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Introduction

Recently, a conjecture was proposed that there exists a correspondence, similar to AdS5/CFTy},
between a string theory and a gauge field theory. This duality relates a three dimensional
superconformal Chern-Simons theory with a string theory on AdS; x S7/Zy. A consequence
of this duality is a correspondence between a planar gauge theory and a string theory in
AdS,; x CP? (see e.g. [3] and references in that work). In particular, a correspondence
was proposed between anomalous dimensions of certain operators in the gauge theory and
string state energies. In addition, integrability properties have been discovered for those
two theories, as well as for AdS5/CFTy. A set of Bethe equations, yielding the spectrum of
anomalous dimensions/string states, was put forward in [3].

In this work, we study the thermodynamic limit of those equations. We show that
the corresponding Thermodynamic Bethe Ansatz (TBA) equations can be written in the
form known as the Y-system, as is the case for AdS;/CFT, and several other integrable
theories. Standard modification of the AdS5/CFT, Y-system allowed to find exact energies
of certain mirror theory states in finite volume [4]. Future work will include making similar
modifications to the AdS,/CFT; Y-system. However, solutions of this Y-system provide
information only about the mirror theory, which is the theory obtained from the original one
by a double Wick rotation. Our eventual goal is to obtain the TBA equations for the mirror
AdS,/CFTs, as those equations give exact finite volume energies for the physical theory.

This paper is organized as follows. In Section 1 we review the algebraic Bethe ansatz
for the Heisenberg spin chain. Section 2 contains a review of the Thermodynamic Bethe
Ansatz method for a simple integrable field theory. Section 3 contains discussion of the
Bethe equations for AdS,/CFT;. In Section 4 we present the main results of this work.

1 The Heisenberg spin chain.

In this section we show how Bethe ansatz can be used to solve the eigenvalue problem for
a quantum-mechanical system. In other parts of this work we will discuss applications of
this method in field theory. A review of the Bethe ansatz technique for the Heisenberg spin
chain can be found in [1].

Consider a chain of L spins %, with periodic boundary conditions. The space of states of
L
this quantum mechanical system is &) h;, where h; =2 C2. Consider the eigenvalue problem
i=1
for the Heisenberg Hamiltonian

L
iy

n=1

(1—=6,Fni1), (1)
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where ¢ = (0,,0,,0,) are the Pauli matrices. We will describe a way to solve this problem
which uses the integrable structure of the Heisenberg Hamiltonian. This approach is known
as the algebraic Bethe ansatz, and it provides all the eigenvectors and eigenstates of the
Hamiltonian. The Bethe equations we will obtain can also be used to investigate the limit
L — oo.

Denote by Vi and V, two auxiliary C? spaces, and by ]5” the permutation operator.
Introduce the R — matriz

Riap(u) =uly,y, +iPry, Ria(u) Vi@V — Vi (2)
and the Lax operator
Lpa(u) = (u — %) Lovi +iPovi, Lni(u): hy @ Vy — hy, @ Va. (3)
It can be shown that the Yang-Baxter equation
Ry o(u—v) Ly 1(0) Ly o(v) = Lyo(v) Ly (u) Ry 2(u —v) (4)
holds for these operators. Next, define the transfer matrix
Ty(u)=Lpi(u)...Lis(u) € End(hi @hy®---®@hp @ W) (5)
and the monodromy matrix
T(u) =try,T1(u) € End(h1 @ha®---®@hp). (6)
It can be shown that the TTR relation
Ry o(u— )T (u)Ta(v) = To(v)T1(u) Ry 2(u — v) (7)
holds, with the use of which the following identity can be proved:
[T'(u),T(v)] = 0. (8)

The Heisenberg Hamiltonian can be written in terms of the operators we have introduced:

- dT
H=L—i—T" : (9)
du u=i/2
Therefore,
[, T(v)] =0 (10)

for any complex number v. This relation provides L — 2 independent conserved quantities.
Together with the Hamiltonian and a component of the total spin (e.g. S3) they form a set
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of L conserved quantities. This is a manifestation of the integrable structure behind the
Heisenberg spin chain.

