
An extension of the standard model with avector like fourth generationGrigory Bednik9th September 2010
AbstractWe study a model with an extra family of vector like particles. Partic-ularly they are d-quarks which are SU(2) singlets and also SU(2) doubletleptons and right-handed neutrinos. The mass matrix mix all them withthe particles of the Standard Model so it causes some new predictions inphenomenology. One of them is the existence of tree level �avour changingneutral current.

1 IntroductionThe Standard model can describe all known phenomenology of elementary parti-cles without gravitational and cosmological e�ects. But since it was constructedthere were many di�erent attempts to extend it. Most of them predict somenew kind of particles which are not observed yet, but not excluded by exper-imentalists. For instance there is no proof that in the Nature there are onlythree generations of particles. Also there are some more complicated extensionsof the SM. For instance supersymmetry can be introduced because it simpli�esrenormalization. Another possible way to extend the SM is to suppose that itsgauge group SU(3)×SU(2)×U(1) is a subgroup of a larger gauge group. Alsothe idea of extra dimensions in the space-time was considered many times.In my project a supersymmentric extension of the Standard Model with
SO(10) gauge group and two extra dimensions is considered.It is described indetails in ref. [1, 2, 3]. This model includes a forth generation of vector like d-quarks. It means that these particles have the same quantum numbers as right-handed d-quarks. Also there is the fourth generation of vector like leptons withthe same quantum numbers as left-handed lepton doublets and there are right-handed neutrinos. The e�ects connected with the compacti�ed extra dimensionsand larger than in the SM gauge group can be neglected in case of energiesmuch smaller than the GUT scale which is about1015GeV . The sypersymmetricpartners are not taken into account in this paper though they are in the model.So the e�ective low-energy theory considered here is the SM with an addedforth family particles and right-handed neutrinos. The neutrino masses areobtained via see-saw mechanism. The masses of the extra charged fermions1



have to be larger than the masses of observable particles since they are notfound experimentally.2 The quarks mass matrixThe superpotential of our model is
W = uLmuuR + dLmddR + eRmeeL + νRmDνL +

1
2
νRmNνR (1)Here mu and mN are diagonal 3× 3 matrices but md, me and mD are 4× 4matrices which look like µ1 0 0 µ̃1

0 µ2 0 µ̃2

0 0 µ3 µ̃3

M1 M2 M3 M4

 (2)
Further any of them will be designated by m. Our purpose is to diagonalize thesematrices and to �nd the expression for the Flavour Changing Neutral Currentin this model. This matrix is diagonalized by double-unitary transformation:

m = U4U3DV +
3 V +

4 (3)where U4 and V4 single out the heaviest eigenstate while U3 and V3 act only onthe SM �avour indices. Now let us �nd U4. To do this we consider U+
4 mm+Uwhich should also have the distinguished heaviest eigenvalue. So

mm+ =
(
| µi |2 δij + µ̃iµ̃j µiMi + µ̃iM4

µ∗i Mi + µ̃iM4 M2

) (4)Here
M2 =

4∑
α=1

M2
αLet's suppose that

(U4)αβ = (eα)β

U4 is unitary so
(eα)β(eγ)β = δαγ (5)Let's consider

(U+
4 mm+U4)αβwhich is equal to∑

i

(eβ)∗i | µi |2 (eα)i +
∑
ij

(eβ)∗i µ̃iµ̃j(eα)i +

∑
i

(eβ)∗i (µiMi + µ̃iM4)(eα)4 +∑
i

(eβ)∗4(µ
∗
i Mi + µ̃iM4)(eα)i + (eβ)∗4M

2(eα)4 (6)
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We demand that in case of β = 4, α = k 6= 4 this expression should be equal tozero. By expanding eα over powers of µi/M and supposing that (eα)(0)β = δαβwe get equations:
(µ∗kMk + µ̃kM4)δki + M2(ek)(1)4 = 0 (7)this equation give us the same result as in the article [1] :

