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Abstract

In this report we review a duality between three different Matrix Models. We will prove
the duality between the Kontsevich-Penner (W) model and a model which we will call the F
model, where F' is an arbitrary complex matrix. Both models describe tachyon scattering in
¢ = 1 non-critical string theory. Before the proof we develop the necessary tools of group and
representation theory.
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1 Introduction

In the 20th century there were great improvements in understanding the structure of the universe
and the nature of the fundamental interactions. Two extremely successful theories, General
Relativity and Quantum Theory, were developed and have ever since been experimentally verified
to high precision. It is clear that both of these theories describe their separate domains of
physical reality in great accuracy.

Since the advent of these theories physicists and mathematicians have tried to unite quantum
theory with relativity, but the attempts have not succeeded so far. String theory attempts to
solve this problem in a mathematically consistent way. A simplified setting to study string
theory is the non-critical ¢ = 1 string with two-dimensional target space. The ¢ = 1 string
theory already exhibits one of the most interesting features of string theory: gauge-gravity
duality. It can be expressed by a variety of matrix models, three of which we will look into.

These models are interesting due to the existence of dualities between the different types
of models, reflected in their Feynman diagrams. In some models the closed string insertions
appear as vertices (a ‘V-type’ model), while in others they are associated to faces (an ‘F-type’
model). Another example of this type of duality is topological 2d gravity, where the two models
in question are the double-scaled Hermitian matrix model (V-type) and the Konsevich matrix
model [12] (F-type).

Applications of these matrix models also arise in 4d N' = 4 Super Yang-Mills theory. There
the Z model is a generating function for correlation functions of holomorphic and antiholomor-
phic half-BPS operators built from a single complex scalar transforming in the adjoint of the
gauge group U(N) [6], [13]. Local operators in A/ = 4 Super Yang-Mills correspond to vertices
of the Z model. On the other hand, when considered as expressing the ¢ = 1 non-critical string
at the self-dual radius the Z model is a generating function for the scattering matrix of tachyons
with positive and negative integer momenta.



2 Matrix Model Generalities

In this chapter we start by reviewing some generalities of matrix models and their Feynman
graph expansions. We will take a closer look at one example of a correlation function of trivalent
vertices. In the second section we’ll consider three different matrix models in more detail.

2.1 Matrix models and their Feynman graph expansionsﬂ

Matrix models are the simplest kind of quantum gauge theories, namely ones in zero dimensions.
The basic field of the theory is a Hermitian N x N field M. Consider an action of the form

W (M) = tr(M?) + > tr(MP) (1)
p>3

An action like this has the gauge symmetry
M — UMU? (2)

with U a U(N) matrix. The partition function of the theory is

1
Z=—o [dMe WD 3

e ] e ®)
The factor vol(U(NN)) is the volume of the unitary group and this arises from fixing the gauge
and so we're in fact considering a gauged matrix model. The measure [dM] is given by

N
dM = [[dMi ] d®RMi; dSM;; . (4)

i=1 1<i<j<N

Partition functions with general actions of the type can be computed considering perturba-
tions around the Gaussian point [14].
One can visualize perturbations of the free energy

F=InZ (5)

with fatgraphs, in the double-line notation used by ’t Hooft [I7]. The reason that we want to
do this is that in U (V) gauge theories there are apart from gauge coupling parameters another
parameter, namely the rank of the gauge group, IV, and the perturbative expansion can be done
in powers of V. In general a single Feynman diagram gives rise to a polynomial in NV, where the
N dependence comes from the group factors associated to the Feynman graph. However, the N
dependence is hard to see in single-line Feynman graphs, and so we choose to use the double-line
notation, as introduced by ’t Hooft. Thus the Feynman diagrams become ”fatgraphs”.

