All reasonable distances and parameters can be set up in the input file 
Laue_2x.d.  There  are  short  descriptions  and  coded  names  of  correspondin 
variables for each parameter in this file in order to make communication with 
the  program  comfortable.  Only  the  first  paragraph  should  be  filled  with 
reasonable data before running the program, the others are calculated and filled 
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in automatically  by  the program.  The example  of  input  file  can be found in 
appendix A. 

Let's briefly clarify some points. Psi_1 and Psi_2 are inclination angles, 
i.e.  angles between surface and reflection planes for  the first  and the second 
crystals.  They  are  positive  then  rotated  counterclockwise  (in  this  case 
asymmetry  coefficient  b = γ0/γh is  less  than  one,  where  γ0 = cos(θB + ψ), 
γh = cos(θB - ψ) ). Angular deviations from Bragg angle are positive than rotated 
counterclockwise (i.e. when the angle increases from normal to surface). Value 
CXmax  shows  maximum  of  coordinate  of  the  incident  beam  in  transverse 
direction in units of beam size. Boundaries for the angle Cq should be set in such 
way, that the entire angular spectrum could be described (Cq=3 is enough in 
most cases). 

Below  the  list  of  parameters  for  program  Laue_2x.for  is  printed.  All 
number  from  the  first  paragraph  done  as  example  and  can  be  shifted  in 
reasonable ranges.

Input file Laue_2x.d

      30.000000     -r0W FWHM source size at z=0 (um)
       0.000000     - alfa_0 in phase(x)=alfa_0*(x/r0)**2
       2.000000     - dtetta_1 angle deviation of 1st crystal (urad)
       0.000000     - Psi_1 inclination angle for 1st crystal (deg)
    107.000000     - tc_1 1st crystal thickness (um)
       2.000000     - dtetta_2 angle deviation of 2nd crystal (urad)
       0.000000     - Psi_2 inclination angle for 2nd crystal (deg)
    107.000000     - tc_2 2nd crystal thickness (um)
        3.500000     - CXmax in Xmax=CXmax*r1W/2
        2.000000     - regim_Cq: 1 - qMax=1/dx, 2 - qMax=Cq*(2/r1W)
       3.000000     - Cq in qMax=Cq*(2/r1x)*sqrt(1+alfa1**2)(regim_Cq=2.)
    900.000000     - number of points n over x and q (<901)
        1.549800     - lam0 wavelenght (A)
        1.258300     - d interplanar spacing for (220) Diamond (A)
    500.000000     - Z0m distance between source and 1st crystal (m)
        0.210000     - Z1 distance between two crystals (m)
    500.000000     - Z2 distanse between 2nd crystal and detector(m)
     -23.001999     - hi0r, real part of hi0 (in E-06)
        0.050120     - hi0i,imaginary part of  hi0 (in E-06)
        7.335800     - hihr, real part of hih (in E-06)
        0.048562     - hihi,imaginary part of hi0 (in E-06)

=================calculated parameters=======================
          2.2795925      - dt_0 FWHM incident beam divergence (urad)
          5.9633203      - dt_main1 1/2 width of main peak (urad)
    1140.1909180      - r1W FWHM beam size at z=Z0 1st crystal (um)
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        37.9936104      - alfa_1 phase parameter at z=Z0
        95.7155914      - max source intensity Beam0(x,z=0) (%)
          2.6310306      - max incident intensity Beam(x,Z0) (%)
          1.7001945      - Max reflected intensity BeamR1(x,Z1) 1st (%)
          0.5996205      - Max reflected intensity BeamR2(x,Z2) 2nd (%)
          1.0000000      - incident integral intensity at the source (a.u.)
          0.4901979      - integral intensity 1st refl. BeamR1(x,Z1) (a.u.)
          0.3075291      - integral intensity 2nd refl. BeamR2(x,Z2) (a.u.)
          0.5786799      - cdo_1 for 1st crystal (plane wave)
          0.5786799      - cdo_2 for 2nd crystal (plane wave)
          8.3225679      - Lex1 extinction length for 1st crystal (um)
         38.0123177      - tet01 incident angle on 1st crystal (deg)
        -38.0123177      - teth1 reflected angle after 1st crystal (deg)
           1.0000000      - b1 asymmetry factor for 1st crystal
           8.3225679      - Lex2 extinction length for 2nd crystal (um)
         38.0123177      - tet02 incident angle on 2nd crystal (deg)
        -38.0123177      - teth2 reflected angle after 2nd crystal (deg)
           1.0000000      - b2 asymmetry factor for 2nd crystal