(ek)(1)4 = − (µ∗kMk + µ̃kM4)
M2

(8)The second order equations are∑
i

(µ∗i Mi + µ̃iM4)(ek)(1)i + M2(ek)(2)4 = 0 (9)It gives us that we can assume (ek)(1)i = 0, (ek)(2)4 = 0 In the third order wehave
µ∗kMk + µ̃kM4

M2
| µk |2 +

∑
i

µ∗i Mi + µ̃iM4

M2
µ̃iµ̃k −

−
∑

i

| µiMi + µ̃iM4 |2

M2

µ∗kMk + µ̃kM4

M2
+∑

i

µ∗i Mi + µ̃iM4(ek)2i + M2(ek)(3)4 = 0 (10)From the last equation (ek)i can not be found unambiguously so to �nd it weuse the orthogonality condition (5) up to the second order of µ/M . It gives us:
(el)

(2)
k + (e∗k)(2)l = −(e∗k)(1)4 (el)

(1)
4 = − (µkMk + µ̃kM4)

M2

(µ∗l Ml + µ̃lM4)
M2

(11)
Re(e4)

(2)
4 = −1

2

∑
k

| (e4)
(1)
k |2 (12)If we write the matrix U+

4 m up to the second order (ek)l(2) does not contributeto it. Also one can check that (e4)
(2)
4 does not contribute to (U+

4 mm+U4)4j if
j 6= 4.Then let us �nd V4 in the leading order.

U+
4 m =

(
µiδij − (µ̃iM4+µ∗i Mi)Mj

M2 µ̃i − M4
M2 (µ∗i Mi + µ̃iM4)

Mi + µiMi+µ̃iM4
M2 µi

∑
i

µiMi+µ̃iM4
M2 µ̃i + M4

) (13)
(U+

4 mV4)4j =∑
i

(
µiMi + µ̃iM4

M2
µi + Mi

)
Vij +

(∑
i

µiMi + µ̃iM4

M2
µ̃i + M4

)
v4j (14)
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(U+
4 mV4)i4 =∑

j

(
µiδij −

(µ̃iM4 + µ∗i Mi)Mj

M2

)
vj4 +

(
µ̃i −

M4

M2
(µ∗i Mi + µ̃iM4)

)
v44 (15)We need both these expressions be equal to zero. The last equation in theleading order over µi

M has a solution
vα4 =

Mi

M
(16)Here we have taken into account that vαβ wshould be normalized. The equation(14) in the leading order gives us that vectors vαi should be orthogonal to Mi

M .For example we can take them in the following form
v1 =

1√
M2

1 + M2
4


−M4

0
0

M1

 (17)
v2 =

1√
M2

2 + M2
3


0

M3

−M2

0

 (18)

v3 =



−M1

√
M2

2+M2
3

M2
1+M2

4

M2

√
M2

1+M2
4

M2
2+M2

3

M3

√
M2

1+M2
4

M2
2+M2

3

−M4

√
M2

2+M2
3

M2
1+M2

4


(19)

Finally in the leading order
m′ = U+

4 mV4 =
(

m̂ 0
0 M

)
=

µ1M4−µ̃1M1√
M2

1+M2
4

0 −(µ1M1+µ̃1M4
M )

√
M2

2+M2
3

M2
1+M2

4
0

− µ2M1√
M2

1+M2
4

µ2M3√
M2

2+M2
3

1
M

(
µ2M2

√
M2

1+M2
4

M2
2+M2

3
− µ̃2M4

√
M2

2+M2
3

M2
1+M2

4

)
0

− µ3M1√
M2

1+M2
4

− µ3M2√
M2

2+M2
3

1
M

(
µ3M2

√
M2

1+M2
4

M2
2+M2

3
− µ̃3M4

√
M2

2+M2
3

M2
1+M2

4

)
0

0 0 0 M


(20)
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Then we have to �nd the matrix U3 and to diagonalize m̂. To do it let us at�rst transform it into upper triangular form by multiplying to V̂ :
m̄ = m̂V̂ =

