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1 Introduction

I have been working with the Galileon model, originally proposed by Nicolis et
al in 2009 [1.]. The Galileon model is a possible explanation for the current
acceleration of the expansion of the universe, in which gravity is modified on
the very largest distance scales. The Galileon is a scalar field, π, coupled to the
matter content of the standard model. The Galileon model differs from other
scalar field models of dark energy as the galileon scalar field is non-linear. It thus
avoids problems with fifth force experiments that are present in other models.

In the Nicolis et al paper [1.] it is claimed that the speed of the angular
fluctuations of π propagate with a speed υ ∼ 10−8c for the sun-earth system.
Thus any object with mass (e.g the earth) passing through π at speeds greater
than this will emit Cherenkov radiation in the form of scalar field particles. If
this effect is large enough, we can potentially detect the emission of scalar field
particles by the substantial decelleration of the massive object passing through
π.

I have been studying the equation given for the speed of the angular fluctu-
ations in the Nicolis et al paper [1.], finding constraints for cΩ

2, and the model
parameters di. In some cases, the possibility of Cherenkov radiation is not an
issue. For the cases where Cherenkov radiation is possible, I have approximated
the magnitude of the energy loss by Cherenkov radiation.

2 c2
Ω

The expression for the speed of propagation of the angular fluctuations of π is
given by

cΩ
2 =

KΩ

Kt

(1)

where Ki are the kinetic coefficients for the fluctuation. This is given in terms of
the parameters of the model di, i=2,3,4,5. For d5 = 0, this reduces to

cΩ
2 =

d2
2 + 2d2d3y + 4d3

2y2 − 6d2d4y
2

d2
2 + 4d2d3y + 12d3

2y2 − 12d2d4y2 + 24d3d4y3 + 36d4
2y4

(2)
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In the Burrage and Seery paper [2.], we have an expression for y

y =
π′

r
=

M

4πr3d2

g(r) (3)

and for the two spatial regions, Region A and Region B, in which the solution
can be approximated easily

1. Region A: αR2 � r � R1, where

g ∼
(

r

R1

) 3
2

(4)

2. Region B: 0 < r � αR2, where

g ∼
(

r

R2

)2

(5)

and R1 and R2 are lengthscales defined by

R1
3 =

d3M

2πd2
2 (6)

R2
6 =

M2d4

8π2d2
3 (7)

We now consider the possible behaviours of cΩ
2 for the earth orbiting the sun.

3 Region A

The condition for being in Region A is

(
R1

r

)3

g2 �
(

R2

r

)6

g3 (8)

and substituting (4), (6) and (7) into this expression yields d4 � 10187.5GeV −2.
So we can disregard the possibilities where d4 does not satisfy this completely.
Further considering 12d2d4y

2 � 24d3d4y
3 and 12d2d4y

2 � 36d4
2y4, gives negative

speeds. These are unstable solutions and so we neglect them. Doing this places
restrictions on our parameter space.

Using (4), (6) and (3) we find the expression for y in Region A is

y =
1

2

(
M

2πr3d3

) 1
2

(9)
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Substituting this expression for y into (2), we can compare terms and find con-
ditions for each term to dominate which gives us an allowed range for cΩ

2. For
example, for d2

2 � 2d2d3y we have

d2

d3y
� 2 (10)

or, equivalently

d2

d
1
2
3

�
(

M

2πr3

) 1
2

(11)

which implies, using , d2 ∼ MP
2 [2.], d3 ∼ 10118 [2.] and the solar mass, that

r < 1033GeV −1. So, considering just these two terms as the dominant terms in
cΩ

2 and dividing by 4d2d3y

cΩ
2 =

(
1

2
+

d2

4d3y

)(
1 +

d2

4d3y

)−1

(12)

and we can use the binomial expansion to give

cΩ
2 =

1

2
+

d2

8d3y
+ ... (13)

which is valid for d2

4d3y
< 1. This is equivalent to r < 1033GeV −1, consistent with

the original condition. This is much larger than the solar radius (∼ 1024GeV −1)
and so we are justified in using the binomial expansion.