         38.0123177      - tB Bragg angle for Diamond(220) (deg)
           7.5597310      - dtB1 1/2 BRAGG width for 1st crystal (urad)
           7.5597310      - dtB2 1/2 BRAGG width for 2nd crystal (urad)
         13.1601076      - Z0_Fr Fresnel distance from the source (m)
      9534.9990234      - Z1_Fr=2.*r1**2*gh/(lam0*b**2) (m)
          -0.1641427      - sdvig_1 beam shift along x after 1st crystal (m)
        390.8159485      - sdvig_2 beam shift after 2nd crystal (m)
          20.3196049      - mu absorption factor (1/cm)
            0.2759560      - mut1=mu*tc_1/g01

A2  Macros description

Before  starting  to  work  with  the  program,  one  should  set  the  new 
environmental  system  variable  “gplot”  in  order  to  make  the  graphical 
representation  of  results  available.  It  should contain  the absolute  path to  the 
executive file “gnuplot.exe”.  It is assumed, that  gnuplot / Octave program is 
installed at your computer. You can download available version of this software 
package  for  MS  Windows  following  the  link 
http://sourceforge.net/projects/octave/files/Octave_Windows%20-%20MinGW/ .

After setting up the input parameters run the program. You will see the 
sign “everything is working fine” and the wavelength on the screen. Now file 
Laue_2x.d contains a set of parameters which were calculated during operating, 
they are listed in the second and third paragraphs (the first one contains input 
data). Also a set of data files and pictures will be created by the program in the 
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current directory. Namely, spatial intensity distribution of the beam before the 
first crystal, incident and reflected beams after the first and second crystals, and 
diffraction reflection curves for both crystals. 

In  many  cases  it  is  important  to  see,  how  results  will  be  changed  if 
wavelength  (or  energy)  is  shifted.  To  obtain  this  information  one  should 
continuously  call  Laue_2x.for,  shifting  energies  in  every  step.  Octave  script 
Laue_scr.m can be  used  for  this  purpose.  Some  of  the  input  parameters  are 
energy  dependent,  so  it  is  essential  to  prepare  one  more  input  file 
energy_par.dat,  containing  tables  with  such  parameters  for  each  energy.  All 
necessary formulas to calculate them were given in chapter Theory. In our case 
this parameters were taken from special web server X0h [3].  To set up alother 
input parameters edit file Laue_shab.d (it should be filled in the same way as 
Laue_2x.d). 

As a result of running Laue_scr.m a new directory “\Laue” will be added 
(or  replaced,  if  it  already  exists)  to  the  current  path.  It  will  contain  all 
information that Laue_2x.for gives placed in a separate directory for each energy 
(including Laue_2x.d with current wavelength and all recalculated parameters). 

To visualize the results one can run the octave script 3dparam.m. It will 
collect data from directories created by Laue_scr.m and form files refl1.d and 
refl2.d with three columns: energy, coordinate and intensity of reflected beam 
after first or second crystals. To extract any other parameter (such as integral 
intensities,  extinction depth etc.)  as a function of  energy one can use octave 
script 2dparam.m. 

Also one can use octave script  ang_align.m to calculate  the maximum 
intensity which can be achieved by shifting angle deviations of both crystals 
(dtetta_1 and dtetta_2).
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