In order to demonstrate this method, we take (|1)), and consider just the cubic case, that
is, picking just the p = 3 term from the sum. The field M;; is in the adjoint representation,
which is defined as the tensor product of the fundamental and antifundamental representations.
Therefore one can consider ¢ as being and index of the fundamental and j as an index of
the antifundamental representation. This index notation can be visualized in the double line
notation as in Figure
Interpreting this as one would a Feynman graph, one can see that the kinetic term of the theory
is given by E|

tr (M2) = Miiji (6)

In this section the normalization and gauge coupling constants will mostly be omitted for clarity.
2Henceforth we will implicitly assume Einstein summation, whenever it simplifies notation. Sometimes we will
write the sums out explicitly, in order to clarify the ideas presented.
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Figure 1: The index structure of the field M;; can be visualized as a double line (figure from [14])

Hence the propagator is

(M;; M) = 031 05 (7
This is illustrated in Figure
i < 1 6 6
j > X i Ok

Figure 2: The propagator visualized in the double line notation (figure from [I4])

The vertices of the theory can be drawn as p double lines joined together for a vertex of pth
order. In the cubic potential under consideration we have a third-order vertex

tr (M?) = M;; M My, (8)

Figure 3: The cubic vertex tr(M?) (figure from [14])

which is displayed in Figure

The Feynman diagram can give rise to many different fatgraphs, depending on which terms
of the Wick contraction are considered. Contracting two trivalent vertices can be done in two
ways; in a way that renders just one face that corresponds to a factor IV in the perturbative

expansion, another giving rise to a three-face diagram, corresponding to a term with N3. This
calculation is done in Appendix [A]
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Figure 4: Two different ways of contracting two trivalent vertices; on the left the loop diagram corresponding
to a factor of N, the diagram on the right corresponds to a factor N2 (figure from [14]) .



We see the same correlation function is split into two fatgraphs. The closed loops are given
by the way in which the contraction is performed, and looking at Figure [4 one sees that the
power of N associated with a fatgraph is actually equal to the number of closed loops in the
graph. The graph on the right in Figure |4]is planar, and can be drawn without intersections on
a sphere, a Riemann surface of the lowest possible genus. The graph on the left, on the other
hand, is not planar and can only be drawn without intersections on a Riemann surface of a
genus one higher than the sphere, that is, the two-torus. Generally, a fatgraph is characterized
topologically by the number of propagators or edges F, the number of vertices V' and the number
of closed loops h. This implies that a fatgraph can be regarded as a Riemann surface with holes
so that each closed loop represents the boundary of a hole. Formally the genus g of such a
surface is related to the above mentioned parameters by the topological formula

29—2=E-V —h (9)

Generally, the fatgraph corresponding to the highest factor of IV is the planar graph of the
expansion. Then, computing all the different contractions one gets terms of falling order in N2.
For each suppression by % the corresponding fatgraph can be drawn without intersecting on a
Riemann surface whose genus is one higher than that of the previous one.

It follows that we can organize the computation of the different quantities in the matrix
model in terms of fatgraphs. This is called the genus expansion of the free energy of the matrix
model.

2.2 Specifics of Different Matrix Models

The first model we consider is the Z model, which describes tachyon scattering for the ¢ =1
string at self-dual radius[l]. The map from tachyons 7, with integer momentum p to the matrix
variables Z, Z1 is for k > 0

T = tr(Z%) T — te(ZTF) (10)

And the individual tachyon correlation functions

(T T, Togy oo Tog, ) = (28 (22 ™) - a(z™0)) (D)

(&
On the righthand side the correlation function is taken using the complex matrix model with
Gaussian action tr(ZZT). The correlator is computed by Wick-contracting with the propagator

<Zij Z;Zl> = 0310k (12)

The partition function of the Z model is

Z({t3AD) = / [4Z) oy e~ EED+ER it (ZH R, Bn(21) (13)

whence one sees that the model has two infinite sets of couplings {¢x} and {f;}. These couplings
can be rewritten in terms of Kontsevich-Miwa transform

n n
1 1 _ 1 1
th=) — = —tr(A7" k=) —=—tr(B" 14
=D = A A=Y g = s 14
where A = diag(a1,as, ...a;) and B = diag(bi, by, ..., b;).
Another model in literature is the Kontsevich-Penner, or W, model, where just the couplings
corresponding to tachyons with positive momenta are rewritten as t; = %tr(A_k). The W4



model is defined for Hermitian positive semi-definite N x N matrices M and is in its general
form given by [16]