Inserting (10) into (13) we have an upper and lower bound for cΩ
2,

1

2
< cΩ

2 <
3

4
(14)

In a similar fashion we can compare the other terms in the expression for cΩ
2 and

find the possible, allowed behaviours:

1. d2
2 � 2d2d3y gives r < 1033GeV −1 and 1

2
< cΩ

2 < 3
4

2. d2
2 � 4d3

2y2 gives r < 1033GeV −1 and 1
3

< cΩ
2 < 5

9

3. d2
2 � 6d2d4y

2 gives d4 < 10177GeV −2 and 1 < cΩ
2 < 3

2

4. d2
2 � 6d2d4y

2 gives 10177GeV −2 < d4 � 10187.5GeV −2 and 1
4

< cΩ
2 < 1

2

5. 2d2d3y � 6d2d4y
2 gives d4 < 10187.5GeV −2 and 0 < cΩ

2 < 1
2

6. 4d3
2y2 � 6d2d4y

2 gives d4 � 10187.5GeV −2 < 10198GeV −2 and 2
9

< cΩ
2 < 1

3

7. d2
2 � 24d3d4y

3 gives d4 � 10166.5GeV −2 and 0 < cΩ
2 < 1
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8. d2
2 � 24d3d4y

3 gives 10166.5GeV −2 � d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

9. 4d2d3y � 24d3d4y
3 gives d4 � 10177GeV −2 and 0 < cΩ

2 < 1
2

10. 4d2d3y � 24d3d4y
3 gives 10177GeV −2 � d4 � 10187.5GeV −2, 0 < cΩ

2 < 1
2

11. 12d3
2y2 � 24d3d4y

3 gives d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

3

12. d2
2 � 36d4

2y4 gives d4 � 10177GeV −2 and 0 < cΩ
2 < 1

13. d2
2 � 36d4

2y4 gives 10177GeV −2 � d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

14. 4d2d3y � 36d4
2y4 gives d4 � 10182.25GeV −2 and 0 < cΩ

2 < 1
2

15. 4d2d3y � 36d4
2y4 gives 10182.5GeV −2 � d4 � 10187.5GeV −2, 0 < cΩ

2 < 1
2

16. 12d3
2y2 � 36d4

2y4 gives d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

3

17. 12d2d4y
2 � 36d4

2y4 gives d4 � 10177GeV −2 and 1
2

< cΩ
2 < 1

From these possible allowed behaviours, we see that problematic results in
terms of the emission of Cherenkov radiation are 5. and 7.-16..

Now, the average orbital speed of the earth is 29.78km/s [3.]. Converting into
a dimensionless speed gives vE = 9.9335 × 10−5. For stable solutions we want
cΩ

2 > vE
2, otherwise, as the earth moves through the solar galileon field, it would

emit Cherenkov radiation and so decellerate and lose energy. This would result
in the earth spiralling into the sun. So we need cΩ

2 > 10−8 to prevent this.
Now we can find further constraints on the parameters. Focusing on those

that contain just 2 parameters we have 5. 11. and 16. with the same constraints
on the parameters we have already found so all of these cases still pose a problem
with the possibility of Cherenkov radiation. We shall see that some cases in
Region B can be neglected after considering the orbital speed of the earth.

