The design and construction of a Conditions Database Interface.

Marcel Cutts

September 2010

Abstract

The Conditions Database is method of storing and accessing with the data that characterizes detectors, a
requirement for modern particle physics reconstruction and analysis techniques. Initially developed at CERN,
the Conditions Database has grown to be incorporated in a large number of projects globally, including the
International Linear Collider group’s software toolkit. This report aims to outline the progress made on the
construction of an upgraded graphical user interface for Conditions Database. The design process and consider-
ations will be explained and commented upon, and the method of implementation described and justified. The
current progress will be summarised, and finally, an evaluation of current work and an outlook onto future tasks
is given.

Contents

1 Introduction 2

2 Design 2
2.1 Framework choice 2
2.2 Software Structure e 3

3 Implementation 3
3.1 Main Window L e e e 3
3.2 Menu Bar e e e e 4
3.3 Object Control e e 4
3.4 Conditions Object« . . e e 4
3.5 Grid . .. e 4
3.6 Tagging System e e e 5

4 Progress and current state 5

5 Outlook and Evaluation 5

1 Introduction

The Conditions Database (CondDB) is a C++ appli-
cation protocol interface (API) for databases, which be-
gan development at the European Center for Nuclear Re-
search (CERN) during 2001. A similar concept was pre-
viously utilised at the Stanford Linear Accelerator Cen-
ter (SLAC) which inspired the CondDB project to begin
alongside the construction of the Large Hadron Collider
(LHC). CondDB can be thought of as a layer that can be
“wrapped around” all kinds of common database types,
such as MySQL, Oracle or Objectivity to make them ap-
pear identical. This has several key advantages, for both
researchers and the information technology (IT) depart-
ments that must maintain them. Firstly, it creates a sce-
nario where IT departments need to only maintain one
type of database, and any necessary changes can quickly
be wrapped around supported databases, in contrast to
having to update several database types using a variety
of methods. For researchers, it means data objects from
multiple different experiments can be accessd without
requiring to learn a new set of database languages and
syntaxes, increasing the ease of collaboration between
groups. The CondDB system has since been adopted by
a variety of particle physics groups globally, including
the International Linear Collider (ILC) group, who have
incorporated it into the Linear Collider Conditions Data
(LCCD) toolkit.

The purpose of these databases is to store “conditions
data”, which characterizes the state of a detector at a
given time period. This data could include such factors
as environmental parameters, detector calibration data
and detector geometry, all of which are stored in a con-
ditions object. This data is necessary to read and store
as during reconstruction or analysis of detector data, it
is important to know the state of the detector to under-
stand what the acquired event data represents.

Currently, two applications exist which offer the abil-
ity to interact with a CondDB, a command-line inter-
face (CLI) program and a graphical “Tcl” script. While
the command-line program is often used and considered
powerful, a graphical user interface (GUI) offers several
advantages which the CLI cannot match. The core ad-
vantage of a GUI is the ability to visualise large sets of
data, for example in the form of a graph, which is valu-
able when attempting to find trends in the data. Ad-
ditionally, it is also often easier to group and sort data
when it can be displayed simultaneously. Several user-
based advantages exist through using a GUI, such as ease
of use through a more intuitive medium. While the com-
mand line tool is powerful, it does require the user to
understand the program. A user that isn’t sufficiently
competent, could make significant unwanted changes to
the database.

As mentioned above, a Tcl based GUI for the
CondDB system exists, however, it contains several key
flaws. The primary complaint found in practical use is

the instability of the program. Crashing is often reported
by users, and no “crash recovery” function exists, the
user needs to restart the work that he or she had been
conducting up to that point. This is partially as a re-
sult of the coding, but also of the nature of the coding
language itself. “Tcl” is a scripting language intended
for rapid prototyping, which can be used to create GUIs
when combined with the “Tk” graphical framework, and
the scope of the program has outgrown the capability
of these two components. This causes the program to
be difficult to extend, modify or “fix”. Additionally, a
common user complaint is of a lack of error checking on
the part of the program. For example, the current Tcl
GUI can does not check the existence of tags or folders
before applying new tags, leading to null referenced ob-
jects existing in the database. This can cause long term
annoyances for all users of the CondDB.

This report aims to outline the progress in the design
and construction of an improved and stand-alone appli-
cation to which seeks to replace the Tcl based database
viewer. Design choices will be explained, and the imple-
mentation methods will be commented upon and finally,
future prospects and additional expansion options will
be explored.