ZWOO({t}a {ﬂ) _ / [dM]%;N eter(ianN)tr log M+3°52 , tutr(MA~HF (15)
In sections to come we will set v = —ip = N, where p is the cosmological constant, so that
Zw (1 A7) = [aMEy AT A ) (16)
This model has the propagator [8]
5 - L1,
<777Ji1j17ni2j2>I/VOo = ; AiljzAizjd (17)
where the variable m is introduced because the quantum action F(M) = —uN +v trMA —

vtrlog M leads to equations of motion such that the expectation value of the field is (M) = A~L.
One then shifts M by m around this expectation value, so that M=A"14nm.

A generic Hermitian matrix can be written as a product of unitary matrices and a diagonal
matrix [15] M — UDU', with U Unitary, and D diagonal, D = diag(my, ma, ..., my), where the
{m;} are the eigenvalues of M. This is convenient, because the action has the gauge symmetry
(2), and it enables us to reduce the integral to eigenvalues.

The metric on the matrix space after this gauge transformation can be calculated as in [2]

ds? — _ 2 2 2 o ot 2
s = tr(dMdM) = dm} + dm3 + ... + dm3 + > _(mi — m;)|dUs U} |
i#]

The Jacobian of the transformation is given by the square root of the determinant of the above

(18)

expression
v/ det(ds?) = H(ml —m;)? (19)
And so v
d¥ M = @V Vo) [T dms T](mi —my)? = [dU) (@¥mi) A2 (m;) (20)

i=1 i<j
Here A is the Vandermonde determinant.

The third and final model we consider is the F' model, in which also the couplings corre-
sponding to negative momenta are rewritten as in . This model has the partition function

Zr({t}{t}) = /[dF](]CVXN ot (FFT)=N trlog(1-A~'FB~'FT) 21)
= / [dF)S o v e H(FF) =N, ftr[(AT FBIFT)"] (22)

And the propagator N
(FiF) - (1_]§5b) -

Now we see that the first model considered, the Z model, is in fact symmetric in the two
couplings corresponding to tachyons with positive and negative momenta.

Both the Z and F models are defined for complex matrices Z, F € C(N). Since the analysis
is the same for both models, we’ll in the following just consider one, say the F model. A generic
compex matrix can be written as a product of two (different) unitary matrices and a diagonal
matrix [15]

F-WVvDVH  V,WeUN) (24)



Here D is diagonal with eigenvalues of FFT. Performing the change of variables gives
for the Gaussian density just tr(FET) = tr(D) since FFT = WD WT. It is clear that the
measure transforms in the same way as in the above considered case for the W, model, with

the difference that now we have two unitary matrices instead of just one, so we’ll get measures
[dW] and [dV], each with half the dimension of that of [dU].

3 Proof of duality between the IV, and F' models

In the first section of this chapter we review some definitions of representation theory, to be
used in the proof of the second section. In proving the duality between the Kontsevich-Penner
and the Z models we use methods of character expansion and the Itzykson-Zuber integral [9].

3.1 Methods of group and representation theory

We want to be able to expand the correlators in terms of characters of the representation, and
so we will need some tools from group and representation theory.

As seen in the previous sections, the matrix models considered are symmetric under the
gauge group U(N). Representations of U(N) are parametrized by the partitions p with the size
\u] =", pi and length I(n) < N such that

p1 = p2 2 2 ) > 0= w1 = - (25)

For the symmetric group S,, the irreducible representations and hence the conjugacy classes are
in one-to-one correspondence with Young tableaux containing n boxes. For .S, equation
can also be interpreted as describing the length of the rows of the Young diagram g, and now
the row lengths p; correspond to the possible partitions of n (see Appendix .