Using the fact that the Heisenberg Hamiltonian has the form (9), we can construct its
eigenvectors in the following way. Any vector |¥) satisfying

T(u)|¥) = A(uw)|V), YueC (11)
is also an eigenvector of our Hamiltonian, with the eigenvalue

d
=L—i—1 1
E=L-i T og A(u) (12)

u=1i/2
Such vectors |¥) can be constructed as follows. The operator T3 (u) can be written as
A(u)  B(u)
T = 13
@=( &) b ) )
where A, B,C,D € End(h; ® hy ® --- ® hr). It can be shown that the vector

W) = Blu) Blus)... Bu)| 1111 -..) (14)
is an eigenvector of T'(u) if the complex numbers wuy, us, ..., u; satisfy the Bethe ansatz
equations (BAEs)
iN L .
(uﬁ_—i_g> — H uﬂ_—ukﬂ (15)
Uj—§ k;ﬁjuj—uk—z

If equations (15) hold, then

T ou—u 1 T Up + 1 i\ ©
— U — — U
H U — ug <u+ ) +H U — ug ( 2)

j=1 7j=1

T(u)|¥) = V). (16)

Thus, each solution of the Bethe equations corresponds to an eigenvector of the Heisenberg
Hamiltonian. It can be shown that all the eigenvectors and eigenvalues can be obtained in
this way. Moreover, to solve the eigenvalue problem completely it is sufficient to consider
only such solutions of BAEs in which all roots are distinct.

The Bethe equations make it possible to study the thermodynamic limit L — oo. It
can be shown [1] that if the total number of roots is fixed, the roots form complexes called
strings, in which the spacing between roots tends to ¢ as L — co. The elements of an n-root

complex can be written as
, n—1 n—3 n—1
Upg = U +120, 0= — 5 0 T Tg Ty

where u € R is the center of the complex and n is integer. It turns out that complexes appear

(17)

also as solutions of Bethe equations for integrable field theories. Examples for AdS,/CFT;
are given in section 3.



2 Thermodynamic limit of Bethe equations for an in-
tegrable field theory.

The techniques we review in this section are described in Ref. [2].

Consider a QFT in 141 dimensions on a flat torus defined by two orthogonal geodesic
circles C and B, with circumferences R and L. For the theory on C with B as its time domain,
the partition function has the form

Z(R,L) = Tre (e 1), (18)
and in the limit L — oo, L > R we have
Z(R,L) ~ e BRI (19)

where F(R) is the ground state energy of the theory. On the other hand, we can perform a
double Wick rotation and find that the function Z from (18) is also the partition function
for a so-called mirror theory, which is defined on B with C as its time domain:

Z(R,L) = Trg (e ") (20)

If our QFT is Lorentz-invariant, the initial and the mirror theories coincide.
Denote by f(R) the bulk free energy for the theory on B at temperature 1/R. Then,

—LRf(R)=InZ(R,L). (21)
Therefore, in the thermodynamic limit L — oo we have
E(R) = Rf(R). (22)

This relation can be used to find the ground state energy E(R) for arbitrary R.

In the remainder of this section, we will describe a technique for calculating the free
energy f(R) for a simple integrable quantum field theory. Here, by integrability we mean
the existence of an infinite number of conserved charges. We do not specify the theory in
question, but assume that it is Lorentz-invariant and includes only one type of particles
- neutral particles of mass m. We assume that the following properties of the scattering
process in the theory follow from integrability:

e factorization of scattering
e conservation of the number of particles in each scattering event

e the sets of momenta for the initial and final states of a scattering process are identical
(though individual momenta may get redistributed between the particles).
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Consider the case L > R., where R, is a characteristic radius of interactions between parti-
cles. In general, it is not appropriate to describe with a wavefunction a system of particles
in quantum field theory. However, for L > R, there exist regions in the configuration space
where the particles are strongly separated. We call those regions free regions. In such a
region, we can introduce coordinates x; and momenta p; of the particles. The criterion of
strong separation is |x; — x;| > R.. Properties of the scattering process (see above) imply
that in each free region the number of particles is the same. The particles in a free region
can be described by a wavefunction, and have well-defined energies and momenta, which can
be written in terms of rapidities f3;:

e(B;) = mcosh B, p(B;) = msinh f;. (23)

