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Abstract

We study a model with an extra family of vector like particles. Partic-
ularly they are d-quarks which are SU(2) singlets and also SU(2) doublet
leptons and right-handed neutrinos. The mass matrix mix all them with
the particles of the Standard Model so it causes some new predictions in
phenomenology. One of them is the existence of tree level flavour changing
neutral current.

1 Introduction

The Standard model can describe all known phenomenology of elementary parti-
cles without gravitational and cosmological effects. But since it was constructed
there were many different attempts to extend it. Most of them predict some
new kind of particles which are not observed yet, but not excluded by exper-
imentalists. For instance there is no proof that in the Nature there are only
three generations of particles. Also there are some more complicated extensions
of the SM. For instance supersymmetry can be introduced because it simplifies
renormalization. Another possible way to extend the SM is to suppose that its
gauge group SU(3) x SU(2) x U(1) is a subgroup of a larger gauge group. Also
the idea of extra dimensions in the space-time was considered many times.

In my project a supersymmentric extension of the Standard Model with
SO(10) gauge group and two extra dimensions is considered.It is described in
details in ref. [1, 2, 3]. This model includes a forth generation of vector like d-
quarks. It means that these particles have the same quantum numbers as right-
handed d-quarks. Also there is the fourth generation of vector like leptons with
the same quantum numbers as left-handed lepton doublets and there are right-
handed neutrinos. The effects connected with the compactified extra dimensions
and larger than in the SM gauge group can be neglected in case of energies
much smaller than the GUT scale which is about10'°GeV. The sypersymmetric
partners are not taken into account in this paper though they are in the model.
So the effective low-energy theory considered here is the SM with an added
forth family particles and right-handed neutrinos. The neutrino masses are
obtained via see-saw mechanism. The masses of the extra charged fermions



have to be larger than the masses of observable particles since they are not
found experimentally.

2 The quarks mass matrix
The superpotential of our model is
1
W = ulm*u® + dtmdd® + efmee® + vBmPurt + il/RmNVR (1)

Here m® and m” are diagonal 3 x 3 matrices but m¢, m® and m” are 4 x 4
matrices which look like
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Further any of them will be designated by m. Our purpose is to diagonalize these
matrices and to find the expression for the Flavour Changing Neutral Current
in this model. This matrix is diagonalized by double-unitary transformation:

m = lJv4lJviz,D‘/:))Jr‘/4Jr (3)

where U, and Vj single out the heaviest eigenstate while Us and V3 act only on
the SM flavour indices. Now let us find Uy. To do this we consider U mm*U
which should also have the distinguished heaviest eigenvalue. So
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Let’s suppose that
(Us)ap = (ea)s
U, is unitary so
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We demand that in case of 3 =4, a = k # 4 this expression should be equal to
zero. By expanding e, over powers of p;/M and supposing that (ea)(ﬁo) = bap
we get equations:

(i M+ i Ma )i + M2 (er) ) = 0 (7)
this equation give us the same result as in the article [1] :
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The second order equations are
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It gives us that we can assume (ek)gl) =0, (ek)f) = 0 In the third order we
have
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From the last equation (ex); can not be found unambiguously so to find it we
use the orthogonality condition (5) up to the second order of /M. Tt gives us:
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If we write the matrix U; m up to the second order (ey) 1(2) does not contribute
to it. Also one can check that (64)4(3) does not contribute to (U mm*Uy),; if
J#4

Then let us find V} in the leading order.
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We need both these expressions be equal to zero. The last equation in the
leading order over £+ has a solution
M:
Vad = MZ (16)
Here we have taken into account that v,z wshould be normalized. The equation
(14) in the leading order gives us that vectors v,; should be orthogonal to ]}\44
For example we can take them in the following form
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Finally in the leading order
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Then we have to find the matrix Us and to diagonalize . To do it let us at
first transform it into upper triangular form by multiplying to V:

A Y1 f1 B
n=mV=| 0 [ o (21)
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If we represent the matrix / as three vectors:

U
m=| g (22)
U3
our transformation is just the change of the basis of these vectors. So if we

orthogonalize the set of v1, 72,73 and use the obtained vectors €1, és2,€3 as a
new basis for the first vectors we get m in the form we need. Particularly
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The diagonalization of m is made by the transformation

D =U;mVj.

Since m is not Hermitian to find eigenvalues it is necessary to consider m™m to
solve the characteristic equation for it. After expanding over  the eigenvalues
are
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If we take into account that the mass matrix for u-quarks is diagonal we can
see that

Verm = Us

3 Interaction between d-quarks and Z boson

One of the features of the model with vector like forth generation is the presence
of Flavour Changing Neutral Current (FCNC) at tree level. It allows different
processes where the flavour of a fermion changes but its charge remains invariant.
In this model it appears in the terms responsible for interaction with Z boson
and neutral Higgs. Let us find FCNC interacting with Z. In the Lagrangian of
the Standard Model the weak interaction terms are
/ /
Lyeak = QLU#(gTaWu,a + %BM)QL - dRO”ug

Observable variables are:
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The terms in the Lagrangian related to neutral current are
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The terms related to the forth generation are
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The weak interaction Lagrangian for d-quarks can be rewritten as
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Here dy, , dr are columns or rows. Each component of them corresponds to
each generation. To find FCNC one need go into mass basis. The transformation

of d; is

Ay = U U dy,

One can see that the only non-trivial FCNC appears in case of interaction

between d; and Z.
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g/2 0 —VT U* —
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The weak interaction Lagrangian can be rewritten using four component

spinors. To do it one has to change o into v* and to substitute dy = 14'275 d.
In these terms
_ 92 + g/2
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where
1 1 Véramu* 2 g?
0 == g el
Yops 2<uTVCKM 0 a6+392+g/2 B
1 T *
awp =75 ( yayn | CKM (39)
2\ uw' Vikum 0 B