To prove the duality between the two matrix models we want to expand the exponent of the
W4 model, and in this expansion one gets a product of traces of matrices to different powers.
These product are often referred to as multi-trace operators and we write each product using a
conjugacy class element of S where k is the sum of the powers of the matrix, say Z. Write the
conjugacy class as a partition [u1, 2, ..., tip] of k, where each p; is a u; -cycle in Si. Thus we
need to define [4]

tr(ZM)te(Z12) - tr(Z0) = 23 2 - 25k = tr(a Z9F) (26)
where a is in the conjugacy class [p1, ft2, ..., ftp]. For a partition p of k (written p b k) we write a
representative of the corresponding conjugacy class [u] as o, € [p] C Si. The size of a conjugacy
class is | [u] | = ISynlf(!lul)l = H7,§=1pi§i“')ip(u)!' Here Sym(a,) = {p € Sk | papup™' = .}, and we
wish to distinguish | [u] | from the size of the partition |u| = >, u; = k. For the factors in the
product of the expression of Sym(c,), i,(@) represents the length of a row with p boxes in a
Young diagram. The multi-trace operator can also be written in terms of these as

k
r(oy, Z8%) = H [tr(ZP) ] (27)

Further, it can be shown that [4] this operator can be written in terms of characters as

tr(a, Z%%) = xala) xa(2) (28)
Ak



3.2 Proof of Duality

Now that we’ve developed the tools required, we take the W, model

ZWOO ({t}, {ﬂ’) — / [dM]e_tr(MH_Ezo:l fktr[(]MAfl)k] (29)

And expand it in terms of characters with the methods described in the previous section. We
begin by expanding the exponent in a series

0o k
L D) = [lame 03T T Y o [t (A" (30)

k=1 p=1 n
k
1

/dM —tY(M)Z Z H pp(U)z |:tl"(B p) tr [(MA_l)]pr(M) (31)

k=1 urk p=1
(w)

—tr(M) —1\® |y o —1\®|ul ip
/dM ; Z [ ( W(BTH® )t ( p(MATHE )} (32)
:/ e Z >l |Z><A XABTYY vl (MA™Y)  (33)

]
k=1 prk ! Y

:/ e M Z Xa(B™1) xa(MA™) (34)

1NN

In the second step we’ve used the Kontsevich-Miwa transform .The last step follows from
the orthonormality of the characters.

In order for this integral to be well defined it is required that the eigenvalues of M be positive
semi-definite. This requirements is automatically fulfilled by the F' model [5]. Performing now
the change of variables given by

N
Zw.. = / [0 [T dmi A%(mq) 75057 xa(B™H) xa(UDUTA™) (35)
i=1 (NN

The integral over U can be calculated using the formula of Ttzykson and Zuber [9]

U vy - X))
[y oxuty) = 2L (36)
In our case this leads to
1
o—t1(D) —1 —1
2w =[] Hdml m) Y ge@ N uEham e
I(MNSN
It is further known that [4]
N
/ [T dmi A%(mi) =) x5 (D) = [dimy X2 (38)
i=1
And so we finally get
Zw, = Y dimyAxa(B7)xa(4™ (39)

(AN

In order to get to the F model, where F is a generic n X n complex matrix, we now make a
change of variables in such that F — W+/D VT, where W,V are unitary and D is diagonal



with eigenvalues of F' as entries. The measure is calculated in exactly the same way as in

7 and so

Zr({t} {t}) :/[dF]<C o~ (FF)AN S5 (AT FB LR o

nxn

N
_ / [dV] [dW] Hdmi A2(mi)e_tr(D)+N S t[(ATTWVD VIBTIVYD W) (41)

i=1
Performing a character expansion as in -

Zp = / [dV] [dW] ] [ dmi A%(mi)e™™ P S~ xa(Iy) xa(A'WVDVIB~'VVD W) (42)
i=1 1NN

Now both the integrals over [dV] and [dW] can be evaluated using Equation (36]). Integrating
first over [dW] and writing x(Ix) = dimyA

ZF:/[dV]ﬁdmi A%(my)e P 3 dimyA xA(A™") xa (VD VIB~'VV/D) )

. dim,, A
i=1 1NN

Integration over [dV] yields

n - dimy A xa(A™1) xa(D) xa(B™1)
Zn = d iAQ . tr(D) N 44
F /lj[l m; A%(mi)e Z(AZKN dim,, \ dim,, \ (44)

This is in agreement with , if we set n = N. However, as a final step we can use to get
the result
Zr= Y dimyA (A7) (B (45)
NN
Which is exactly the same as in .

