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Abstract

This report gives a summary of the work I did during the summer student programme
2009 and a subsequent three-week stay at DESY. I worked with the MPI Munich group of
the H1 collaboration, my supervisors were Dr. G. Grindhammer and R. Kogler.

I examined jet cross sections in proton-electron collisions in next-to-leading order, with
emphasis on scale dependence and the resulting uncertainties. I developed a method to of
writing out information about events generated using the program nlojet++, and analyzed
events that were obtained this way.
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1 Introduction

1.1 Experimental Setup

The HERA collider at DESY was operational from 1991 to 2007. It accelerated electrons1

and protons, which were then used for four experiments. Two of them, H1 and Zeus, recorded
collisions between both beams. The scattered electrons as well as the scattered proton (for elastic
processes) or the hadronic �nal state (for inelastic processes) were observed, their energies and
momenta were measured. These measurements can be used for a variety of physics goals, e.g. to
probe the structure of the proton and for precision measurements of the strong coupling αs.

1.2 DIS Process and Kinematics
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Figure 1: Leading Order Feynman Graph of Deep Inelastic Scattering

In electron-proton-scattering, the electron interacts with the proton by emitting a vector boson.
This can be a photon or Z boson (neutral current interactions), or it can be a W boson (charged
current interactions), in which case the electron turns into a neutrino. Because of the mass of
the weak bosons, W and Z exchange are suppressed at low momentum transfers. In my studies,
only neutral current processes were considered.
In this report, P , pe, and p′e will stand for the 4-momentum of the beam proton, the beam
electron, and the scattered electron, respectively. pi will denote the 4-momentum of the i-th jet
in the �nal state, ordered by pT . Other important kinematic quantities can be found in table 1.
Observed events can be categorized according to the hadronic �nal state. In elastic processes,
W = MP , i.e. the proton does not break up. In inelastic processes, the proton breaks up. If
the scale is hard enough (e.g. Q2 > 4GeV2), one talks about deep inelastic scattering (DIS). It
can be described as the photon interacting with one parton inside the proton. The dominant
Feynman diagram for this process can be seen in 1. The proton remnant disappears into the
beam pipe, the scattered quark makes a jet which can be observed in the detector.

1.3 Multijet Production

The process shown in �g. 1 does not contain an explicit strong vertex (all strong processes have
been �absorbed� into the proton). To measure αs, one therefore has to use events with more

1In the context of this report, �electron� will refer to both electrons and positrons.
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formula meaning
s (P + pe)2 available energy in the center-of-mass system
q p′e − pe momentum transfer between electron and proton
Q2 −q2 virtuality
x Q2

2·p·q Bjorken scaling variable

y Q2

s·x inelasticity

W

√(∑
i

pi

)2

mass of the hadronic �nal state

M12

√
(p1 + p2)

2 mass of the �rst two jets (in dijet events)

ξ x ·
(
1 + M2

12
Q2

)
incoming parton's momentum fraction (LO)

Table 1: Kinematic variables in the DIS process

Figure 2: Boson-gluon
fusion process

Figure 3: QCD Com-
pton process

Figure 4: Real NLO
contribution

Figure 5: Virtual NLO
contribution

than one jet. The dominant Feynman diagrams for dijet production in DIS can be seen in �g. 3
and 2. They are referred to as QCD compton process and boson-gluon fusion.

1.4 Cross Section De�nitions

There are two di�erent ways of de�ning jet cross sections. For inclusive jet cross sections, one
counts jets that have certain criteria, independent of the properties of other jets in the event.
For the so-called dijet (trijet) cross sections, one counts events with at least two (three) jets with
certain criteria.
To get rid of QPM processes (cf. �g. 1), but not dijet events where one jet was not fully re-
constructed, jet �nding and analysis is often performed in the Breit frame. It is de�ned as the
frame of reference where q +2 ·x ·P = 0 and the scattered electron has ϕ = 0. In this frame, the
outgoing parton in �g. 1 has pT = 0. Partons can only have pT > 0 if there is more than one
outgoing parton. Cutting on jet pT in the Breit frame can therefore be used to identify multijet
events.
Di�erential cross sections can be de�ned approximately by counting events in certain bins. Mak-
ing the bin size in�nitesimally small would give the di�erential cross section. Because of �nite
statistics and detector resolution, �nite bin sizes are usually used.
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2 Cross Section Calculations

