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Abstract

The AdS4/CFT3 duality which was proposed recently implies a correspondence

between a certain gauge theory and a string theory in AdS4 × CP 3. A set of Bethe
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Hooft coupling was conjectured in [3]. In the present work we study the thermodynamic

limit of those equations. We derive the Thermodynamic Bethe Ansatz (TBA) equations

for this theory and prove that they can be written in a compact form known as the
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Introduction

Recently, a conjecture was proposed that there exists a correspondence, similar to AdS5/CFT4,

between a string theory and a gauge field theory. This duality relates a three dimensional

superconformal Chern-Simons theory with a string theory on AdS4 ×S7/Zk. A consequence

of this duality is a correspondence between a planar gauge theory and a string theory in

AdS4 × CP 3 (see e.g. [3] and references in that work). In particular, a correspondence

was proposed between anomalous dimensions of certain operators in the gauge theory and

string state energies. In addition, integrability properties have been discovered for those

two theories, as well as for AdS5/CFT4. A set of Bethe equations, yielding the spectrum of

anomalous dimensions/string states, was put forward in [3].

In this work, we study the thermodynamic limit of those equations. We show that

the corresponding Thermodynamic Bethe Ansatz (TBA) equations can be written in the

form known as the Y-system, as is the case for AdS5/CFT4 and several other integrable

theories. Standard modification of the AdS5/CFT4 Y-system allowed to find exact energies

of certain mirror theory states in finite volume [4]. Future work will include making similar

modifications to the AdS4/CFT3 Y-system. However, solutions of this Y-system provide

information only about the mirror theory, which is the theory obtained from the original one

by a double Wick rotation. Our eventual goal is to obtain the TBA equations for the mirror

AdS4/CFT3, as those equations give exact finite volume energies for the physical theory.

This paper is organized as follows. In Section 1 we review the algebraic Bethe ansatz

for the Heisenberg spin chain. Section 2 contains a review of the Thermodynamic Bethe

Ansatz method for a simple integrable field theory. Section 3 contains discussion of the

Bethe equations for AdS4/CFT3. In Section 4 we present the main results of this work.

1 The Heisenberg spin chain.

In this section we show how Bethe ansatz can be used to solve the eigenvalue problem for

a quantum-mechanical system. In other parts of this work we will discuss applications of

this method in field theory. A review of the Bethe ansatz technique for the Heisenberg spin

chain can be found in [1].

Consider a chain of L spins 1
2
, with periodic boundary conditions. The space of states of

this quantum mechanical system is
L
⊗

i=1

hi, where hi
∼= C

2. Consider the eigenvalue problem

for the Heisenberg Hamiltonian

Ĥ =
L
∑

n=1

1

2
(1 − ~σn · ~σn+1) , (1)
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where ~σ = (σx, σy, σz) are the Pauli matrices. We will describe a way to solve this problem

which uses the integrable structure of the Heisenberg Hamiltonian. This approach is known

as the algebraic Bethe ansatz, and it provides all the eigenvectors and eigenstates of the

Hamiltonian. The Bethe equations we will obtain can also be used to investigate the limit

L → ∞.

Denote by V1 and V2 two auxiliary C
2 spaces, and by P̂i,j the permutation operator.

Introduce the R − matrix

R1,2(u) = u1̂V1,V2
+ iP̂V1,V2

R1,2(u) : V1 ⊗ V2 → V1 ⊗ V2 (2)

and the Lax operator

Ln,1(u) =

(

u −
i

2

)

1̂n,V1
+ iP̂n,V1

, Ln,1(u) : hn ⊗ V2 → hn ⊗ V2. (3)

It can be shown that the Yang-Baxter equation

R1,2(u − v)Ln,1(u)Ln,2(v) = Ln,2(v)Ln,1(u)R1,2(u − v) (4)

holds for these operators. Next, define the transfer matrix

T1(u) = LL,1(u) . . . L1,1(u) ∈ End (h1 ⊗ h2 ⊗ · · · ⊗ hL ⊗ V1) (5)

and the monodromy matrix

T (u) = trV1
T1(u) ∈ End (h1 ⊗ h2 ⊗ · · · ⊗ hL ) . (6)