4 Interaction between d-quarks and Higgs

In case of energies far less GUT scale the mass matrix of d-quarks is derived
from the following terms:

3 3 d 3
)
Lia=Y HieaQhudf + 3 HicaQF g;wf df + " di frond? + df Mydf (40)
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H, is Higgs field, vy is vacuum expectation of the field responsible for SO(10)
breaking, h;;, g&, M*, f;, M, are constants. The vacuum expectation of Higgs

1S
vy

so the mass matrix for d-quarks is

Here

d
hllvl 0 0 gjl\;,fv U1
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0 haav1 0 2280,
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Its components can be designated according to (2). One can expand the Higgs
field over its vacuum:
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If fermions are in mass basis the terms interacting with Higgs are
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where mg = diag(mg, ms, mp). So these terms also contain FCNC.

5 Phenomenology

One feature of the model with the vector like forth generation is FCNC at tree
level. It gives new diagrams which can contribute to different processes. One

possible process is a decay b — s7 via the following channels:

A&ik



On these digrams the fermion b changes its flavour and finally turns into s
or d by emitting and absorbing Z or Higgs boson.Also it emits a photon.

These processes can be calculated in different gauges. In the Feynman gauge
the propagator of Z is equal to

_iguu
p? — M3

but in this case we also have to take into account Goldstone bosons which can
be instead of Z. In R¢ gauge when £ — oo the Z propagator is written as

71'(9”” _ p]uw%u)
p? — M

In this case we have not to take into account Goldstone bosons. Let us calcu-
late the diagram by the first way. The vertex function for interaction between
fermions and Z-boson

is equal to

i 0 (105 — a07”) (44)

where vo3,0q3 are derived according to (39) The vertex for fermions and pho-
tons is assosiated with the function
/

99 (45)

The fermion propagator is
i(p+m)
p? —m3
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So the amplitude is

1 [ d' g99'Vg*+g"” p+m
/; _ = 5 a X
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(k+p)? —m2 ™ (¢ —p)? — M3

Here p is the loop momentum, k£ is the momentum of the photon, ¢ is the
momentum of the s-quark. By taking into account that for any functionF
depending only on the module of the momentum

Gpo
c / d*pp,p.F(p?) = e / d*pp*F (p*)

this expression can be transformed to
iM =

1 / 2 12
5997 V?;gg(vw + a0ay®) (P I = 2m2T) + 46 maT) (Vs — acr®)b (48)

where

_ d*p 1
= / : (49)

2m)* (p2 — m2)((k +p)2 —m2)((q — p)?) — M2

d4p p2
I = 12 2 2 2 2 2 (50)
(2m)* (p* = mZ)((k +p)*> —mZ)((q — p)?) — M3
Both integrals are calculated in the Appendix and the second of them is diver-
gent. To make an explicit calculation it is necessary to summarize all possible
diagram but unfortunately this part is not done completely by the author of
this project.

6 Conclusions

In this report we have described one possible construction of an extension of
the Standard Model with extra vectorlike fermions. In [1] it is shown that the
parameters of this model, particularly the components of the mass matrix ( 2)
can be chosen in such way that they fit the experimental values of d-quarks
masses and the components of CKM matrix. A peculiarity of this model is the
presence of tree level FCNC which can contribute to different processes, such as
a decay b — s/dvy. Also we have shown the idea of calculating such processes.
A similar problem is also considered in [4]. In higher orders over /M FCNC
can also contribute to some other processes, for example By — By mixing, decays
Z — dodg, b — s/dltl™ etc.

In the present moment the calculation of the process b — s/dr is not finished
by the author of this report. He hopes to continue this work further and finally
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to get numerical constraints for the masses of the forth generation particles and
for their mixing with observable particles.

I would like to thank my supervisors Laura Covi and Jae-Hyeon Park for
fruitful help in doing this project.

7 Appendix. Calculation of the integrals in the
diagrams.

At first the integrals are transformed by introducing the Feynman parameters
x,y via formula:

1 1 11—z 1
— =2 d d
ABC /O x/o YAXIBy+ 00—z —y)3

After the change p + kx — qy — p the first integral looks like

(51)

2

1:/ d'p /1dx/1_zdy :
(2m)* Jo 0 (p? + k2w + ¢?y — (kz — qu)? — m2(1 —y) — MZy)?

Then we make Wick transformation which change Minkovski space into Euclid-
ian:

Po — iPo
Di = Di (53)

therefore p? — —p2.
Also we introduce dimensional regularization and change the measure of

integration according to
ord/2 oo
d'p = / dpp™™!
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472G / ! 1=z
I=——n—— dpp3726/ dz/ dy
(2 —¢€)(2m)* 0 0
1

(P? — K%z — ¢?y + (kz — qy)? + mZ (1 —y) + MZy)? (34
The integral over p is calculated by using the formula
/°° pldp DY2=L(d/2)T (L — d/2). (55)
o (*+D)* 2 I'(L)
Soife —0
2 1 - 1
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It can be simplified by taking into account that

k=0
¢* =m}
2(kq) = mj —m? ~ mj (57)
The final answer is
w25 1 1
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But 152) is divergent. After introducing dimensional regularization it is equal

to
4i7T2 I'(e ! 1= —€
1 = g e s, Ao [ R Py (e = ) - )+ M) (62)
0 0

After expanding overe and taking into account that

N = 7 = +0(d)

where . is the Euler constant the integral turns into

2% (1
W (26 + const — Ig) (63)

where

1 1—x
Is = / dx/ dyln(—k*r — ¢®y + (kx — qy)* + m2(1 —y) + MZy) (64)
0 0
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Finally
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2(1 —1ry)?
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