4 Region B

Conversely, to be in Region B we require d4 � 10187.5GeV −2 and

y =
1

2

(
M

πr3d4

) 1
3

(15)

and we can similarly find possible allowed behaviours for Region B

1. d2
2 � 2d2d3y gives d4 > 10219GeV −2 and 1

2
< cΩ

2 < 1

2. d2
2 � 2d2d3y gives 10187.5GeV −2 � d4 < 10219GeV −2 and 1

2
< cΩ

2 < 3
4

3. d2
2 � 4d3

2y2 gives d4 > 10219GeV −2 and 1
3

< cΩ
2 < 1
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4. d2
2 � 4d3

2y2 gives 10187.5GeV −2 � d4 < 10219GeV −2 and 1
3

< cΩ
2 < 5

9

5. d2
2 � 6d2d4y

2 gives d4 � 10187.5GeV −2 > 10156GeV −2 and 1
4

< cΩ
2 < 1

2

6. 2d2d3y � 6d2d4y
2 gives d4 > 10187.5GeV −2 and 0 < cΩ

2 < 1
2

7. 4d3
2y2 � 6d2d4y

2 gives 10187.5GeV −2 � d4 < 10198GeV −2 and 2
9

< cΩ
2 < 1

3

8. 4d3
2y2 � 6d2d4y

2 gives d4 > 10198GeV −2 and 1
2

< cΩ
2 < 2

3

9. d2
2 � 24d3d4y

3 gives r � 1033GeV −1 and 0 < cΩ
2 < 1

10. 4d2d3y � 24d3d4y
3 gives d4 � 10187.5GeV −2 > 10156GeV −2, 0 < cΩ

2 < 1
2

11. 12d3
2y2 � 24d3d4y

3 gives d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

3

12. 12d2d4y
2 � 24d3d4y

3 gives d4 � 10219GeV −2 and 1
2

< cΩ
2 < 1

13. d2
2 � 36d4

2y4 gives d4 � 10187.5GeV −2 > 10156GeV −2 and 1
2

< cΩ
2 < 1

14. 4d2d3y � 36d4
2y4 gives d4 � 10187.5GeV −2 > 10177GeV −2 and 0 < cΩ

2 < 1
2

15. 12d3
2y2 � 36d4

2y4 gives d4 � 10187.5GeV −2 and 0 < cΩ
2 < 1

3

We see that problematic results that may indicate Cherenkov radiation are
6., 9.-11. and 13.-15..

Like for Region A we now use the orbital speed of the earth to calculate
further constraints on the parameters for 9., 11., 13. and 15. (6. gives the same
constraints that we already know and 10. 13. and 14. all have 3 parameters
present).

For example, looking at 9., we have 10−8 < cΩ
2 < 1 and inserting the unique

expression for cΩ
2 for this case gives

10−8 <
d2

2

24d3d4y3
< 1 (16)

where we have neglected the square term from the expression for cΩ
2 as 9. implies

d2
2

24d3d4y3 � 1. This implies

3Md3

πd2
2 × 10−8 < r3 <

3Md3

πd2
2 (17)

which gives the additional constraint for 9. as 1030.33GeV −1 < r � 1033GeV −1

and 10−8 < cΩ
2 < 1

2
.

Similarly, for 11. we have 10187.5GeV −2 � d4 < 10199.5GeV −2 and 10−8 <
cΩ

2 < 1
3
. For 13., we have 10156GeV −2 � d4 < 10168GeV −2 so we can neglect

this result as the condition for being in Region B is not satisfied. And for 15. we
have 10187.5GeV −2 � d4 < 10193.5GeV −2 and 10−8 < cΩ

2 < 1
3
. So, the parameter
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space is restricted further ensuring there is no Cherenkov radiation for cases 9.,
11. and 15..

We can now consider Cherenkov radiation in more detail for the cases which
suggest the possibility of Cherenkov radiation, those being 5.and 7.-16. in Region
A and 6., 10. and 14. in Region B.