It can be shown that the TTR relation

R1,2(u − v)T1(u)T2(v) = T2(v)T1(u)R1,2(u − v) (7)

holds, with the use of which the following identity can be proved:

[T (u), T (v)] = 0 . (8)

The Heisenberg Hamiltonian can be written in terms of the operators we have introduced:

Ĥ = L − i
dT

du
T−1

∣

∣

∣

∣

u=i/2

. (9)

Therefore,

[Ĥ, T (v)] = 0 (10)

for any complex number v. This relation provides L − 2 independent conserved quantities.

Together with the Hamiltonian and a component of the total spin (e.g. Ŝ3) they form a set
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of L conserved quantities. This is a manifestation of the integrable structure behind the

Heisenberg spin chain.

Using the fact that the Heisenberg Hamiltonian has the form (9), we can construct its

eigenvectors in the following way. Any vector |Ψ〉 satisfying

T (u)|Ψ〉 = Λ(u)|Ψ〉, ∀u ∈ C (11)

is also an eigenvector of our Hamiltonian, with the eigenvalue

E = L − i
d

du
log Λ(u)

∣

∣

∣

∣

u=i/2

. (12)

Such vectors |Ψ〉 can be constructed as follows. The operator T1(u) can be written as

T1(u) =

(

A(u) B(u)

C(u) D(u)

)

, (13)

where A,B,C,D ∈ End (h1 ⊗ h2 ⊗ · · · ⊗ hL). It can be shown that the vector

|Ψ〉 = B(u1)B(u2) . . . B(uJ)| ↑↑↑↑ . . . 〉 (14)

is an eigenvector of T (u) if the complex numbers u1, u2, . . . , uJ satisfy the Bethe ansatz

equations (BAEs)
(

uj + i
2

uj −
i
2

)L

=
∏

k 6=j

uj − uk + i

uj − uk − i
. (15)

If equations (15) hold, then

T (u)|Ψ〉 =

[

J
∏

j=1

u − uk − i

u − uk

(

u +
i

2

)L

+
J
∏

j=1

u − uk + i

u − uk

(

u −
i

2

)L
]

|Ψ〉. (16)

Thus, each solution of the Bethe equations corresponds to an eigenvector of the Heisenberg

Hamiltonian. It can be shown that all the eigenvectors and eigenvalues can be obtained in

this way. Moreover, to solve the eigenvalue problem completely it is sufficient to consider

only such solutions of BAEs in which all roots are distinct.

The Bethe equations make it possible to study the thermodynamic limit L → ∞. It

can be shown [1] that if the total number of roots is fixed, the roots form complexes called

strings, in which the spacing between roots tends to i as L → ∞. The elements of an n-root

complex can be written as

un,a = u + ia, a = −
n − 1

2
, −

n − 3

2
, . . . ,

n − 1

2
, (17)

where u ∈ R is the center of the complex and n is integer. It turns out that complexes appear

also as solutions of Bethe equations for integrable field theories. Examples for AdS4/CFT3

are given in section 3.
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2 Thermodynamic limit of Bethe equations for an in-

tegrable field theory.

The techniques we review in this section are described in Ref. [2].

Consider a QFT in 1+1 dimensions on a flat torus defined by two orthogonal geodesic

circles C and B, with circumferences R and L. For the theory on C with B as its time domain,

the partition function has the form

Z(R,L) = TrC
(

e−LHC
)

, (18)

and in the limit L → ∞, L � R we have

Z(R,L) ∼ e−E(R)L, (19)

where E(R) is the ground state energy of the theory. On the other hand, we can perform a

double Wick rotation and find that the function Z from (18) is also the partition function

for a so-called mirror theory, which is defined on B with C as its time domain:

Z(R,L) = TrB
(

e−LHB
)

. (20)

If our QFT is Lorentz-invariant, the initial and the mirror theories coincide.