2 Design

The various stages of the design work and research will
be described below. These activities were performed be-
fore the code was written to ensure the construction pro-
cess would result in clean and manageable code. When
writing software without strong planning and design, it
is common for factors or requirements to be overlooked
resulting in an inelegant solution to a problem. This cre-
ates code that is more difficult to understand by both
the original developer, and later others if they wish to
extend or fix the code themselves. Furthermore, strong
planning generally results in faster completion times, as
the writing process can be focused on the required tasks
more accurately.

2.1 Framework choice

The initial step in the creation of a GUI application is
the choice of framework to utilise. The framework is the
mechanism in which code is converted from a text format
into an actual graphical entity that a user can interact
with, and many choices exist. Research was conducted to
examine which to utilise for the creation of the CondDB
GUI with respect to several requirements. Due to the
varied user-base, it is important that the application be
portable and “cross-platform”; conveying that it can be
used on a broad spectrum of computer operating sys-
tems. This ensures the application is portable and can
be sent to global colleagues without concern that the
end user may not have the correct computer profile to

use it. This requirement excludes a large number of very
common frameworks which are native to a single operat-
ing system, such as the “Microsoft Foundation Classes”
(MFCQC) for windows, or the Apple centric “Cocoa”. To
improve on the Tcl based code, it was also preferred that
the framework should be coded in C++, a more com-
monly known and used language among particle physi-
cists. This is to ensure that if fixes or extensions are re-
quired, a large portion of users should be able to develop
them. Additionally, a C+-+ application framework will
be compiled, rather than interpreted like the Tcl script,
normally resulting in significant performance increases
within the program.

With these exclusion factors considered, a few candi-
dates remained to be chosen from, however the decision
was made to utilise the “Qt” framework. This was due to
a variety of factors, such as Qt’s large widget library, but
primarily due to it’s maturity and good documentation.
Additionally, the Qt framework is also free in both cost
and development constraints, being licensed under the
GPL. The advantage of this is that no future developer
should be impeded from further development of the soft-
ware via cost or licensing laws, making it as accessible as
possible.

2.2 Software Structure

It is common to design the structural overview of the
software in broad terms before beginning to write code.
This generally ensures that the code will be written in a
cleaner, more concise way, which is an important factor
in maintainability of the application over the upcoming
years. In order to encourage extensibility, a focus on
modular coding was used when designing the overview.
This implies that there is a strong separation of many of
the core portions of the application, with the intent that
if the user would want to implement additional code, the
user would only have to update a small portion of the
program. This saves the user time in development and
ensures that future users of this addition could also un-
derstand and expand upon the work. A tree diagram
illustrating this concept can be seen in the Appendix
(A1).

The key idea is that Object Control class, the seg-
ment that controls the receiving, storage and sending of
conditions objects should remain consistent, and there-
fore other functions of the program can be “children” of
this core functionality. For example, a user may want
the application to be compatible with a new variety of
conditions object, and so a “child class” of the object con-
trol is object creation, named Conditions Objects. The
user only has to alter the code in the Conditions Object
class with the parameters that the new conditions object
may require, but the objects will still need to be stored
by Object Control for use by the program in a consistent
manner.

While Object Control is the “core” part of the pro-

gram that handles the portions of the program that com-
plete the processes the program was designed for, it itself
is a child of “Main Window” class, which is a separa-
tion for convenience of future GUI programmers. The
Main Window class dictates the general layout of the
program, such as where to place and what size to use for
the graphing portion of the program, or what buttons
exist on the menu bar, but has no actual functionality of
its own. This separation of function and broad graphical
elements should ensure that developers who wish to ex-
tend the GUI do not have to understand or worry about
the core functionality of object control, while inverse is
true for developers wishing only to extend the function-
ality without having to contemplate the GUI.

This modular approach is hoped to ensure the pro-
gram remains understandable and expendable through-
out a number of iterations by distributed developers.

3 Implementation

This section of the report will focus on the challenges and
techniques used in the writing of the software. Major
classes, their purpose and functionality will be outlined,
giving a broad understanding of the various purposes of
each code block.

As the author had not previously developed appli-
cations using the Qt framework, the graphical elements
were implemented first learn and understand the Qt
structure with the intention to to fill an empty GUI with
standard C++ based functionality on a later date. This
order was chosen as developing the core functionality
without knowing how it could integrate with the GUI
could result in a situation where the two simply were not
compatible, but through learning and understanding the
GUI portion first, the functionality could be planned and
implemented cleanly with the prior knowledge of C++.

