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This paper is the summary of the project assigned to me in the framework
of the DESY Summer Student Program 2010. The project aimed at con-
tributing to the data analysis of double slit diffraction patters obtained from
measurements at the free-electron laser called FLASH at the DESY research
center in Hamburg, Germany. Eventually, the measurements carried out by
Andrej Singer et al. and their analysis will reveal specific coherence prop-
erties of the FLASH X-ray source. These are of great interest for materials
and biophysics research using radiation of that source.
PACS: 41.60.Cr, 42.25.Bs, 42.25.Kb

1 Motivation

Light waves need to be coherent in order to produce an interference pattern when they
overlap. Interference is required in some imaging techniques, e.g. Coherent X-Ray
Diffraction Imaging (CXDI). The greater the coherence length of a photon source, the
larger objects can be investigated. One of the methods to measure coherence is the
double slit experiment.

2 Theory (Young’s Double Slit Experiment) [1], [2]

The description of diffraction relies on the interference of waves emanating from the
same source taking different paths to the same point on a screen. In this description,
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Figure 1: Interference geometry of the double slit experiment according to [1]

the difference in phase between waves that took different paths is only dependent on the
effective path length. This does not take into account the fact that waves that arrive at
the screen at the same time were emitted by the source at different times. The initial
phase with which the source emits waves can change over time in an unpredictable way.
This means that waves emitted by the source at times that are too far apart can no
longer form a constant interference pattern, since the relation between their phases is
no longer time-independent.

If waves are emitted from an extended source, this can lead to incoherence in the
transverse direction. When looking at a cross section of a beam of light, the length
over which the phase is correlated is called the transverse coherence length. In the case
of Youngs double slit experiment, this means that if the transverse coherence length is
smaller than the spacing between the two slits, the resulting pattern on the screen would
look like two single slit diffraction patterns.

The wave source (end of last active FEL undulator) is located at a distance z1 from
the double slit, which is at a distance z2 from the detector (z2 � z1). The optical axis
is aligned with the axis Z, perpendicular to the XY plane as shown in Figure 1.

As the wave source is far away (z1 is large), we assume that it is at infinity and the
wavefront is incident parallel to the double slit. In those two slits (P1 and P2) it forms
two analytical signals without delay. We want to know the intensity at point Q, located
at a distance r1 and r2 with respect to P1 and P2

u(Q, t) = K1u
(
P1, t−

r1
c

)
+ K2u

(
P2, t−

r2
c

)
, (1)

where K1 and K2 are (possibly complex-valued) constants. We know that I(Q) =
〈u∗(Q, t)u(Q, t)〉 and with some algebra, we obtain the intensity

I(Q) = I(1)(Q) + I(2)(Q) + 2K1K2Re

(
Γ12

(
r1 − r2
c

))
, (2)

where Γ12(τ) = 〈u(P1, t+ τ)u∗(P2, t)〉 is the mutual coherence function of the light and
plays a fundamental role in the theory of partial coherence.
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Normalizing the coherence function using

γ̃12(τ) =
Γ12(τ)

{Γ11(0)Γ22(0)}1/2

γ̃12 = γ12(τ)e−i(2πντ−α12(τ))

(3)

leads to

I(Q) = I(1)(Q)+I(2)(Q)+2
√
I(1)(Q)I(2)(Q)γ12

(
r1 − r2
c

)
cos

[
2πν

r1 − r2
c

+ α12
r1 − r2
c

]
.

(4)
After substituting the following variables

r1 =
√
z22 + (ξ1 − x)2 + (η1 − y)2

r2 =
√
z22 + (ξ2 − x)2 + (η2 − y)2

∆ξ = ξ2 − ξ1
∆η = η2 − η1
d =

√
(∆ξ)2 + (∆η)2 (distance between slits),

(5)

where ξ1,2 and η1,2 are defined as in Figure 1 and assuming that the fringe contrast
will be constant over the observation region of interest, we can simplify the mutual
coherence function Γ12 and the complex degree of coherence γ12. These functions can
now be rewritten as

Γ12(τ) ∼= J12e
−i2πν̃τ

γ12(τ) ∼= µ12e
−i2πν̃τ ,

(6)

where J12 , Γ12(0) is the nutual intensity of light at pinholes P1 and P2, and

µ12 , γ12(0) =
J12√

I(P1)I(P2)
(7)

is called the complex coherence factor of the light with the property 0 ≤ |µ12| ≤ 1.
Eventually, we obtain for the case of a double slit