Denote by f(R) the bulk free energy for the theory on B at temperature 1/R. Then,

−LRf(R) = ln Z(R,L). (21)

Therefore, in the thermodynamic limit L → ∞ we have

E(R) = Rf(R). (22)

This relation can be used to find the ground state energy E(R) for arbitrary R.

In the remainder of this section, we will describe a technique for calculating the free

energy f(R) for a simple integrable quantum field theory. Here, by integrability we mean

the existence of an infinite number of conserved charges. We do not specify the theory in

question, but assume that it is Lorentz-invariant and includes only one type of particles

- neutral particles of mass m. We assume that the following properties of the scattering

process in the theory follow from integrability:

• factorization of scattering

• conservation of the number of particles in each scattering event

• the sets of momenta for the initial and final states of a scattering process are identical

(though individual momenta may get redistributed between the particles).
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Consider the case L � Rc, where Rc is a characteristic radius of interactions between parti-

cles. In general, it is not appropriate to describe with a wavefunction a system of particles

in quantum field theory. However, for L � Rc there exist regions in the configuration space

where the particles are strongly separated. We call those regions free regions. In such a

region, we can introduce coordinates xi and momenta pi of the particles. The criterion of

strong separation is |xi − xj| � Rc. Properties of the scattering process (see above) imply

that in each free region the number of particles is the same. The particles in a free region

can be described by a wavefunction, and have well-defined energies and momenta, which can

be written in terms of rapidities βi:

e(βi) = m cosh βi, p(βi) = m sinh βi. (23)

Denote the pair scattering amplitude by S(β). For a system on a circle of circumference

L, the matching conditions between free regions lead [2] to quantization equations for the

particles’ momenta. Those equations are the Bethe ansatz equations for our theory:

eipiL
∏

j 6=i

S(βi − βj) = 1, for all i. (24)

Note that the BAEs for the Heisenberg spin chain provide the exact spectrum of the Hamil-

tonian. However, equations (24) are only exact in the infinite volume limit (L → ∞).

For S(β) = eiα(β) we have, from (24):

mL sinh βi +
∑

j 6=i

α(βi − βj) = 2πni. (25)

Let the number of particles N increase also as L tends to infinity, so that N ∼ L. In this

case, we can introduce a rapidity density of particles ρ(β). Eq. (25) takes the form

mL sinh βi +

∫

α(βi − β′)ρ(β′)dβ′ = 2πni. (26)

We can introduce the total density of rapidity levels in the following way. Consider a set of

N rapidities {βi} (we call this set a quantum state) which satisfy, with the particle density

corresponding to this set, Eq. (26). In case the l.h.s of (26) is a montonously increasing

function of βi, we can put a rapidity value βj in correspondence to each integer number,

and not only those integers which correspond to the solution {βi}. In this way we define the

rapidity levels βj. The distance between consecutive levels is of order 1/(mL) and tends to

zero as L → ∞. Therefore, we can introduce the density of rapidity levels. We denote this

density by ρ(β) + ρ̄(β). From (26) we find

2π(ρ(β) + ρ̄(β)) = mL cosh β +

∫

∂α(β − β′)

∂β
ρ(β′)dβ′. (27)
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The energy of our system can be written as

HB =

∫

dβm cosh βρ(β). (28)

A large number of quantum states correspond to each consistent pair of densities ρ(β), ρ̄(β),

because the densities are not sensitive to local redisributions of particles between rapidity

levels. Consider the case when each rapidity level can be occupied by no more than one

particle (see [2] for details). Then, it can be shown that for a macroscopic state described

by ρ and ρ̄, the entropy can be written as

S [ρ, ρ̄] =

∫

dβ(ρ ln(1 + ρ̄/ρ) + ρ̄ ln(1 + ρ/ρ̄)). (29)

The minimal value of the expression −RHB[ρ] + S [ρ, ρ̄] with respect to the densities ρ, ρ̄,

which are constrained by (27), is equal to −RLf(R). The extremum conditions for this

functional, together with the Bethe equations, provide a set of equations called the Thermo-

dynamic Bethe Ansatz (TBA) equations. Solutions of those equations provide the bulk free

energy f(R) and, from Eq. (22), the ground state energy E(R).