5 Cherenkov Radiation

To calculate the energy lost by the earth as a result of emission of Cherenkov
radiation as the earth moves through the solar galileon field at speeds greater
than the angular fluctuations of the galileon, we use the π-action

Sπ =
∫

d4x
(
Lπ + πT µ

µ

)
(18)

Now the solar galileon field and the galileon field of the earth have non-
linearities so we are unable to add the fields for the sun and earth together to do
this integral, as we could for linear fields. So instead, if we consider a very small
mass, such as a dust grain, we can use the linear solution for π

π(r) = π0 −
M

4πd2r
(19)

Considering only the kinetic term of the lagrangian, for simplicity, we can obtain
an order of magnitude estimate for the energy loss. As we are considering a
spherically symmetric galileon π = π(r) we have

S =
∫

d4r

−d2

2

(
∂π

∂r

)2
 (20)

Differentiating π(r) and substituting into S we find

∂S

∂t
=
∫

r2 sin θdrdθdφ

(
−d2

2

M2

16π2d2
2r4

)
(21)

and performing the integral over θ and φ gives

∂S

∂t
=

M2

8πd2

∫ ∞

R�

1

r2
dr (22)

where the lower limit of integration is the radius of the sun because at shorter
distances, inside the sun, other effects need to be taken into account and the
galileon does not dominate or accurately describe the behaviour here.

Then the magnitude of the energy loss by scalar Cherenkov radiation is

∂S

∂t

(
1− cΩ

2

vg
2

)
(23)
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where vg is the velocity of dust grains.
Performing the above integration and substituting we have the energy loss by

Cherenkov radiation as
M2

8πd2R�

(
1− cΩ

2

vg
2

)
(24)

Now interstellar grains move at 26 km/s relative to the sun [4.]. Thus vg
2 ∼

10−8 which is of the same order of the speed of the earth. We know the cases for
which Cherenkov radiation is possible for the earth and these will be the same
for the dust grain. Further, the range for cΩ

2 will be the same as for the earth
(and indeed for any object) as a result of using the binomial expansion. So, the
maximum instantaneous energy loss for a dust particle is

mg
2

8πd2R�
∼ 10−26GeV (25)

where mg ∼ 1018GeV , calculated from ρg = 2gcm−3 [5.] and the size of a dust
grain, 0.1mm [5.], implying Vg = 10−6cm3.

We can compare this to the instantaneous kinetic energy of a dust grain as
it orbits the sun. If the energies are comparable then the energy loss due to
Cherenkov radiation is significant. This poses a problem for the model as the
dust grain spirals in to the sun as a result of its energy loss, an effect we do not
observe. The kinetic energy of the grain is Kg = 1

2
mgvg

2 and so Kg ∼ 1010GeV .
So we see the energy loss due to Cherenkov radiation is a tiny fraction of the
kinetic energy of the dust grain meaning the dust grain does not emit Cherenkov
radiation, and so does not decellerate, significantly.

Additionally, looking at the behaviour of y = π′

r
which is proportional to g(r),

the Burrage and Seery paper [2.] showed that the earth has to be within the
lengthscales R1 and R2 to avoid the appearance of fifth forces in the galileon
model. Here, g(r) → 0 and so there is no interaction between the solar galileon
field and the earth, implying no possibility for Cherenkov radiation.

6 Conclusion

I have found that Cherenkov radiation by the earth as it moves through the solar
galileon field is only possible under certain conditions on d4. If bounds for d4

can be found, like those for d2 and d3, then more of the above possible cases for
Cherenkov radiation can be eliminated.

Unfortunately, it has not been possible to estimate the magnitude of energy
loss by Cherenkov radiation for the earth due to the non-linearities of π in the
model. However, the energy loss by a small mass, like a dust grain, has been
approximated as we are able to use the linear solution for π for a small mass. I
found the maximum energy loss is ∼ 10−26GeV which is insignificant compared
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to the kinetic energy of the dust grain, implying there is no Cherenkov radiation
and thus no problem in the galileon model.

Briefly mentioned was the possibility that the solar galileon field and the
galileon field of the earth don’t couple due to g(r)→ 0 and thus there would not
be a problem with the galileon model in terms of Cherenkov radiation.
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