I(x, y) = I(1) + I(2) + 2
√
I(1)I(2)|µ12| cos

[
2π

λz2
(∆ξx+ ∆ηy) + φ12

]
, (8)

where µ12 is as explained above, λ is the wavelength of the radiation and φ12 is the
phase difference between the two light waves at their respective slit. I(1) and I(2) are
the intensities of each slit as given by

I(1),(2) = I
(1),(2)
0 sinc

[
a

λz22
x−

(
z1 + z2
z1

)
ξ1,2

]2
, (9)
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where the normalized sinc function is defined as sinc x = sin(πx)
πx

, which we used, and
sometimes as sincx = sin(x)

x
. I0 is the original beam intensity at the slit. In the follow-

ing data analysis, the two slit intensities I(1),(2)0 were taken to be the same. It might
be necessary for further refinement of the data fitting procedure to introduce another
parameter that accounts for intensity differences at both slits. In that case one could
write

I(1) = I
(1),(2)
0 sinc(. . .) ,

I(2) = (1 + para(r))I(1),(2)0 sinc(. . .) ,
(10)

where I(1),(2)0 is the intensity parameter used in the fitting program now and para(r)
represents the relative deviation of one intensity from the other.

So what is reported in this paper is the inference of the complex coherence factor
|µ12| from a given double slit separation and the measurement of the diffraction pattern
produced by these slits.

3 Experimental Setup

Figure 2: Setup of the Double Slit Experiment at FLASH, z1 = 70m, z2 = 9.2m

The double slit holder was at a distance of 70.0 meters downstream from the X-ray
source, which is measured from the end of the last aligned (i.e. operating) undulator.
Between the double slit and the pnCCD detector (courtesy of Max Planck Institute,
Max-Planck-Arbeitsgruppen für strukturelle Molekularbiologie Hamburg) there was a
9.2 meter spacing. Originally, a spacing of 9.5 meters was recorded, but with the help
of Equation 11 and the fact that the fitted slit distances were about 3.3% too large, we
corrected it down to 9.2 meters. The detector’s pixel size was a squared 75 µm per pixel.
Five undulator modules were operating and FLASH produced electron bunches of 50-55
µJ energy in deep saturation mode, which starts at about 40µJ, and photons of 13.5 nm
wavelength. The slits themselves were 10 µm wide and 50 µm high. Four different slit
separations were used to create diffraction patterns: 150, 300, 350 and 500 µm.
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4 Finding Parameters

From the 2-dimensional diffraction pattern recorded by the CCD one can obtain a line
plot (plots intensity vs. x range), which makes the intensity information accessible. This
line plot can be drawn using the command plot(a.imm(y1, x1:x2)), where a.imm is the
matrix containing the actual diffraction pattern, y1 is the horizontal line through the
diffraction pattern (counted from the top) and x1 and x2 select the horizontal range for
the plot. In this example plot(a.imm(105,:)) was selected, see Figures 3 and 4. From
the spatial fringe period (distance between the top of two neighboring fringes – number
of pixels times 75µm) LP (in µm) it is possible to calculate the distance d between the
two pinholes according to

d =
λz2
LP

, (11)

where λ is the wavelength of the utilized radiation (E = 91.9 eV =̂ λ = 13.5 nm)
and z2 signifies the distance pinholes–screen (9.2 m), according to Young’s double slit
experiment [1]. The example measurement gives a spatial fringe period of 804.8µm,
which we count, and a pinhole–pinhole distance of 154.3µm, which can be calculated
using above formula. So, the farther the slits are separated the smaller the spatial fringe
period. Other physical dimensions that are correlated to properties of the diffraction
pattern are the shape of the envelope of the fringe pattern, which is connected to the
slit width – the wider the slit the narrower the envelope –, the height of the envelope,
which is directly proportional to the intensity at the slit (with γ12 = const.), and the
ratio

r = γ12 =
Imax − Imin
Imax + Imin

, (12)

which denotes the visibility of the fringes.