For the AdS4/CFT3 theory, considered in the next section, the mirror ground state

energy is known to be zero, because the vacuum is invariant with respect to supersymmetry.

However, for AdS5/CFT4 the techniques presented in the current section can be modified [4]

so as to describe certain excited states as well. A similar procedure could be applied in the

AdS4/CFT3 case.

3 Bethe ansatz equations for AdS4/CFT3.

The Bethe ansatz technique for a field theory, presented in the previous section, allows

to obtain the theory’s spectrum in the infinite volume limit. A set of Bethe equations

describing the spectrum of string states/anomalous dimensions in AdS4/CFT3 for any value

of the ’t Hooft coupling λ was conjectured in [3]. The object of the present work was to show

that in the TD limit the corresponding TBA equations can be written in a compact form

known as the Y-system. A similar result for AdS5/CFT4 was obtained in [4]. The initial

Bethe equations are only valid in the infinite volume limit. However, in the AdS5/CFT4

case solutions of the modified Y-system for the mirror theory allowed to obtain exact finite

volume energies of certain states of the initial theory. Similar modifications could be made

to our Y-system, to obtain finite volume energies for the mirror AdS4/CFT3 theory.
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The Bethe equations from [3] (see Eq. (1.7) in that work) have the following form:

1 =

K2
∏

j=1

u1,k − u2,j + i
2

u1,k − u2,j −
i
2

K4
∏

j=1

1 − 1/
(

x1,kx
+
4,j

)

1 − 1/
(

x1,kx
−
4,j

)

K4̄
∏

j=1

1 − 1/
(

x1,kx
+
4̄,j

)

1 − 1/
(

x1,kx
−
4̄,j

) ,

1 =

K2
∏

j 6=k

u2,k − u2,j − i

u2,k − u2,j + i

K1
∏

j=1

u2,k − u1,j + i
2

u2,k − u1,j −
i
2

K3
∏

j=1

u2,k − u3,j + i
2

u2,k − u3,j −
i
2

,

1 =

K2
∏

j=1

u3,k − u2,j + i
2

u3,k − u2,j −
i
2

K4
∏

j=1

x3,k − x+
4,j

x3,k − x−
4,j

K4̄
∏

j=1

x3,k − x+
4̄,j

x3,k − x−
4̄,j

(

x+
4,k

x−
4,k

)L

=

K4
∏

j 6=k

u4,k − u4,j + i

u4,k − u4,j − i

K1
∏

j=1

1 − 1/
(

x−
4,kx1,j

)

1 − 1/
(

x+
4,kx1,j

)

K3
∏

j=1

x−
4,k − x3,j

x+
4,k − x3,j

× (30)

×

K4
∏

j=1

σBES(u4,k, u4,j)

K4̄
∏

j=1

σBES(u4,k, u4̄,j) ,

(

x+
4̄,k

x−
4̄,k

)L

=

K4̄
∏

j=1

u4̄,k − u4̄,j + i

u4̄,k − u4̄,j − i

K1
∏

j=1

1 − 1/
(

x−
4̄,k

x1,j

)

1 − 1/
(

x+
4̄,k

x1,j

)

K3
∏

j=1

x−
4̄,k

− x3,j

x+
4̄,k

− x3,j

×

×

K4̄
∏

j 6=k

σBES(u4̄,k, u4̄,j)

K4
∏

j=1

σBES(u4̄,k, u4,j) ,

and only solutions satisfying the zero momentum condition

1 =

K4
∏

j=1

x+
4,j

x−
4,j

K4̄
∏

j=1

x+
4̄,j

x−
4̄,j

(31)

should be considered. Here, u1, u2, u3, u4, u4̄ are the Bethe roots, and L is a positive integer.