Denote the pair scattering amplitude by S(3). For a system on a circle of circumference
L, the matching conditions between free regions lead [2] to quantization equations for the
particles’ momenta. Those equations are the Bethe ansatz equations for our theory:

el H S(B;— ;) =1, for alli. (24)
J#i
Note that the BAEs for the Heisenberg spin chain provide the exact spectrum of the Hamil-

tonian. However, equations (24) are only exact in the infinite volume limit (L — oc0).
For S(3) = € we have, from (24):

mL sinh 3; + Z a(f; — B;) = 2mn,. (25)
J#i
Let the number of particles N increase also as L tends to infinity, so that N ~ L. In this
case, we can introduce a rapidity density of particles p(3). Eq. (25) takes the form

mLsinh 5, + [ (3, - #)p(3)a5 = 2mm, (26)

We can introduce the total density of rapidity levels in the following way. Consider a set of
N rapidities {;} (we call this set a quantum state) which satisfy, with the particle density
corresponding to this set, Eq. (26). In case the Lh.s of (26) is a montonously increasing
function of ;, we can put a rapidity value 3; in correspondence to each integer number,
and not only those integers which correspond to the solution {3;}. In this way we define the
rapidity levels 3;. The distance between consecutive levels is of order 1/(mL) and tends to
zero as L — oo. Therefore, we can introduce the density of rapidity levels. We denote this
density by p(B) + p(). From (26) we find

da(f — )

P COLER (27)

2m(p(8) + p(5)) = mL cosh § + /
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The energy of our system can be written as

Hp = /dﬁmcoshﬁp(ﬁ). (28)

A large number of quantum states correspond to each consistent pair of densities p(3), p(5),
because the densities are not sensitive to local redisributions of particles between rapidity
levels. Consider the case when each rapidity level can be occupied by no more than one
particle (see [2] for details). Then, it can be shown that for a macroscopic state described
by p and p, the entropy can be written as

Slp, 7l = / dB(pIn(1 + p/p) + pin(L + p/p). (20)

The minimal value of the expression —RHpg[p] + S [p, p| with respect to the densities p, p,
which are constrained by (27), is equal to —RLf(R). The extremum conditions for this
functional, together with the Bethe equations, provide a set of equations called the Thermo-
dynamic Bethe Ansatz (TBA) equations. Solutions of those equations provide the bulk free
energy f(R) and, from Eq. (22), the ground state energy F(R).

For the AdS,/CFTs theory, considered in the next section, the mirror ground state
energy is known to be zero, because the vacuum is invariant with respect to supersymmetry.
However, for AdSs/C FT, the techniques presented in the current section can be modified [4]
so as to describe certain excited states as well. A similar procedure could be applied in the
AdS,/CFTj case.

3 Bethe ansatz equations for AdS,/CF1Ts.

The Bethe ansatz technique for a field theory, presented in the previous section, allows
to obtain the theory’s spectrum in the infinite volume limit. A set of Bethe equations
describing the spectrum of string states/anomalous dimensions in AdS,/C F'T3 for any value
of the 't Hooft coupling A was conjectured in [3]. The object of the present work was to show
that in the TD limit the corresponding TBA equations can be written in a compact form
known as the Y-system. A similar result for AdS;/CFT, was obtained in [4]. The initial
Bethe equations are only valid in the infinite volume limit. However, in the AdS5/CFT}
case solutions of the modified Y-system for the mirror theory allowed to obtain exact finite
volume energies of certain states of the initial theory. Similar modifications could be made
to our Y-system, to obtain finite volume energies for the mirror AdSy/CFT; theory.