The cross section of a given process can be calculated by evaluating the relevant Feynman dia-
grams. Processes with quarks are generally di�cult to calculate as quarks only propagate freely
at very high energies/short distances. They can only be observed in (colorless) bound states, the
hadrons. The processes inside hadrons can not be calculated peturbatively, Feynman calculus
can not be used. Typically, one divides the process into a �hard� (perturbatively calculable)
and a �soft� (non-perturbative) part. The nonperturbative part can often be parameterized by
a function that can be determined from other measurements.
In the case of DIS, the �hard� process (e.g. eg → eqq̄) can be calculated perturbatively. The
result has to be folded with the PDF, which describes the momentum distribution inside the
proton. One can then choose to simulate parton showers, where the outgoing partons radiate
soft/collinear gluons perturbatively, and hadronisation, which relies on non-perturbative models.
In the studies described here, neither parton showers nor hadronisation were taken into account.
One can now write a DIS cross section in the form

σ =
∞∑

m=1

∑
a

1∫
0

dx fa(x, µ2
f ) ·

∫
dΓ(m)({p}m, x) |M({p, a}m)|2 · FJ({p}m), (1)

summing over the number m of partons in the �nal state as well as a generalized ��avor� a, which
describes the kind of parton (gluon, up- or down-type quark). {p}m is the set of the momenta
of the m particles in the �nal state, dΓ(m) the phase space for m (massless) particles. fa is the
parton distribution function, M the matrix element of the hard subprocess (which in itself is a
perturbation series in αs), and FJ the jet function.
The factorization or separation into soft and hard subprocesses introduces an arbitrary scale
µf that divides the perturbative and non-perturbative regions. Because µf is not a physical
parameter but a byproduct of the assumptions we make in the non-perturbative regions, the
physical cross section can not depend on µf . In �nite-order calculations, the dependence on µf

can therefore be taken as a measure of the theory uncertainty of a given observable.

2.1 NLO Calculations

Let us now consider cross sections with n jets in the �nal state. m now runs from n to ∞.
The perturbative parts of eq. 1, i.e. M({p, a}m), can be approximated by a power series in αs.
Each term can be visualized in the form of a Feynman diagram. Strong vertices in the Feynman
diagrams correspond to factors αs in the cross section: For example, the cross sections for the
processes described by the diagrams in �g. 3 and 2 are both proportional to αs. They are the
leading order (also called born level) diagrams for dijet production. Diagrams of higher order in
αs contribute too to the observed cross section. Because of the relatively large value of αs, it
is very important not to neglect higher-order contributions in QCD processes. However, due to
the limits of current algorithms, only next-to-leading order calculations can be performed, i.e.
all terms of order αn+1

s and larger (for n-jet production) are neglected because they can not be
calculated at present time.
Considering only processes with n jets and taking only terms proportional to αn−1

s and αn
s

into account, the sum in eq. 1 now runs from m = n to n + 1. The matrix elements can be
approximated as

|M({p, a}n)|2 =
∣∣∣M0({p, a}n) +

αs

4π
· M1({p, a}n) + . . .

∣∣∣2 ≈ ∣∣M0
n

∣∣2︸ ︷︷ ︸
∝σB

+
αs

2π
· <
(
M0

n · M1
n

)
︸ ︷︷ ︸

∝σV

(2)
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and
|M({p, a}n+1)|2 ≈

∣∣M0
n+1

∣∣2 ∝ σR. (3)

The �rst summand of the �rst term is the leading order matrix element and corresponds to the
cross section on born level, σB. The second summand of the �rst term corresponds to virtual
corrections due to interference of loop- or box-diagrams and born level diagrams (cf. �g. 5). The
second term corresponds to so-called real corrections with an additional parton in the �nal state
(cf. �g 4). Additional Feynman diagrams (e.g. the virtual corrections to M0

n+1) are neglected
because they are of order αn+1

s or higher. Thus we can write the next-to leading order cross
section as

σNLO = σB(orn) + σV (irtual) + σR(eal), (4)

where the three terms can be calculated from the three terms mentioned above by performing
the phase space integral and summing over �avors etc. as needed. Trying to calculate each
term separately, one �nds that σV and σR are divergent. However, in the sum, the observed
divergences cancel.
It should be mentioned that both the leading order and the α3