Double Slit Property Diffraction Pattern
slit separation ↑ fringe period ↓
slit width ↑ (width) shape of envelope ↓
intensity I0 ↑ height of envelope ↑
visibility γ12 ↑ r = Imax−Imin

Imax+Imin
↑

Table 1: Correlations between physical properties of the slits and diffraction pattern
parameters

After the initial estimation of the fit parameters, the tilt of the fringe pattern, which
arises from the slits not being exactly aligned horizontally, is determined by virtually
extending a line through one of the fringes in the 2D pattern and noting the x-y-
coordinates of two points along that line. In Figure 3 the two chosen points along
the same fringe yield a ∆x of -5 and a ∆y of 119, which leads to a tilt angle of
α = arctan (−5/119) = −2.41 ◦ respective the perpendicular (y-axis).
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Figure 3: 2D diffraction pattern, slight tilt to the left, slit separation 150 µm, fitting
are in black rectangle, 20 fringes over a 215 pixels distance; the diffraction
patterns above and below the main pattern are due to the finite slit height

Figure 4: Fringe pattern (line plot) through center of marked fitting range in Figure 3

If a piecewise range is necessary for the fit – perhaps because of a beamstop or other
interruption of the interference pattern –, then range_x = [x1:x2, x3:x4] would be the
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command to use. The fitting procedure outputs an error R defined as

R =

∑N
i=1(I

exp
i − Ifiti )2∑N

i=1(I
fit
i )2

, (13)

which was smaller than 0.006 for each fit.

5 Data Fitting

The data fit (red) is shown in Figure 4. Initially, starting values for each parameter are
estimated and minimum and maximumn points are chosen. The fitting procedure then
creates the best fit that obeys these constraints. The upper and lower boundaries need
to be estimated as well and should be narrowed down as the fitting procedure is applied
again and again. The parameters should be manioulated until none of them reaches its
preset upper or lower boundary and the overall picture looks sound.

6 Results and Discussion

Figure 5: Root mean square (sigma) of the Gauss fit through the absolute value of the
complex coherence factor |µ12|(x) for slit separations of 150, 300, 350 and 500
µm; corresponds to the coherence length of the X-ray source

The error bars in Figure 5 were calculated by fitting nine to ten 6-pixel tall 2D intervals
from the top to the bottom of the main interference pattern as shown in Figure 3. This
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was done for all for difference slit separations and the absolute deviation from the fit
through the middle of the interference pattern was used as upper and lower error bounds.

Figure 6: Direct beam 2D, as measured with a Ce-doped YAG scintillator crystal and a
CCD camera

Figure 7: Line plot through the direct beam, Gaussian fit

In the end, the coherence factor |µ12| alone tells little about the coherence properties
of the X-ray source. It is possible to widen the beam and thereby increase its coherence
length. That, however, is not desirable, since the a more divergent beam has less intensity
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on the spot, so noise can infringe the measurement. It is thus highly desirable to know
the coherence properties of a highly intense beam. The beam used for the discussed
interference experiments was therefore radiated on a Ce-YAG scintillator crystal and
captured with a CCD chip. Figure 6 shows the beam cross section, where red represents
high intensity and blue low intensity. Several line plots (like in Figure 7) were taken
from the 2D image and fitted with a Gaussian algorithm in order to estimate the beam’s
σ. It was found to be σ = (1886± 160)µm.

From σcoh = ξ = 380µm (root mean square of complex coherence factor |µ12|(x)) and
σbeam = σ = (1900± 200)µm (root mean square of the beam intensity) we can calculate
the coherence quality factor

q =
ξ

σ
= 0.20± 0.02 (14)

and eventually the normalized degree of coherence

ζ =
q√
q2 + 4

= (10.0± 1.5) % (15)

Andrej Singer et al.[3] published a normalized degree of coherence of 17% for the
same X-ray source, but in their experiment the X-rays did not pass through any optical
elements. So, from my analysis it can be concluded that the optical elements in the
X-ray pathmay lead to some loss of coherence.

7 Additional Work to Be Done

During the data fitting the finite pixel size was not taken into consideration. That
becomes especially obvious at the 500 µm slit separation sample. The line plot clearly
shows data points shooting far out of the fitting range, which is not due to physics, but
to the small number of measurement points per fringe. However, this shortcoming can
be corrected mathematically/statistically.
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Appendix

Figure 8: Line plot through center of 2D interference pattern, slit separation 300µm

Figure 9: Line plot through center of 2D interference pattern, slit separation 350µm
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Figure 10: Line plot through center of 2D interference pattern, slit separation 500µm
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