Use of Grid at CMS: Software validation and detector alignment

Gregor Bruns, University of Leipzig

10.09.09 / Students Session

Outline

Introduction

- The CMS Detector
- The Grid

2 Detector Alignment

- MillePede Production System
- MPS with CRAB
- 3 CMSSW Release Validation
 - Automatization of the Validation Procedure
 - A GUI for more Usability

Introduction

Detector Alignment CMSSW Release Validation Summary The CMS Detecto The Grid

▲ □ ト ▲ 三 ト

Outline

Introduction

- The CMS Detector
- The Grid

2 Detector Alignment

- MillePede Production System
- MPS with CRAB
- 3 CMSSW Release Validation
 - Automatization of the Validation Procedure
 - A GUI for more Usability

The CMS Detector The Grid

The CERN LHC

- 27 km tunnel
- pp and lead ion collider
- Superconducting magnets up to 8.6 *T*
- Max. CoM energy E = 14 TeV (pp)
- Inst. luminosity $L = 2 \cdot 10^{33} \ cm^{-2} s^{-1}$

The CMS Detector The Grid

Detector Design

Introduction

Detector Alignment CMSSW Release Validation Summary The CMS Detector The Grid

A Slice of Detector

The CMS Detector The Grid

Why Alignment?

- Tracker precision up to a few μm
- Hardware installation of parts only with precision pprox 100 μm
- Correction of component positions required
- Detect displacements
 - due to hardware installation
 - while detector is working (temperature shift etc.)
- Different methods in use:
 - Detector positioning survey (direct measurement)
 - Laser alignment system (dedicated hardware)
 - Track based alignment (use analysis data)

The CMS Detector The Grid

イロト イヨト イヨト

Alignment Procedure for Track Based Alignment

- High number of particle trajectories used
- Reconstruct track from detector hits

- Compare measured and expected hit positions
- Determine shift of detector modules
- Validation of the procedure on simulated data
- Perform real alignment on cosmic muon data

The CMS Detector The Grid

The Grid Network

- Why do we need a global computing network?
 - CMS will produce \geq 3 PB of data per year
 - MC simulations 10 times the amount of measured data
 - Local CERN facilities cannot provide necessary storage and CPU power
- How are these problems solved?
 - Mass storages at each facility
 - Scheduling systems for submitting jobs to computing farms

イロト イヨト イヨト

- Global access possible
 - Distributed computing
 - Easy data access

Introduction

Detector Alignment CMSSW Release Validation Summary The CMS Detector The Grid

The Grid Network

- Tier-0: CERN
- Tier-1: National centers
- Tier-2: Regional groups
- Tier-3: Institutes
- Tier-4: Workstations

イロト イロト イヨト イ

ъ

The CMS Detector The Grid

CMS Remote Analysis Builder (CRAB)

- Part of the CMS SoftWare package (CMSSW)
- Gets location of data
- Fetches information on the job
- Manages distribution of jobs on the Grid
- Handles storage of files for the user

MillePede Production System MPS with CRAB

▲ □ ト ▲ 三 ト

Outline

ntroduction

- The CMS Detector
- The Grid

2 Detector Alignment

- MillePede Production System
- MPS with CRAB
- 3 CMSSW Release Validation
 - Automatization of the Validation Procedure
 - A GUI for more Usability

MillePede Production System MPS with CRAB

イロト イヨト イヨト

MillePede Production System (MPS)

- MillePede: Algorithm for track based alignment
- MPS: Automatization of alignment steps
 - Millions of traces are required
 - Splitting and parallelizing of huge jobs
 - User-friendly interface
 - Runs on local CERN queues

MillePede Production System MPS with CRAB

▲ 同 ト ▲ 臣 ト

MPS with CRAB

- CRAB submits jobs to whole Grid
- Information on jobs obtained automatically
 - Automatic splitting of jobs
 - Automatic locating of input files
- But: Datasets not available everywhere
 - Request transfer of data needed
 - This will change when LHC is running
- Configuration now:
 - Run only on local CERN queues
 - Supply information where data is stored
- Can be changed easily in the future

Automatization of the Validation Procedure A GUI for more Usability

▲ 伊 ト ▲ 臣 ト

Outline

CMSSW Release Validation

- Automatization of the Validation Procedure
- A GUI for more Usability

Automatization of the Validation Procedure A GUI for more Usability

CMSSW Releases

- Consider new CMSSW release
 - Errors may be introduced
 - Analysis may be more accurate
- Check results by comparison of results from physical processes
- Standardized samples are evaluated
- Compare standard plots from previous releases

Automatization of the Validation Procedure A GUI for more Usability

Summary

Automatization of the Validation Procedure

- Python script for automatization
 - Input: List of data samples
 - Output: Plots comparing CMSSW versions
- Usage of CRAB for retrieving samples
- Automatic search for histograms in ROOT files
- Little dependent on file name conventions

Automatization of the Validation Procedure A GUI for more Usability

A GUI for more Usability

- Written in Tkinter (Python's Tk wrapper)
- User enters options and executes scripts
- Configuration is stored in a file
- Batch mode or individual steps

イロト イボト イヨト イヨト

Automatization of the Validation Procedure A GUI for more Usability

Comparison of Plots

Summary

- Results:
 - Release validation has been simplified (GUI)
 - MPS scripts can use CRAB commands
- Outlook:
 - Validation script might be used for other purposes
 - Maybe CRAB can take over some MPS tasks

Acknowledgement

I would like to thank

- My supervisors, Andrea Parenti and Justyna Tomaszewska
- Gero Flucke for providing explanations
- All people who have made this stay possible