The Bethe equations from [3] (see Eq. (1.7) in that work) have the following form:

1 = ﬁ Uk = Usg+ 5 ﬁ 1—1/ (z1475) 11/ (ml’kx“)
ULk — U2 — % o 1-1/ (:L’Lkﬂ?;j) =1 1=1/ (Qfl kx4]> ,
1 = ﬁ Ugp — Uz j — 1 ﬁ Upp — Urj + % i Upp — Uz + &
g Uk — Uz, Uy Uk — Uy L G0 U2k~ U — 1
+ Ky 1 x;l_j

Ky i + K _

1 — H U3 — U245 T 3 H T3k — Ly H L3,k ’

= : = —
=1 Uz — U2, — 2 T . k T

L
(@) _ ﬁU4,k—U4j+i ﬁ 1 -1/ (23,215) ﬁﬂflk—l’&j y (30)

+
T Ugp — Ugj — T 1-1 Ty, — T3
4k itk Ak 4,5 = /(3’74 kxl,J) =1 Yk 3,
Ky K3
X H oBEs (Ud ke, Us ;) H opEs (Uak, Ui ;) ,
j=1 j=1

K3 . K.
H Uz — U j +1 H 1/ < k%,g) 3 ik T3
) — kl _7j -

i + — I3
j=11—1/ (le,kxl,j> j=1 Fak T 3

/N
& ‘ &
:l>|| :lk\+
Bl Bl
~__—

=
Il
<

I
N
Bl
|

|
Ny

K3 Ky
X H O'BES(UZL,k:a uZL,j) H UBES(UZL,ka U4,j) )
#k j=1

and only solutions satisfying the zero momentum condition

Ky + Ki .+
xt. T

=111 (31)

et T kel S0

j=1 WJoj=1"47

should be considered. Here, wuy, us, us, uy, uz are the Bethe roots, and L is a positive integer.

The function x(u) is defined by

1 u

where h(\) is a function of the 't Hooft coupling A\ (see [3] for details), and the following
general notation is used throughout this work:

) = fuxi/2), fF9=flu+ia)2). (33)

The above set of Bethe equations describes the string state energies for a string theory in
AdS,y x CP3, as well as anomalous dimesions in the dual gauge field theory. These quantities
are given by

= h(X)Qa, (34)
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where

Q, = an(u4,j) +> a,(uiy) , q, = - i : ((x+1)”—1 — ($_1>n_1) . (35)

The only roots which carry energy or momentum are uy4, uz. For a single root, those
quantities are given by

p=—log . e:%wm(%_i_). (36)

Further discussion will be based on the following hypothesis: in the large L limit, each
Bethe root from a set of roots which satisfies (30) is part of a complex of roots; the complexes
and notation we use for them are given by the table below.

Uy = U+ 1, j:—”T’l,...,"T’l : string of roots D e,

uz = u +1J, j:—”T_l,...,"T_l : string of roots NON

Ug = U+ 1], j:—"T*Q,...,”T*Q : string of roots oY
_ - s n— n—1

Uz =u+1], J=""5 55 5

Uy = U+ 17, ':—”T_Q, ..,"T_Z : trapezia i
_ - s n—3 n—3

Uy =uU+1), J=—"5".-, 5
U =u :  single fermion root : @
Ug =u :  single fermion root : ®

Here, u denotes the real center of a complex. We use indices A, B to label the complexes.
Denote by €4 (resp. pa) the sum of energies (resp. momenta) of the roots in a complex. For
a string of n uy roots we have

1. gl n i i
pe, = ~log——y, <o, =5 +h(}) (m—m) (37)

The same expression is correct for a uz string. For other complexes, p4 and €4 are zero.
Multiplying the Bethe equations for all roots in a complex, we obtain the equations for
the density of complexes of that type. Those equations have the form