3.1 Main Window

The purpose of the Main Window class, as mentioned
above in the “Software Structure” section of the report,
is to control the general layout of the program’s graphical
components, often referred to as “widgets”. It initialises
the window itself, and the other core independent com-
ponent, the menu bar

The Main Window establishes the outline parts of the
database, it generates the outer window and the menu
bar used to control the application. It also instanstanti-
ates the Connection Manager class that is used to com-
municate with the database and send and receive objects.
This connections class is a child of the Main Window
rather than a child of the object control so the user can
have the ability of connecting to a database without hav-
ing to load the entire Object Control class. At the time
of writing the Main Window class also instantiates an

Object Control class, but this could be altered easily to
only occur on incoming objects.

3.2 Menu Bar

The menu bar is part of the Main Window class, and con-
tains functions that may be useful to be user at all times.
These include the ability to connect and disconnect from
a database, exit the application and clearing all current
objects from the screen. This is implemented through a
series of “QAction” items, which can be combined with
the Signal and Slot mechanism within Qt to act as a
function call to various member functions of established
classes.

3.3 Object Control

Much of the core conditions object functionality resides
in the Object Control class. This class’s purpose is
largely to store and manage conditions objects once they
have been loaded. The conditions objects themselves
have a custom class, named Conditions Objects, which
contains all the parameters required to create a condi-
tions object, which are then filled with data from the
database. The conditions objects themselves are stored
by the Object Control class using a “QList” template
container class, and accessed via an index system. This
provides the foundation of the sorting functions of the
class. The “sort by tag” function, for example, will loop
through the QList containing the conditions objects, and
for each object check the tags it contains. If a valid tag
match is found, the conditions object will be displayed
upon the grid.

3.4 Conditions Object

A child class of Object Control, one of these is instanta-
ntiated whenever a new conditions object is loaded from
the database. It has a large number of member variables
which can be set by the information from the database, or
by the user via “setter” functions, which are public func-
tions that can be used to change member variables. The
“shape” of the conditions object, when displayed on the
grid is determined by the length of the event, and its ini-
tial starting position on the time axis. The length of the
event is measured from the database in terms of nanosec-
onds since the beginning of the year, nineteen-seventy
(1.1.1970). This is converted into a four co-ordinate set
in the QRectF class, in which four “double” values define
a rectangle, where the first two define the initial x and y
co-ordinate respectively, and the final two the length and
height respectively. This is illustrated in Figure 1 below.

heighi{}

_

| width{)

Figure 1: QRectF dimension systems

Tags for the object are again contained within a QList
template class. This ensures the object can have a large
number of tags, saved as QStrings, without any problem.
These can also be set by the user via “setTag” setter pub-
lic function.

3.5 Grid

The grid is a “graphing area” of the program, which is
where the Conditions Objects are displayed. The x-axis
represents the interval of validity of the Conditions Ob-
jects represented as time, and the y-axis corresponds to
the “version” or “layer”, as it is often the case that there
are multiple Conditions Objects at any given interval.
The grid itself is coded in a QGraphicsScene subclass,
instead of a more conventional QPainter class. While
the “QGraphics” based classes were only added to Qt re-
cently, they have a greater focus on object interaction
with the user, and being able to display multiple inde-
pendent objects presented it as a more convenient choice
than that of QPainter, which has a greater focus on sim-
ply drawing and displaying objects. The QGraphics class
set operates on the principle of having a “scene” and a
“view”, a scene being the location where graphical ele-
ments can be placed, and the view is the selection and
how the graphical elements are observed. This simpli-
fies actions such as zooming, as a consistent scene can
be created, in which only the view change. This is in
contrast to the earlier “QPainter” method, in which the
scene would have to be redrawn after each action.

When no conditions objects are present in Object
Control, the grid simply displays an empty text state-
ment, however when an object is loaded, a background
grid structure is drawn. The background is a large set
of blue intersections divided into time intervals and sepa-
rated into layers. An example of this, with two condition
objects represented by gray bars, can be seen in Figure
2.