4 Conclusions

The matrix models studied in this report have correlation functions that correspond to both
tachyon scattering for the ¢ = 1, R = 1 non-critical string and to a half-BPS sector in the (free)
4d N = 4 super Yang-Mills theory [10]. There are three models considered here: the Z model,
where tachyons appear as vertices [, the F' model [4] with closed string insertions associated
with faces of the Feynman diagrams and the W, model [§]. The duality between the Z and
W models was shown by Mukherjee and Mukhi [I6]; the duality between the Z and F' models
was shown by Brown [4]; in this report we have closed the triangle and shown the duality of the
F and W, models. We have used methods of character expansion and Itzykson-Zuber integral
[.

These results are exciting since this matrix model duality could provide a prototype for
understanding AdS/CFT duality on a microscopical scale [3]. There is an idea that [4] it may
be possible to rewrite N’ = 4 super Yang-Mills as a dual theory, and that local operators and
vertices from A/ = 4 SYM could correspond to faces of the dual Feynman graphs.
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Appendices

A Calculating the correlation function of trivalent vertices
The correlator between two trivalent vertices, as considered graphically in Section is
(tr(MP) tr(M?)) = <(tr(M3))2> - <M;MngM}nM,§"Ml">

where M is an N x N field. This can be split into propagators between first order vertices as

in Equation
(MjM) = 6,05

The complete correlator between the third order vertices is given by the sum over all possible
ways of breaking it down to propagators between first order vertices.
Consider contracting the propagator like

——= 1 |

MM MEM] MM
to get the decomposition
(MMM MM ) = (ML) (M) (MEM) = 6,0, ]

m Yj Yn

Spr Of 8 =00, 6, 0" = N

Contracting in another way yields

| I 1 1 . . . . . .
MIMEMEM MM = (MIM) (MEME) (M, M) = 515751650, 87 = N*6j78l, = N
Taking into account all the possible permutations of contractions we get the final answer

(tr(M3) tr(M?)) = 12N3 4+ 3N

B The symmetric group

The symmetric group S, consists of the permutations of n objects (or their labels), and it is of
order n!. A general permutation can always be written as a product of disjoint cycles, and so it
is convenient to group the permutations of S, by cycle structure, a cycle being e.g. (123). An
arbitrary element has k; j-cycles, where



The conjugacy classes consist of all possible permutations with a particular cycle structure. The
number of different permutations in the conjugacy class is [7]

n!
Hj jkjkj!

since each permutation of number 1 to n gives a permutation in the class, but cyclic order
doesn’t matter within a cycle and order doesn’t matter at all between cycles of the same length.

This group has a fundamental importance in the theory of finite groups, since, by virtue of
Cayley’s theorem, every finite group of order n is isomorphic to a subgroup of S, [II]. The
representations of .S, are labeled by Young diagrams with n boxes ﬂ

Sv: [
So: [ ] ] E

S: [T1J -

Se: [LTTT] -

Each column of boxes of length j represents a j-cycle. The first diagram in each of the above
groups is the identity element, which is always a conjugacy class by itself. A tableau like

is a 4-cycle, a 3-cycle and a 1-cycle, which is an irreducible representation of Sg. Since each
tableau represents a conjugacy class, the tableaux are in one-to-one correspondence with the
irreducible representations [7].

3Each tableau can also be thought of as representing a particular process of symmetrization and antisymmetrization
of a tensor to produce a tensor transforming according to some irreducible representation of SU(N). A tensor with
n indices corresponds to a Young tableau with n boxes. E.g. for a tensor with three indices the tableau l:\:\:‘

gives completely symmetrized states and a tableau @ gives completely antisymmetrized states.
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