_ 1 dpa(u)
2r  du

pau) + pa(u) = — Kpa(v,u) x pp(v) (38)
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where K (v,u) * f(v) = [ dvK(v,u)f(v). Here, we use the following normalization:

(39)

total number of complexes of type A
dupa(u) = 7 :

Since our theory includes fermions, we must work with the Witten index instead of the
thermal partition function to compute energies of the mirror states in finite volume [4]. The

Witten index is defined as
W= Y1) BT, (10)

where f,, is the number of fermions in the state labelled by n. Introduce hy = im = log(—1)
for fermionic complexes and h4 = 0 for other complexes. For the physical theory, the bulk
free energy, defined as in (21) with Z in that equation replaced by the Witten index, is given
by the minimal value of the following functional of the densities:

Fe ZA:/Z du (<ReApA ) — {pAlog (1 " Z—j) + palog (1 + ’;—j)D (41)

Here, R is the inverse temperature. Minimization of this functional with constraints (38)
gives the following equations:

log Ya(u) = Kap(u,v) xlog[l + 1/YVg(v)] + Rea(u), (42)

where V4 = ﬁ—i. The minimal value of the functional (41) is

F= Z/d—“dﬂl (14 1/Da(w)), (43)

and this quantity times R is the ground state energy of the mirror theory in volume R.

4 Derivation of the Y system for AdS,/CFTs.

In this section the main results of this work are presented.
Applying the fusion procedure to the Bethe equations (30), it can be found that the
kernels K 4p are given by the entries of the following table (see the appendix for description
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of the notation used here):

Kap =
L A\B] o [0 [e [om o m
On TLanl,mfl —AAn-1 +Kn71 0 0 0
o | —Kma1 |0 0 . —BY —B
® —HKm—1 0 0 +Km—1 _Rg?i) _Rg(’:rlL)
(01) (01)
_Rn m _Rn m
Ay 0 —ANn—1 +Kn—1 +Kn—1,m—1 071 0’1
787(17% m 7827% m
+S,
0 B(lO) _R(l[)) _8(10) _ R%lg—)b nm Snm
e, + nl nl n,m—2 ) +Knm +
o |0 £ | U0 | g0 a0l g o

Introducing the functions Yy,

11 1 1
: = <Y, Y0 = —, —, — 44
{yomy@;y&yAﬂ;yq@;yOn} { On? EB? }/@7 Y%7Y%7Y%}J ( )
we can write the equations (42) as:
1+1/Y
logYs = +K,,_1%log ;L_i_—{/% + Rg?i) *log(1 + Ye,,) + Rg%) «log(1+Y5,) +im (45)
D,
1+1/Y
logYs = —K,,_1%log 1+ 136, Bﬁ) xlog(1l + Ye,,) — Bi?,? xlog(14+Y5,) —im (46)
14+ Y,
1+ Y
logYn, = —Ky 1m1*log(l+Yy, )— K, 1 xlog ——— 47
0g Yn, 1m-1 % log(1+Ya,) 1*0g1+1/y@ (47)
+ (RO +BYY,,) +log(1+Ya,) + (RG) + B, ) log(1+Ys,)
1+ Y
logVy, = K, 1m-1xlog(l+1/¥ K, 1 *log ———— 48
0g 1o, 1m-1 % log(1+1/Y5, ) + 1*0g1+1/Y@ (48)
— B&O) xlog(1+1/Ys) + RSIO) xlog(1+ Ya) + (Rgﬁ) + Bfif,id) xlog(1+Ya,,)

— B log(1+1/5) + R wlog(1+ Y) + (RUS + B, ) + log(1 + Y,
Introduce the discrete Laplacian operator
AK,(u) = Kp(u+1i/2 —i0) + Kp(u—1/2 +140) — Kppq(u) — Kpoq1(u).