Layars

00-00:00.000 00-00:00C

1
Figure 2: Snapshot of a portion of the grid.

A problem can arise when dealing with Conditions
Objects, as the their interval of validity can vary dra-
matically, and the user could attempt to load conditions
objects which have a large difference in their intervals of
validity. There are two choices when dealing with such
scenarios. Firstly the grid could expand, but this could
result in the user having to scroll an unreasonable dis-
tance to reach the wanted data. Alternatively, the grid
could be a constant size, with conditions objects being
resized respectively against each other. After some user
testing, it was found to be easier to find data on a fixed
size grid, as the QGraphics zoom ability is strong and
allowed the user to find conditions objects that are ordi-
narily dwarfed by a much larger conditions object. As a
result, a system was implemented where the largest con-
ditions object would span the entirety of the grid, with
each smaller conditions objects resized relative to the rei-
size factor of the largest. This is found through a simple
resize factor show in Equation 1:

Width of largest object
Width of grid

Resize =

Equation 1: Resize formula

The width of the grid is by default set to 5000 pixels,
but this can be changed by the user to suit their monitor
resolution. The width of the largest object can be found
by applying the “width” member function to the largest
conditions object. It is also important to consider not
only the width of the conditions object itself, but also its
starting coordinate, as this will dictate how much “span”
the object will require across the grid.

3.6 Tagging System

The tagging system displays all the tags of the cur-
rently loaded Conditions Object classes. This is achieved
through retrieving each Condition Object’s tag set when
the item is loaded into Object Control and sending it to
the Tagging System. The tagging system adds this to a
QStringList, a convenience class based on QList with a
focus on string-only storage, and loads it onto a widget.

Qt operatives a model /view architecture to present data
to the user, consequently a list view was chosen o present
this QStringList to the user. When the user clicks upon
any of the strings within this list, the previously men-
tioned tag sorting system in Object Control comes into
effect, with the application sorting based upon the se-
lected string.

4 Progress and current state

With the current graphical elements described above in
place, the software has made considerable progress from
pure concept. It’s ability to load and use dummy Condi-
tion Objects illustrates that the various components are
communicating correctly, and the underlying functional-
ity of the software is working. Currently, the only critical
missing functions are of the database interaction, which
is well documented by members of the ILC group.

A significant challenge was encountered when an at-
tempt to integrate database abilities into the application
was made. The CondDB in use in the ILC is constructed
using a software build process named CMake. The role
of CMake is to seek out dependencies, and organise
them, finally producing a build file, such as a “Make-
file” on UNIX-like operating systems. CMake achieves
this through a selection of files known as “CMakeLists”,
which give the developer a the ability to provide a se-
ries of arguments and commands to the CMake progress.
This gives developers a powerful method of controlling
their dependencies and builds. Qt applications on the
other hand, have a separate build tool, named QMake,
which cannot use CMakeLists and operates in a differ-
ent manner. QMake is simpler to use, and performs the
functions of a meta-object compiler which links the vari-
ous sources of code which have Signal and Slot elements
together. This resulted in a problem, as the application
would require both CondDB components, to read, write
and manage data on the database, and Qt components,
to enable to graphical elements.

It is currently thought to not be possible to com-
pile the Qt and CondDB components separately, instead
attempts were made to integrate the QMake build pro-
cess into CMake. This decision was reached as the rest
of the CondDB software bundle was already built using
CMake, and it would be much preferred to keep a single
build process within the software bundle. Eventually, a
method was devised in which the QMake process could
be wrapped into CMake allowing integration of the two
build processes.

5 Outlook and Evaluation

The remaining primary portion of the code awaiting im-
plementation is the Connections Manager class. This
will use standard methods, outlined in LCCD documen-

tation, to call and search the CondDB. Once this is com-
plete, application will require minor alterations to en-
sure it loads objects from the database, and no longer
forced dummy objects created by the user. Once this
is complete, testing should be conducted to ensure the
stability and user friendliness of the software. Testing
could include attempting to connect to several databases
to ensure the Connections Manager is functional univer-
sally, loading many greatly varying kinds of Conditions
Objects and heavy tag sorting. For user testing, users
could be asked whether the software is intuitive and easy
to understand, and a user manual could be produced to
help this.

A key improvement which could be made in future ap-
plication development projects would be to consider the
integration aspects of software earlier, leading to early

recognition of problems such as those encountered be-
tween QMake and CMake. An additional benefit of this
project, however, was to encounter both minor and ma-
jor hurdles in GUI development, as the lessons learnt
ensure that future projects can proceed more elegantly
from concept to conclusion.

In summary, the core Qt portions of the applica-
tion are complete and require only integration with the
database. The fundamental requirements of this project,
to be an extensible, and portable CondDB GUI are being
fulfilled with noticeable improvements in stability even
within the current pre-release state of the software. As
a consequence, the application will soon be available for
initial testing amongst local users, before being made
freely available online.

Appendix:

Al. A tree diagram of the application structure