s loop diagrams also introduce
divergences. These can be removed by requiring a physical (measurable) region in phase space
(extremely collinear or soft jets cannot be resolved) or a rede�nition of physical quantities (masses
and coupling constants). This leads to the running of the coupling constants and introduces a
second scale, the renormalization scale µr.
The two separate divergences that only cancel when the di�erent contribtutions are summed
up pose di�culties for computer-based calculations. Numerically, one can not calculate in�nite
integrals with a �nite di�erence. One therefore has to cancel the divergences before evaluating
the integrals. The phase-space slicing method solves the divergences by separating out the
divergent regions of the phase space. The non-divergent regions can be integrated over without
problems. In the regions close to the poles, one can approximate the integrands so that the two
contributions cancel without performing the integrations. Problems with this method are that
is is process dependent and introduces another arbitrary scale, the cuto� parameter in the phase
space slicing.
The subtraction method is more general. It relies on adding a counter term to the virtual
integral and subtracting the same term from the real contribution. This has to be done before
performing the integral. The counter terms contain the divergences, so that the integration can
now be performed safely. The di�culty lies in calculating the counter terms dσA.

2.2 Monte Carlo Integration

Rather than integrating (analytically) over the whole phase space, Monte Carlo event generators
use a (pseudo-) random number generator to generate possible phase space con�gurations/events.
These are then weighted according to the phase space/matrix element of the pertinent Feynman
graphs. Adding up all weights and dividing by the number of generated events gives the total
cross section. Most programs use importance sampling, i.e. generate more events in regions
where the integrals diverge.

3 The Program nlojet++

nlojet++[1] by Zoltan Nagy is a program which calculates jet cross sections in next-to-leading
order using the Monte Carlo technique. It contains NLO matrix elements for several processes.
For the studies presented here, deep inelastic scattering events (with two or three partons in �nal
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state in leading order) were studied. A user routine was set up that is able to save information
about the generated events in the form of a Root tree. This tree can than be read back in and
studied further, e.g. with di�erent jet algorithms, cuts, . . .

3.1 Some Remarks on Nomenclature

In NLO calculations like the ones performed by nlojet++, one needs to be careful with the
de�nition of the word event. For each event with a �xed phase space (�xed x, Q2), nlojet++
generates several con�gurations, corresponding to the di�erent Feynman graphs that contribute
(e.g. leading order terms, interference terms etc.). Each con�guration consists of several particles:
Incoming and outgoing lepton, incoming parton and two to four outgoing partons, each described
by its momentum. Each con�guration has three contributions, on from gluons, one from up-
type and one from down-type quarks.
Each con�guration has a type. The possible types are born, real, sub, and fini. The latter can
be further split into finix and fini1. born refers to leading order terms (i.e. QCD-Compton
or boson-gluon fusion processes for dijet production), real to NLO terms with one additional
parton in the �nal state. sub refers to dipole (subtraction) terms, fini to �nite remainders
of the interference terms after the divergences have been subtracted. For each phase space
con�guration, exactly one con�guration of type born, real, fini1 and finix is generated as
well as several subtraction terms.

3.2 Usage

To generate events or calculate cross sections, the user has to provide a user rou-
tine. This needs to be compiled using libtool so it can be dynamically linked
from the main program. A sample make�le can be found in the folder /af-
s/desy.de/user/f/�eish/h1/nlojet/eptojets. The program can then be started with
nlojet++ --calculate -c full -n name -u user-routine.la [--max-event
number ] [--save-after number ] [-s seed ] [-d outputdir ].
The option --calculate tells the program to start the event generation routines. With -c
option one can choose between only LO contributions (born), only NLO contributions (nlo)
or both (full). name is a name associated with the output �le. This is enables one to run
nlojet++ simultaneously with di�erent options/user routines. The last four options are op-
tional. --max-event number sets the number of events to be generated. If no such number is
given, the program runs until it is terminated from the outside. --save-after number sets the
number of events that are kept in memory before they are written to �le. The default value is
10000. -s seed sets a seed for the random number generator. If no argument is given, the seed
is calculated from the system time. outputdir is the name of the directory where the output �les
will be saved (default: ./output).
The output is saved as a binary �le2. It contains information about the number of generated
events as well as any histograms speci�ed in the user routine. The �lename consists the name
that was given earlier as well as some information about the generated process. A sample �le-
name would be ./output/name -dis-full-2jet.
If one wants to access the information in the histograms, one needs to call
nlojet++ --add -u user-routine.la [-d inputdir ] [-r outputdir ] name1

[name2 ...].