The function x(u) is defined by

x +
1

x
=

u

h(λ)
, |x(u)| ≥ 1, (32)

where h(λ) is a function of the ’t Hooft coupling λ (see [3] for details), and the following

general notation is used throughout this work:

f±(u) ≡ f(u ± i/2), f [+a] ≡ f(u + ia/2). (33)

The above set of Bethe equations describes the string state energies for a string theory in

AdS4×CP 3, as well as anomalous dimesions in the dual gauge field theory. These quantities

are given by

E = h(λ)Q2 , (34)
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where

Qn =

K4
∑

j=1

qn(u4,j) +

K4
∑

j=1

qn(u4̄,j) , qn =
i

n − 1

(

1

(x+)n−1
−

1

(x−)n−1

)

. (35)

The only roots which carry energy or momentum are u4, u4̄. For a single root, those

quantities are given by

p =
1

i
log

x+

x−
, ε =

1

2
+ h(λ)

(

i

x+
−

i

x−

)

. (36)

Further discussion will be based on the following hypothesis: in the large L limit, each

Bethe root from a set of roots which satisfies (30) is part of a complex of roots; the complexes

and notation we use for them are given by the table below.

u4 = u + ij, j = −n−1
2

, . . . , n−1
2

: string of roots : •n

u4̄ = u + ij, j = −n−1
2

, . . . , n−1
2

: string of roots : �n

u2 = u + ij, j = −n−2
2

, . . . , n−2
2

: string of roots : ©n

u3 = u + ij, j = −n−1
2

, . . . , n−1
2

u2 = u + ij, j = −n−2
2

, . . . , n−2
2

: trapezia : 4n

u1 = u + ij, j = −n−3
2

, . . . , n−3
2

u1 = u : single fermion root : ⊕

u3 = u : single fermion root : ⊗

Here, u denotes the real center of a complex. We use indices A,B to label the complexes.

Denote by εA (resp. pA) the sum of energies (resp. momenta) of the roots in a complex. For

a string of n u4 roots we have

p•n
=

1

i
log

x[+n]

x[−n]
, ε•n

=
n

2
+ h(λ)

(

i

x[+n]
−

i

x[−n]

)

. (37)

The same expression is correct for a u4̄ string. For other complexes, pA and εA are zero.

Multiplying the Bethe equations for all roots in a complex, we obtain the equations for

the density of complexes of that type. Those equations have the form

ρ̄A(u) + ρA(u) = −
1

2π

dpA(u)

du
− KBA(v, u) ∗ ρB(v) , (38)
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where K(v, u) ∗ f(v) ≡
∫

dvK(v, u)f(v). Here, we use the following normalization:

∫

duρA(u) =
total number of complexes of type A

L
. (39)

Since our theory includes fermions, we must work with the Witten index instead of the

thermal partition function to compute energies of the mirror states in finite volume [4]. The

Witten index is defined as

W =
∑

n

(−1)fne−En/T , (40)

where fn is the number of fermions in the state labelled by n. Introduce hA = iπ = log(−1)

for fermionic complexes and hA = 0 for other complexes. For the physical theory, the bulk

free energy, defined as in (21) with Z in that equation replaced by the Witten index, is given

by the minimal value of the following functional of the densities:

F =
∑

A

∫ ∞

−∞

du

(

(RεAρA + hA) −

[

ρA log

(

1 +
ρ̄A

ρA

)

+ ρ̄A log

(

1 +
ρA

ρ̄A

)])

(41)

Here, R is the inverse temperature. Minimization of this functional with constraints (38)

gives the following equations:

logYA(u) = KAB(u, v) ∗ log[1 + 1/YB(v)] + RεA(u), (42)

where YA = ρ̄A

ρA
. The minimal value of the functional (41) is

F =
∑

A

∫

du

2π

dpA

du
log (1 + 1/YA(u)) , (43)

and this quantity times R is the ground state energy of the mirror theory in volume R.