 γµ̄1 µ̄1 βµ1

0 µ̄2 αµ̄2

0 0 µ̄3

 (21)If we represent the matrix m̂ as three vectors:
m̂ =

 v̄1

v̄2

v̄3

 (22)our transformation is just the change of the basis of these vectors. So if weorthogonalize the set of v̄1, v̄2, v̄3 and use the obtained vectors ē1, ē2, ē3 as anew basis for the �rst vectors we get m̄ in the form we need. Particularly
ē3 =

v̄3

‖v̄3‖

ē2 =
v̄2

‖v̄2‖
− ē3v̄2

‖v2‖
ē3

ē1 = ē2 × ē3 (23)One can �nd that
µ̄3 =

√
|µ3|2 + µ̃2

3 −
|µ3M3 + µ̃3M4|2

M2
(24)

αµ̄2 =
µ̃2µ̃3

m̄u3
− (µ2M2 + µ̃2M4)(µ∗3M3 + µ̃3M4)

µ̄3M2
(25)

µ̄2 =
√
|µ2|2 + µ̃2

2 − |αµ2|2 (26)
βµ̄1 =

µ̃1µ̃3

m̄u3
− (µ1M1 + µ̃1M4)(µ∗3M3 + µ̃3M4)

µ̄3M2
(27)

µ̄1 = µ̃1(
µ̃2

µ̄2
− α∗

µ̃3

µ̄3
)− µ1M1 + µ̃1M4

M

(
M4

M
(
µ̃2

µ̄2
− α∗

µ̃3

µ̄3
) +

µ̃∗2M2

µ̄2M
− α∗

µ̃∗3M3

µ̄3M

) (28)
γµ1 =

√
|µ1|2 + µ̃2

1 −
|µ1M1 + µ̃1M4|2

M2
− |µ̄1|2(1 + β2) (29)The diagonalization of m̄ is made by the transformation

D = U+
3 m̄V ′

3 .Since m̄ is not Hermitian to �nd eigenvalues it is necessary to consider m̄+m̄ tosolve the characteristic equation for it. After expanding over γ the eigenvaluesare
md ≈ |γµ̄1| (30)

ms ≈ µ̄2 (31)
mb ≈ µ̄3 (32)5



V ′
3 =

 1 0 0
0 1 |µ̄2|2α+|µ̄1|2β

|µ̄3|2

0 − |µ̄2|2α∗+|µ̄1|2β∗

|µ̄3|2 1

 (33)
U3 =

 1 µ̄1
|µ̄2|

βµ̄1
|µ̄3|

− µ̄∗1
|µ̄2| 1 µ̄2α

|µ̄3|

−β∗µ̄∗1
|µ̄3|

µ̄∗2α∗

|µ̄3| 1

 (34)
If we take into account that the mass matrix for u-quarks is diagonal we cansee that

VCKM = U33 Interaction between d-quarks and Z bosonOne of the features of the model with vector like forth generation is the presenceof Flavour Changing Neutral Current (FCNC) at tree level. It allows di�erentprocesses where the �avour of a fermion changes but its charge remains invariant.In this model it appears in the terms responsible for interaction with Z bosonand neutral Higgs. Let us �nd FCNC interacting with Z. In the Lagrangian ofthe Standard Model the weak interaction terms are
Lweak = Q̄Lσµ(

g

2
τaWµ,a +

g′

6
Bµ)QL − d̄Rσµ g′Bµ

3
dR + ūRσµ 2g′Bµ

3
uRObservable variables are:

Z = W3 cos θW −B sin θW

A = W3 sin θW + B cos θWThe terms in the Lagrangian related to neutral current are
ūLσµ(

g2 − g′2/3

2
√

g2 + g′2
Zµ +

2gg′

3
√

g2 + g′2
Aµ)uL +

d̄Lσµ(− g2 + g′2/3

2
√

g2 + g′2
Zµ −

gg′

3
√

g2 + g′2
Aµ)dL +

ūRσµ 2g′

3
√

g2 + g′2
(−g′Zµ + gAµ)uR −

d̄Rσµ g′

3
√

g2 + g′2
(−g′Zµ + gAµ)dR (35)The terms related to the forth generation are

−d̄R,4σ
µ g′

3
√

g2 + g′2
(−g′Zµ + gAµ)dR,4− d̄L,4σ

µ g′

3
√

g2 + g′2
(−g′Zµ + gAµ)dL,4

6



The weak interaction Lagrangian for d-quarks can be rewritten as
Ld,Z =

d̄Lσµ(− g2 + g′2/3

2
√

g2 + g′2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+
g′2

3
√

g2 + g′2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)ZµdL −

d̄Rσµ(− g′2

3
√

g2 + g′2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

− g′2

3
√

g2 + g′2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)ZµdR −

d̄Lσµ(
gg′

3
√

g2 + g′2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+
gg′

3
√

g2 + g′2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)AµdL −

d̄Rσµ(
gg′

3
√

g2 + g′2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+
gg′

3
√

g2 + g′2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)AµdR (36)
Here dL , dR are columns or rows. Each component of them corresponds toeach generation. To �nd FCNC one need go into mass basis. The transformationof dl is

dmass
L = UT

3 UT
4 dL. One can see that the only non-trivial FCNC appears in case of interactionbetween dl and Z.

Iµ
FCNC =

d̄mass
L σµUT

3 UT
4 (− g2+g′2/3

2
√

g2+g′2


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 0

+ g′2

3
√

g2+g′2


0 0 0 0
0 0 0 0
0 0 0 0
0 0 0 1

)U∗
4 U∗

3 dmass
LIn the leading order

U4 =


1 0 0 u1

0 1 0 u2

0 0 1 u3

−u∗1 −u∗2 −u∗3 1

where ui = M̃4µ̃i+µ∗i M̃i

M̃2

U3 =
(

VCKM 0
0 1

)So
Iµ
FCNC = d̄mass

L σµ(− g2 + g′2/3

2
√

g2 + g′2

(
1 V T

CKMu∗

uT V ∗
CKM 0

)
+
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g′2

3
√

g2 + g′2

(
0 −V T

CKMu∗

−uT V ∗
CKM 1

)
)dmass

L (37)The weak interaction Lagrangian can be rewritten using four componentspinors. To do it one has to change σµ into γµ and to substitute dL = 1+γ5

2 d.In these terms
Ld,Z = d̄αγµZµ

√
g2 + g′2

2
(vαβ − aαβγ5)dβ (38)where

vαβ = −1
2

(
1 V T

CKMu∗

uT V ∗
CKM 0

)
αβ

+
2
3

g′2

g2 + g′2
δαβ

aαβ =
1
2

(
1 V T

CKMu∗

uT V ∗
CKM 0

)
αβ

(39)
4 Interaction between d-quarks and HiggsIn case of energies far less GUT scale the mass matrix of d-quarks is derivedfrom the following terms:
LH,d =

3∑
i=1

Ha
d εabQ

Lb
i hiid

R
i +

3∑
i=1

Ha
d εabQ

Lb
i

gd
i vN

M∗
dR
4 +

3∑
i=1

d4
LfivNdR

i + dL
4 Mdd

R
4 (40)Here

Qi =
(

ui

di

)
,

Hd is Higgs �eld, vN is vacuum expectation of the �eld responsible for SO(10)breaking, hii, gd
i , M∗, fi, Md are constants. The vacuum expectation of Higgsis

H =
(

0
v1

)
,so the mass matrix for d-quarks is

h11v1 0 0 gd
1vN

M∗ v1

0 h22v1 0 gd
2vN

M∗ v1

0 0 h33v1
gd
3vN

M∗ v1

f1vN f2vN f3vN Md

 .