2One can switch to output in text format by using the option --txt. Version 4.0.1 of nlojet++ has a bug, it
needs a dummy argument after --txt, e.g. --txt x.
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This adds the results from the earlier runs and normalizes them. Statistical errors are also cal-
culated.
inputdir and outputdir refer to the directory where the binary �les can be found resp. where
the results should be placed (Defaults: ./output resp. ./result). name1, name2 etc. refer to
the names speci�ed during generation, not to the full �lename! The corresponding �les should
have been generated using the same user routine. The result �le is placed in the outputdir
directory. The �lename is always result-0, the path depends on the simulated process, e.g.
./outputdir/dis/2-jet/full/result-0. This �le contains information about the �lled histograms (ti-
tles, bin limits, values and their errors) in text format. It can be read in and parsed to produce
a graphic output.

3.3 The User Routine

The user class should inherit from one of the existing base classes. A valid user routine needs
to contain at least two functions, initfunc() and userfunc(). The �rst one is called once
at the beginning of the calculations. It can be used to initialize global variables and to book
histograms. The user function is called once for each event. It can be used to �ll histograms or
write information to �le.
The functions inputfunc() and psinput() can be used to set the number of partons in the �nal
state or the available phase space (beam energies or cuts in x, Q2, . . . ).

3.4 Writing out Events

In its original form, the output of nlojet++ consists of the histograms that were �lled in the user
function. If one �lls the histograms with weights calculated by nlojet++, they correspond to
(di�erential) cross sections. However, the physical cross sections depend on the jet algorithm that
was used, and of course on the cuts that were made. To be able to use di�erent jet algorithms
and cuts, it is therefore desirable to save information about each event that can be used to
reconstruct the cross sections afterwards. As all the particles and jets are considered massless,
we chose to write out the following information about each event:

1. The momentum of the outgoing electron

2. The momentum of the incoming parton

3. The momenta of the outgoing partons

4. The values of x and Q2

5. The values of the scales µf and µr that were used to calculate the event weight

6. The event weight calculated by nlojet++

7. The value of αs used to calculate the event weight

8. The type of event (born, real, . . . )

9. The order of αs

10. The values of the PDF for the three contributions (gluon, up- and down-type quarks) used
to calculate the weight
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11. For events of type finix and fini1: Two/three weights needed for the scale independent
decomposition of the matrix element

12. For finix events: The value of the _M_fini.x-variable (needed to re-calculate the PDF
for this type of event).

To be able to manipulate the weights with their three contributions comfortably and indepen-
dently of the nlojet++ libraries, the class NLOweight was created. Events are saved as objects
of the NLOevent class. Some general information (e.g. beam momenta) is saved only once per
�le as it does not change on an event-to-event basis.
To make sure that no information is lost/that the write-out procedure worked, some simple his-
tograms were �lled during the write-out run and compared to histograms �lled using events read
in from the �le.
The user routines set up to write out events (write.cc and write_flat.cc) can be found in the
folder /afs/desy.de/user/f/�eish/h1/nlojet/eptojets.

3.5 Changes Made to the nlojet++ Source Code

To be able to use Root classes as well as my own classes for NLO weights, the com-
pilation/linking routine had to be changed. A sample Make�le can be found in the ap-
pendix. The necessary routine my-create-nlojet-user can be found in the folder /af-
s/desy.de/user/f/�eish/h1/nlojet/eptojets as well as the appendix. One also needs to set the
library path, e.g. via executing set_lib_path.sh in the same folder.
The source �les for the classes NLOevent and NLOweight can be found in the folder /af-
s/desy.de/user/f/�eish/h1/nlotree. The main routines of nlojet++ are main.cc, main_calc.cc,
and main_add.cc in the folder nlojet++-4.0.1/src. main.cc parses the �rst command
line argument and then calls either the adding or the calculating routine. main_calc.cc
or main_add.cc then parse the rest of the arguments, load the requested user routines and
start the calculation/addition of histograms. In the main.cc routine, no changes were made.
In the main_calc.cc and main_add.cc routines, a small change was necessary: For some
reason, loading the custom-made user routine (including the root libraries) breaks the pars-
ing of the command line arguments. This causes the main routine to start parsing again
from the beginning and calling the calc/add routine again. It can be �xed by placing
optind = argc; somewhere after handle = lt_dlopen(user);. Two smaller changes were
also made to main_calc.cc: The line {"txt", required_argument, 0, 0 } was changed to
{"txt", no_argument, 0, 0 } to re�ect the fact that the option --txt does, in fact, not
require an argument. The line <<"Random Seed Value : "<<seed<<"\n" was added after
<<"Time rate In+1:In : "<<in.time<<":1\\n" to make reproducing results easier.
The actual cross section calculations are controlled by the routines nlo-integral_i1f0.h and
nlo-process_i1f0.h in the folder nlojet++-4.0.1/nlo-core/bits/ (copies of these �les are
placed in the include directory when compiling them). The function calculate(unsigned long
int mxne, unsigned int time_rate_rf) (in nlo-integral_i1f0.h), sets up the phase space,
calls the initfunc(), and contains the event generation loop. In this loop, events are gener-
ated, the amplitude calculations for the di�erent contributions are set up and the user function
is called once for every contribution. At the end of the loop, the function end_of_event() is
called which increments the histograms as well as the event counter that determines when the
histograms are being written to �le. However, in the original version, the end_of_event() func-
tion was also called after a �numeric_error� or a �fp_exception� was caught (without the user
function being called before). This led the counter controlling the histograms to di�er from the
one controlling the event generation loop, which caused problems when determining when to
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close the �le with the Root tree. Because of that, I took out the calls to the end_of_event()
function after catching the errors.
Inside the nlo-process_i1f0.h routine, the weights of the di�erent con�gurations and contri-
butions are calculated. Because we need access to some previously private data members (e.g.
the scale independent decompositions of the matrix element), I removed the �private:� in line
190.
The jet �nding and recombining of partons to jets was performed inside the user function us-
ing the routine described in h1jet.cc. It implements a simple kT algorithm with an pT re-
combination scheme. There was a bug that caused the recombination routine to give back
jets with a wrong azimuthal angle φ in the Breit frame, leading to a wrong jet pseudorapid-
ity in the laboratory frame. The �xed recombination routine can be found in the folder /af-
s/desy.de/user/f/�eish/h1/nlojet/eptojets.