4 Derivation of the Y system for AdS4/CFT3.

In this section the main results of this work are presented.
Applying the fusion procedure to the Bethe equations (30), it can be found that the

kernels KAB are given by the entries of the following table (see the appendix for description
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of the notation used here):

KAB =

A\B ©m ⊕ ⊗ 4m •m �m

©n +Kn−1,m−1 −Kn−1 +Kn−1 0 0 0

⊕ −Km−1 0 0 +Km−1 −B
(01)
1m −B

(01)
1m

⊗ −Km−1 0 0 +Km−1 −R
(01)
1m −R

(01)
1m

4n 0 −Kn−1 +Kn−1 +Kn−1,m−1
−R

(01)
n,m

−B
(01)
n−2,m

−R
(01)
n,m

−B
(01)
n−2,m

•n 0 +B
(10)
n1 −R

(10)
n1 −B

(10)
n,m−2 −R

(10)
n,m

+Snm

+Knm
+Snm

�n 0 +B
(10)
n1 −R

(10)
n1 −B

(10)
n,m−2 −R

(10)
n,m +Snm

+Snm

+Knm

Introducing the functions YA

{Y©n
,Y⊕,Y⊗,Y4n

,Y•n
,Y�n

} =

{

Y©n
, Y⊕,

1

Y⊗
,

1

Y4n

,
1

Y•n

,
1

Y�n

}

, (44)

we can write the equations (42) as:

log Y⊗ = +Km−1 ∗ log
1 + 1/Y©m

1 + Y4m

+ R
(01)
1m ∗ log(1 + Y•m

) + R
(01)
1m ∗ log(1 + Y�m

) + iπ (45)

log Y⊕ = −Km−1 ∗ log
1 + 1/Y©m

1 + Y4m

− B
(01)
1m ∗ log(1 + Y•m

) − B
(01)
1m ∗ log(1 + Y�m

) − iπ (46)

log Y4n
= −Kn−1,m−1 ∗ log(1 + Y4m

) − Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(47)

+
(

R(01)
nm + B

(01)
n−2,m

)

∗ log(1 + Y•m
) +

(

R(01)
nm + B

(01)
n−2,m

)

∗ log(1 + Y�m
)

log Y©n
= Kn−1,m−1 ∗ log(1 + 1/Y©m

) + Kn−1 ∗ log
1 + Y⊗

1 + 1/Y⊕
(48)

log Y•n
= −Rεn + (−Snm − Knm) ∗ log(1 + Y•m

) − Snm ∗ log(1 + Y�m
) (49)

− B
(10)
n1 ∗ log(1 + 1/Y⊕) + R

(10)
n1 ∗ log(1 + Y⊗) +

(

R(10)
nm + B

(10)
n,m−2

)

∗ log(1 + Y4m
)

log Y�n
= −Rεn + (−Snm − Knm) ∗ log(1 + Y�m

) − Snm ∗ log(1 + Y•m
) (50)

− B
(10)
n1 ∗ log(1 + 1/Y⊕) + R

(10)
n1 ∗ log(1 + Y⊗) +

(

R(10)
nm + B

(10)
n,m−2

)

∗ log(1 + Y4m
).

Introduce the discrete Laplacian operator

∆Kn(u) ≡ Kn(u + i/2 − i0) + Kn(u − i/2 + i0) − Kn+1(u) − Kn−1(u).

Following [4], we apply this operator to the l.h.s. of the last set of equations, and obtain

another set of equations for the Y functions, which is presented below.
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u3 single roots:

log
Y +
⊗ Y −

⊗

Y42
Y©2

= log
(1 + 1/Y©2

)(1 + Y•1)(1 + Y�1
)

1 + Y42

(51)

u2 strings:

log
Y +
©n

Y −
©n

Y©n+1
Y©n−1

= log(1 + 1/Y©n+1
)(1 + 1/Y©n−1

) , n > 2 (52)

log
Y +
©2

Y −
©2

Y©3

= log
(1 + Y⊗+

)(1 + 1/Y©3
)

1 + 1/Y⊕+

. (53)

u4 strings:

log
Y +
•n

Y −
•n

Y•n+1
Y•n−1

= log
1 + Y4n

(1 + Y•n+1
)(1 + Y•n−1

)
, n > 1 (54)

log
Y +
•1 Y −

•1
Y•2

= log
1 + Y⊗

1 + Y•2
. (55)

u4̄ strings:

log
Y +
�n

Y −
�n

Y�n+1
Y�n−1

= log
1 + Y4n

(1 + Y�n+1
)(1 + Y�n−1

)
, n > 1 (56)

log
Y +
�1

Y −
�1

Y�2

= log
1 + Y⊗

1 + Y�2

. (57)