Its components can be designated according to (2). One can expand the Higgs�eld over its vacuum:
Hd =

(
0
v1

)
+
(

0
H0

d

)
+
(

H−
d

0

)
. (41)
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If fermions are in mass basis the terms interacting with Higgs are
Ld,H0

d
= H0

ddL 1
v1


md 0 0 −M(V +

CKMu)1
0 ms 0 −M(V +

CKMu)2
0 0 mb −M(V +

CKMu)3
0 0 0 0

 dR (42)
Ld,H−

d
= H−

d dL 1
v1

(
VCKMm̃d −Mu

)
dR, (43)where m̃d = diag(md,ms,mb). So these terms also contain FCNC.

5 PhenomenologyOne feature of the model with the vector like forth generation is FCNC at treelevel. It gives new diagrams which can contribute to di�erent processes. Onepossible process is a decay b → sγ via the following channels:
�
�
�
�

9



�
�On these digrams the fermion b changes its �avour and �nally turns into sor d by emitting and absorbing Z or Higgs boson.Also it emits a photon.These processes can be calculated in di�erent gauges. In the Feynman gaugethe propagator of Z is equal to

−igµν

p2 −M2
Zbut in this case we also have to take into account Goldstone bosons which canbe instead of Z. In Rξ gauge when ξ →∞ the Z propagator is written as

−i(gµν − pµpν

M2
Z

)

p2 −M2
Z

.In this case we have not to take into account Goldstone bosons. Let us calcu-late the diagram by the �rst way. The vertex function for interaction betweenfermions and Z-boson
�is equal to

−i

√
g2 + g′2

2
γµ(vαβ − aαβγ5) (44)where vαβ ,aαβ are derived according to (39) The vertex for fermions and pho-tons is assosiated with the function

i
gg′

3
√

g2 + g′2
(45)The fermion propagator is

i(p̂ + m)
p2 −m2

α

(46)
10



So the amplitude is
′iM =

1
3!

∫
d4p

(2π)4
gg′
√

g2 + g′2

12
s̄γµ(vsα − asαγ5)

p̂ + mα

p2 −m2
α

γλ

k̂ + p̂ + mα

(k + p)2 −m2
α

γµ(vαb − aαbγ
5)

1
(q − p)2 −M2

Z

b (47)Here p is the loop momentum, k is the momentum of the photon, q is themomentum of the s-quark. By taking into account that for any functionFdepending only on the module of the momentum
c

∫
d4ppρpσF (p2) =

gρσ

4

∫
d4pp2F (p2)this expression can be transformed to

iM =
1
3!

gg′
√

g2 + g′2

12
s̄(vsα + asαγ5)(γλ(I2 − 2m2

αI) + 4kλmαI)(vαb − aαbγ
5)b (48)where

I =
∫

d4p

(2π)4
1

(p2 −m2
α)((k + p)2 −m2

α)((q − p)2)−M2
Z

(49)
I2 =

∫
d4p

(2π)4
p2

(p2 −m2
α)((k + p)2 −m2

α)((q − p)2)−M2
Z

(50)Both integrals are calculated in the Appendix and the second of them is diver-gent. To make an explicit calculation it is necessary to summarize all possiblediagram but unfortunately this part is not done completely by the author ofthis project.
6 ConclusionsIn this report we have described one possible construction of an extension ofthe Standard Model with extra vectorlike fermions. In [1] it is shown that theparameters of this model, particularly the components of the mass matrix ( 2)can be chosen in such way that they �t the experimental values of d-quarksmasses and the components of CKM matrix. A peculiarity of this model is thepresence of tree level FCNC which can contribute to di�erent processes, such asa decay b → s/dγ. Also we have shown the idea of calculating such processes.A similar problem is also considered in [4]. In higher orders over µ/M FCNCcan also contribute to some other processes, for example B0−B̄0 mixing, decays
Z → dαdβ , b → s/dl+l− etc.In the present moment the calculation of the process b → s/dγ is not �nishedby the author of this report. He hopes to continue this work further and �nally
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to get numerical constraints for the masses of the forth generation particles andfor their mixing with observable particles.I would like to thank my supervisors Laura Covi and Jae-Hyeon Park forfruitful help in doing this project.
7 Appendix. Calculation of the integrals in thediagrams.At �rst the integrals are transformed by introducing the Feynman parameters
x,y via formula:

1
ABC

= 2
∫ 1

0

dx

∫ 1−x

0

dy
1

(A×+By + C(1− x− y))3
(51)After the change p + kx− qy → p the �rst integral looks like

I =
∫

d4p

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
2

(p2 + k2x + q2y − (kx− qy)2 −m2
α(1− y)−M2

Zy)3
(52)Then we make Wick transformation which change Minkovski space into Euclid-ian:

p0 → ip0

pi → pi (53)therefore p2 → −p2.Also we introduce dimensional regularization and change the measure ofintegration according to ∫
ddp =

2πd/2

Γ(d/2)

∫ ∞

0

dppd−1Here d = 4− 2ε After these transformations
I = − 4π2−εi

Γ(2− ε)(2π)4

∫
dpp3−2ε

∫ 1

0

dx

∫ 1−x

0

dy

1
(p2 − k2x− q2y + (kx− qy)2 + m2

α(1− y) + M2
Zy)3

(54)The integral over p is calculated by using the formula∫ ∞

0

pd−1dp

(p2 + D)L
=

Dd/2−L

2
Γ(d/2)Γ(L− d/2)

Γ(L)
. (55)So if ε → 0

I = − π2i

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
1

−k2x− q2y + (kx− qy)2 + m2
α(1− y) + M2

Zy
. (56)
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It can be simpli�ed by taking into account that
k2 = 0

q2 = m2
s

2(kq) = m2
b −m2

s ≈ m2
b (57)The �nal answer is

I = − π2i

(2π)4
1

M2
Z −mα2

(
−1 +

1
rα − 1

ln rα

) (58)where rα = m2
α

M2
Z

.

I2 is calculated in the similar way. It can be transformed to
I2 = I

(1)
2 + I

(2)
2where

I
(1)
2 =

∫
d4p

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
2(kx− qy)2

(p2 + k2x + q2y − (kx− qy)2 −m2
α(1− y)−M2

Zy)3
(59)

I
(2)
2 =

∫
d4p

(2π)4

∫ 1

0

dx

∫ 1−x

0

dy
2p2

(p2 + k2x + q2y − (kx− qy)2 −m2
α(1− y)−M2

Zy)3
(60)

I
(1)
2 is convergent and equal to
I
(1)
2 =

π2i

(2π)4
m2

b

2(M2
Z −mα2)

(
(

rα

1− rα
)2 +

3
2

rα

1− rα
+

1
3

+
rα

(1− rα)3
ln rα

) (61)But I
(2)
2 is divergent. After introducing dimensional regularization it is equalto

I
(2)
2 =

4iπ2

(2π)4Γ(2− ε)
Γ(ε)
2

∫ 1

0

dx

∫ 1−x

0

dy(−k2x− q2y + (kx− qy)2 + m2
α(1− y) + M2

Zy)−ε (62)After expanding overε and taking into account that
Γ(ε) =

1
ε
− γe + o(ε)where γe is the Euler constant the integral turns into

2iπ2

(2π)4

(
1
2ε

+ const− I3

) (63)where
I3 =

∫ 1

0

dx

∫ 1−x

0

dy ln(−k2x− q2y + (kx− qy)2 + m2
α(1− y) + M2

Zy) (64)
13



Finally
I3 = ln MZ −

rα(2− rα)
2(1− rα)2

ln rα +
1 + rα

4(rα − 1)
− 1

2
(65)and

I2 =
π2i

(2π)4
m2

b

2(M2
Z −mα2)

(
(

rα

1− rα
)2 +

3
2

rα

1− rα
+

1
3

+
rα

(1− rα)3
ln rα

) (66)
+

2iπ2

(2π)4

(
1
2ε

+ const− lnMZ +
rα(2− rα)
2(1− rα)2

ln rα −
1 + rα

4(rα − 1)
+

1
2

) (67)
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