3.6 Scale Dependence of the Weights

For the cross section calculation, one needs to specify the values of the renormalization and
factorization scale. The nominal values used for the analysis presented here are µf =

√
Q2,

µr =
√

Q2+〈pT 〉2
2 where 〈pT 〉 is the mean transverse momentum in the Breit frame of all jets with

pT > 5GeV.
The weight calculated using the amp(mu2f, mu2r) function can be parameterized as follows:

w = WPS · pdf
(

x

xf
, µf

)
· αn

s (µ2
r) · M (µf , µr) · α2

em

(
Q2
)
· (~c)2 (5)

Here,

w is the event weight with its three components (the total weight is given as the sum of the
three components),

WPS is a (scalar) phase space weight,

pdf
(

x
xf

, µf

)
refers to the value of the parton distribution function for the incoming parton (three

components),

xf is an additional parameter needed to describe fini1 con�gurations (xf = 1 otherwise),

αs is the strong coupling,

n is the number of strong vertices,

M (µf , µr) is the weight from the matrix element (Feynman diagram) without taking into ac-
count the coupling constants.

α2
em

(
Q2
)
is the electromagnetic coupling of the photon to the electron and quark,

(~c)2 = 1 is the factor needed to convert the cross section from GeV−2 to pb.

Of these factors, WPS , α2
em, and (~c)2 = 1 are scale independent. pdf depends on µf . It is

calculated using an external PDF library linked to nlojet++. These calculations can be redone
using another scale independently of nlojet++ if one wants to vary the factorization scale.
αs depends on µr. It is also taken from the external PDF library. M is a special case. For
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born, real, and sub events, it is scale independent. For �ni events, the scale dependence can be
parameterized as

M (µf , µr) = M0 +Mf · log

(
µ2

f

Q2

)
+Mr · log

(
µ2

r

Q2

)
(6)

The scales represent an arbitrary �border� of perturbative QCD. If one could calculate physical
quantities to all orders, they should be independent of any scales. As we can currently only calcu-
late up to next-to-leading order in deep inelastic scattering, there is a residual scale dependence.
This can be used to estimate the theory uncertainty due to missing higher order corrections. The
convention is to vary scales up by a factor of 2 and down by a factor of 0.5 to get the theory
uncertainty. For most of the results presented here, only µr was varied as the dependence of the
cross sections on µf is much weaker.
With the parameterization introduced above, re-calculating the weights for a di�erent value of the
renormalization scale is almost trivial: For most con�gurations, only αs has to be recalculated.
For fini1 con�gurations, the matrix element has to be recalculated according to 6.