Trapezias:

log
Y +
4n

Y −
4n

Y4n+1
Y4n−1

= log
(1 + Y•n

)(1 + Y�n
)

(1 + Y4n+1
)(1 + Y4n−1

)
, n > 2 (58)

log
Y +
42

Y −
42

Y43

= log
(1 + Y⊕)(1 + Y•2)(1 + Y�2

)Y⊗

(1 + Y43
)(1 + Y⊗)

− log Y⊗Y⊕ (59)

+
∑

n

(R
(01)
n1 − B

(01)
n1 ) ∗ log(1 + Y•n

) +
∑

n

(R
(01)
n1 − B

(01)
n1 ) ∗ log(1 + Y�n

).

Adding up Eqs. (45), (46) we find that

log Y⊗Y⊕ =
∑

n

(R
(01)
n1 − B

(01)
n1 ) ∗ log(1 + Y•n

) +
∑

n

(R
(01)
n1 − B

(01)
n1 ) ∗ log(1 + Y�n

). (60)

Therefore, in Eq. (59) all the summands except the first one cancel, and Eq. (59) takes the

form:

log
Y +
42

Y −
42

Y43

= log
(1 + Y⊕)(1 + Y•2)(1 + Y�2

)Y⊗

(1 + Y43
)(1 + Y⊗)

. (61)
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Thus, all the final equations for Y functions, except (60), are local in the sense that each

includes no more than a fixed number of the Y functions. The final equations are indeed the

Y-system equations conjectured in [5]. A graphical representation of this Y-system is given

in Fig. 1. Each value of the index A corresponds to a node of this diagram. For each node

A, the Y-system equation has the form

Y +
A Y −

A =

∏

B

(1 + YB)

∏

C

(1 + 1/YC)
, (62)

where the index B (resp. C) labels the nodes connected to the A node by horizontal (resp.

vertical) lines.

Figure 1: Graphical representation of the Y-system.

Appendix A: notation.

For expressions inolving the dressing kernel σ we use the following notation:

θ(aj, bj, ak, bk) ≡ χ(aj, ak) + χ(bj, bk) − χ(aj, bk) − χ(bj, ak) − (k ↔ j), (63)

θ(xj, xk) ≡ θ(x+
j , x−

j , x+
k , x−

k ), (64)

σBES(u, v) ≡ eiθ(x(u),x(v)), (65)

σ(u, v) ≡ σBES(u, v), (66)

σ(aj, bj, ak, bk) ≡ eiθ(aj ,bj ,ak,bk), (67)
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where χ(a, b) in (63) is given by Eq. (1.12) in [3].

For entries of the table of kernels KAB, the notation is as follows:

Kn(u, v) ≡
1

2πi

∂

∂v
ln

u − v + in/2

u − v − in/2
, (68)

Knm ≡

m−1

2
∑

j=−m−1

2

n−1

2
∑

k=−n−1

2

K2j+2k+2, (69)

Snm(u, v) ≡
1

2πi

∂

∂v
log σ(x[+n](u), x[−n](u), x[+n](v), x[−n](v)) (70)

B(ab)
nm (u, v) ≡

n−1

2
∑

j=−n−1

2

m−1

2
∑

k=−m−1

2

1

2πi

∂

∂v
ln

f(u + ia/2 + ij, v − ib/2 + ik)

f(u − ia/2 + ij, v + ib/2 + ik)
(71)

R(ab)
nm (u, v) ≡

n−1

2
∑

j=−n−1

2

m−1

2
∑

k=−m−1

2

1

2πi

∂

∂v
ln

g(u + ia/2 + ij, v − ib/2 + ik)

g(u − ia/2 + ij, v + ib/2 + ik)
, (72)

where

f(u, v) = 1 −
1

x(u)x(v)
, g(u, v) = x(u) − x(v). (73)
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