Following [4], we apply this operator to the Lh.s. of the last set of equations, and obtain
another set of equations for the Y functions, which is presented below.
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u3 single roots:

YoIYs 14+1/Y5,)(1+ Yo )(1 + Y2
o TYE 1, 0 1/Y)(1 4 Y0)(1 4 ¥2) 1)
Y, Yo, 14 Yy,
u2 strings:
YIYS
G110,
YorYS 1+ Y )(14+1/Y
log 1220 :log( +Y, )0 +1/¥s) (53)
u4 strings:
Yo Yo 1+Y,
log —>%_ — og * ,n>1 (54)
Y.n+1Y.n71 (1 + Y.n+1)(]‘ + Y.nfl)
Yo Yo 1+Ys
log 2% =1 : 55
% Ve ®1+ Ye, (55)
u4 strings:
YoRY 14+ Y,
log — 2 —Jog ,n>1 (56)
Y®n+1Y©1_1 (1 + Y@z+1)(1 + Y@1—1)
YRy 1+ Y
7Y, T %11y, (57)
Trapezias:
Yy 1+ Ye,)(1+ Y-
log%zl g 1( v .”>(1 YQL) , > 2 (58)
A AT ( + An+1)< + Aﬂ—l)
Y'Y 1+ Ye)(1+ Ye)(1+Y5)Ye
logM = log( X+ Ve ) 1 ¥o) = — log YaYe (59)

Ya, (1+Ya,)(1+Y2)
+ > (R = BYY) xlog(1+ Ya,) + Y (R = BYY) # log(1 + Y5,).

n

Adding up Egs. (45), (46) we find that

log VaYa =Y (RY — BEY) xlog(1+ Ye,) + Y (R — BOY) xlog(1+¥s,).  (60)

n

Therefore, in Eq. (59) all the summands except the first one cancel, and Eq. (59) takes the

form:
YoYs, o (14+Ye)(1+Ye)(1+Y5)Ye

=lo
Ya, T ) (1 + Y

log (61)
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Thus, all the final equations for Y functions, except (60), are local in the sense that each
includes no more than a fixed number of the Y functions. The final equations are indeed the
Y-system equations conjectured in [5]. A graphical representation of this Y-system is given
in Fig. 1. Each value of the index A corresponds to a node of this diagram. For each node
A, the Y-system equation has the form

VY, = (62)

[I(1+Yp)
(1+1/Ye)’

where the index B (resp. C') labels the nodes connected to the A node by horizontal (resp.

E

®
o

©
‘D

@ﬂ@

@
‘®OOO

Figure 1: Graphical representation of the Y-system.

vertical) lines.

Appendix A: notation.

For expressions inolving the dressing kernel o we use the following notation:

0(aj, bj,ar,br) = x(aj,ar) + x(bj, bx) — x(aj,bx) — x(bj, ar) — (k < j), (63)
O(xj,zp) = Q(x;r,acj LTy, Ty ), (64)
opes(u,v) = W) z(v) (65)
o(u,v) = opgs(u,v), (66)

o(aj,bj, ap, by) = eP@bianbe) (67)
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where x(a,b) in (63) is given by Eq. (1.12) in [3].
For entries of the table of kernels K 45, the notation is as follows:

1 81 u—v+in/2

Kn ) = - R
(v, ) 271 Ov nu—v—m/Q
m;l anl
Ko = Z Z Kajiopt2,
PRy -
= 1 [+n] [—n] [+n] [—n]
Sum(u,v) = 5 -log (2 (w), 2l (w), 2l (v), & (v)
271 0
n—1 m—1
Bl(uw) = Y Y 1 0, flutie/2+ij0—ibj2+ ik)
n-1p__m-1 2ridv - f(u—ia/2+ij,v+ib/2 + ik)
=TTy T T
ENERY g(u+ia/2 +ij,v —ib/2 + ik)
R(ab) = __1 )
nm (U7U) Z;l . 27;1 9711 Ov n g(u _ Z(Z/2 T ij,'U T Zb/2 T Zk’)7
JI=TTe RET T
where X
fluv)=1- z(u)z(v)’ g(u, v) = x(u) — 2(v)
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