4 Setup

4.1 Event Selection and Phase Space

All generated events have 150GeV2 < Q2 < 15000GeV2 and 0.2 < y < 0.7. For inclusive jet and
dijet studies, processes with two outgoing partons on born level were used. For trijet studies,
three outgoing partons on born level were required. The kinematical cuts for the three type of
studies were di�erent.

inclusive jets: For these studies, calculating observables and �lling histograms was done for
each jet separately. All jets were required to have a transverse momentum between 7GeV
and 50GeV in the Breit frame. The pseudorapidity had to satisfy −0.8 < η < 2.5 in the
laboratory frame. Studies using jets with −0.8 < η < 2.0 were also done.

dijets: Here, observables were calculated once per event. Each dijet event has to have at least
two jets with 5GeV < pT < 50GeV and −0.8 < η < 2.5(2.0). To avoid a region where
perturbation theory is unreliable, we also require the invariant mass of the �rst two jets to
be above 16GeV.

Some of the �rst studies were done in a slightly di�erent phase space: The transverse momentum
cuts were between 5GeV < pT < 200GeV for all jets, minimum η was −1.0.

4.2 Jet Algorithms

Three di�erent jet algorithms were studied and compared: Kt[2, 3], anti-Kt[4], and Cambridge-
Aachen[5, 6]. All of these algorithms are longitudinally invariant, infrared and ultraviolet safe.
They each have a parameter R that is analogous to the cone radius of a cone algorithm.
For combining the partons to jets, the pT recombination scheme was used. It produces massless
jets whose transverse momentum is the scalar sum of the transverse momenta of the constituents.
Pseudorapidity η and azimuthal angle φ of the jet are given as the pT -weighted sums of η and φ
of the constituents.
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4.3 Parton Distribution Functions and Strong Coupling Constant

The cteq6-pdf set was used for �nding the parton distribution functions. The running strong
coupling constant was extracted from the PDF.

4.4 Factorization and Renormalization Scale, Theory Uncertainty

For most of the studies presented here, the factorization scale was chosen as µ2
f = Q2. As the

cross section does not depend strongly on µf (c.f. section5), it was not varied to �nd the theory
error.
The choice of the renormalization scale is not as trivial. There are several hard scales (Q2 and
jet pT ) in each event. Several combinations of these scales were tested. The recommended choice
is µ2

r = 0.5 · (p2
T + Q2) for inclusive jets and µ2

r = 0.5 · (〈pT 〉2 + Q2) for dijets and trijets, where
the mean is taken from the �rst two (three) jets that pass all required kinematic cuts.
The theory uncertainty was calculated by raising the value of µr by a factor of 2 and lowering it
by a factor of 0.5.

4.5 Statistical Uncertainties

As only a �nite amount of Monte Carlo events can be produced, there will always be statistical
�uctuations in the weights and resulting uncertainties on the cross sections. However, the goal is
to produce enough events so that the statistical uncertainties are much smaller than the theory
uncertainty that comes from the scale dependence, and can be neglected.

An estimator for the di�erential cross section in each bin is given by dσ = 〈w〉 = 1
N ·

N∑
i=1

wi, where

N is the number of events that were generated and wi is the sum of the weights of the di�erent
con�gurations of event i that contribute to that bin, summed over the three contributions (gluons,
up, down type quarks). (If the bin is not �lled during the ith event, wi = 0.) Its uncertainty is

given by
√

V (w)
N , where the variance is de�ned as V (w) =

〈
w2
〉
−〈w〉2, assuming no correlations

between the events. It would be wrong to use the weight from each con�guration separately as
the con�gurations of a given event are correlated with each other. This is the approach used by
nlojet++.
Most of the results shown here were obtained using 938 samples with two million events each, i.e.
1876000000 events total, not all of which pass the jet cuts. One can see in the plots discussed
further down that the statistical error is small compared to the theory uncertainty due to scale
dependence. However, there are some regions in phase space where the cross section is low and
larger statistics might be necessary.

4.6 Event Generation and Analysis

A given number of trees with NLO events can be generated by calling the script submit.jobs.sh
in the folder /afs/desy.de/user/f/�eish/h1/batchscript. The number of events to be generated
can be set in the script submit.one.nlo.tree.sh. It should be the same number as the one
speci�ed in the user routine! The folder where the results should be copied needs to be made by
hand.
A sample analysis can be found at /afs/desy.de/user/f/fleish/h1/nlotree/NLO_analyse.C.
It analyses a single tree. Histograms are scaled by the inverse of the number of events in the
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tree and by the inverse bin width3. The histograms are than saved to �les. The results from
the di�erent trees than have to be added, e.g. using the script add.all.histos.sh which uses
the program hadd (part of the Root libraries, adds histograms and trees inside Root �les).
The �nal averaging and calculation of the statistical uncertainties is performed using the Root
macro NLOplot.C which will also plot some of the histograms.

5 Results

5.1 Choice of µr

For the studies presented here, the factorization scale was chosen as µ2
f = Q2. As can be seen

in �g. 7 (middle left), which shows the Q2 distribution for inclusive jets, the dependence of the
cross section on µf is small. Thus, when varying the scales to �nd the theory uncertainty, µf

was left constant and only µr was varied.
There are several hard scales in the DIS process: The photon virtuality Q2 and the transverse
energy/momentum of the jets. It makes sense that the renormalization scale should depend on
both of these scales. Several di�erent variants were considered:

• µ2
r = p2

T , where in a multi-jet event each jet would have its own scale and its own weight,

• µ2
r = 〈pT 〉2, the mean transverse momentum of all jets with pT > 5GeV,

• µ2
r = Q2,

• µ2
r = 0.5 · (p2

T + Q2), where in a multi-jet event each jet would have its own scale and its
own weight,

• µ2
r = 0.5 · (p2

T,max + Q2), where pT,max is the largest transverse momentum of the event,
and

• µ2
r = 0.5 · (〈pT 〉2 + Q2), where 〈pT 〉 is the mean transverse momentum of all jets with

pT > 5GeV.

The latter three choices lead to similar cross sections as well as similar scale dependences (cf. 7,
middle right and bottom). For my studies, the fourth variant was used for inclusive jets, the last
one for dijets and (using only the �rst two jets that pass all kinematic cuts when calculating the
mean). It can be seen here that the uncertainty that comes from choosing a di�erent scale µr is
much smaller than the one that comes from varying the numerical value of the scale.
The �rst, third, fourth and last method are compared in �g. 6, which shows the di�erential cross
section dσ

dQ2 for inclusive jets. It can be seen that the fourth and last variants lead to almost the
same cross section and scale dependence. Using µ2

r = Q2 gives a similar shape but a slightly
lower total cross section. µ2

r = p2
T gives a slightly higher total cross section and a non-linear scale

dependence.

3The newerRoot versions have a more comfortable way to do this, by calling Scale(1.0/NEvents, "width").
However, that functionality is bugged in the currently used version 5.22.
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5.2 Comparison of Jet Algorithms

For the inclusive jets and dijet analyses, the same Monte Carlo samples were used (with two
outgoing partons on born level). For these samples, all three jet algorithms �nd exactly the
same jets. Thus, the cross sections do not depend on the jet algorithm used. They do depend
on the value of the R parameter, though.
Three values of the R parameter were compared: R = 0.7, R = 1.0, and R = 1.3. In 8, the
di�erential dijet cross section is shown for the three values of R. One can clearly see that the scale
dependence increases for larger R in most bins, but it increases in the �rst bin (5GeV < pT <
7GeV). A similar thing can be observed in �gs. 9 and 10, which show the double di�erential cross
section dσdijet

dQ2dpT
as a function of fµr := µr

µr,0
for di�erent values of R. For R = 1.0, the dependence

on fµr is stronger in almost all bins. However, in the �rst pT bin (5GeV < pT < 7GeV), the µr

dependence is actually much stronger for R = 0.7. In this region, perturbation theory becomes
unreliable and some of the calculated cross sections are negative. Because of this, one should
not use dijet events with pT < 7GeV, especially not in combination with a jet algorithm with
R = 0.7. For the inclusive cross sections, one can observe a similar behavior (cf. �gs. 11, 12).
Here, R = 0.7 is favored in all bins.

5.3 Pseudorapidity Range

In �g. 13, one can see the pseudorapidity distribution in the laboratory and Breit frames for
inclusive jets. The distribution is similar for the di�erent values of R. The µr dependence
increases strongly with η. To get a smaller overall scale uncertainty, it is advisable to use a
tighter cut on the pseudorapidity, e.g. −0.8 < ηlab < 2.0. In �g. 8, one can see that such a
cut leads to a smaller overall scale dependence. In �gs. 14 and 15, the pT and Q2 distribution
for inclusive jets is shown in bins of ηlab. One can see that the larger scale dependence in the
forward region is not due to the pT or Q2 distribution in this region. Even though jets in the
forward region tend to have larger pT and Q2, the scale dependence increases in almost all bins
in pT and Q2 when going to larger ηlab (for 30GeV < pT < 50GeV and −0.8 < ηlab < −0.5,
there is not enough statistics.). The fµR �scans� (also in �gs. 14 and 15) show that the scale
dependence does in fact increase with ηlab and R.

5.4 Parton Momentum Fraction

The parton momentum fraction xPDF is de�ned as the fraction of the proton momentum that is
carried by the interacting parton in the born con�guration4. The xPDF distribution is important
for PDF �ts. It is shown in �g. 16 for di�erent values of R and ηmax. The scale dependence
is quite large, especially for larger xPDF . For small xPDF , there is a �cross-over�, i.e. the cross
section goes up for larger scales instead of down. That might indicate that perturbation theory
starts breaking down in this region. This behavior seems to be worst for R = 0.7.
Fig. 17 shows the triple di�erential inclusive cross section d3σ

dpT dQ2dxPDF
in bins of pT and Q2

for R = 0.7 and ηmax = 2.0, with the gluon contribution shown separately. Gluon contribution
dominates for small jet pT and small Q2. In the largest Q2 bin (5000GeV2 < Q2 < 15000GeV2),
quark-induced events dominate.

4The parton of the �nix con�guration has a slightly larger momentum than the parton of the associated born
con�guration. For the plots shown here, only the born-level xP DF was used.
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5.5 Performance of the Analysis

C S Events/Tree Size Total Time Time/Event CPU Time Time/Event
0 0 700000 1.8GB 481.28s 0.688ms 455.82s 0.651ms
0 1 600000 1.6GB 504.4s 0.841ms 481.16s 0.802ms
0 99 700000 1.7GB 632.83s 0.904ms 564.85s 0.807ms
1 0 2000000 1.6GB 1458.7s 0.729ms 1386.06s 0.693ms
1 1 2000000 1.6GB 1797.62s 0.899ms 1663.61s 0.832ms
1 99 2000000 1.6GB 1575.74s 0.788ms 1460.1s 0.730ms
0 1 (�at) 700000 1.7GB 534.75s 0.764ms 508.64s 0.727ms
1 1 (�at) 2000000 1.5GB 1589.43s 0.795ms 1527.24s 0.764ms
0 0 (skip) 700000 1.8GB 390.01s 0.557ms 363.25s 0.519ms
1 0 (skip) 2000000 1.6GB 1281.68s 0.641ms 1142.31s 0.571ms
1 99 (skip) 2000000 1.6GB 1329.53s 0.665ms 1195.33s 0.598ms

Table 2: Performance of the analysis on h1mpim11. C stands for compression level, S for split level. Flat
refers to trees �lled with single variables, not objects. Skip refers to analyses where the jet �nding was
skipped for �ni1 and �nix contributions.

One motivation for my work was to eventually be able to use the events written out by nlojet++
for �tting, e.g. to extract the strong coupling constant. To do that, a short analysis that reads
in the trees, recalculated the weights and �lls some histograms should be as fast as possible. The
read speed for Root trees depends on the structure of the tree (split level, basket size) and the
compression used for the �le containing the Root tree. Several combinations of compression level
and split level were tried. Without any compression, a tree (which should not be larger than
about 2GB) can �t about 600000�700000 events (for dijet production), depending on the split
level. The analyses were made for trees/branches generated and �lled with complex objects of
type NLOevent (containing TClonesArrays, TVector3s, doubles and integers as data members)
as well as for a tree that had just integer, doubles and TVector3 branches. The results can be
seen in table 2. The performance seems to be best using unsplit branches with a no compression.
Compressing the �les slightly increases the time by about 6%, but decreases the disk space by
about two thirds. Changing the basket size of the branch or the cache size of the �le in memory
might change these results.
Most of the time is actually spent on jet �nding (including resetting/setting up the jet �nder).
It is possible to make the analysis faster by using the fact that some contributions will have
the same �nal state partons as the born level one. The events con�gurations are produced by
nlojet++ in the order born, �ni1, �nix, real, subtraction terms. The �ni1 contribution and one
of the subtraction terms have exactly the same partons in the �nal state as the born contribution.
The �nix contribution has one additional parton in the z direction which will not in�uence the
output of the jet �nder. The analysis time can be reduced by about 20% by just skipping the
jet �nding for �ni1 and �nix contributions. One might be able to gain some more time by not
recalculating the boost vector for every contribution.

6 Summay and Outlook

I have successfully used the program nlojet++ to calculate NLO jet cross sections in DIS, and I
have developed a method of writing out events from this program, making it possible to change
the renormalization scale later on. I have examined the renormalization scale dependence as a
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measure of the theory uncertainty, and shown that the choice of R = 0.7 for the jet algorithm,
together with the cut 0.8 < ηlab < 2.0, leads to a smaller overall scale dependence than other
choices. However, for R = 0.7, some regions in phase space can not be described as well, e.g. the
dijet cross section for 5GeV < 〈pT 〉 < 7GeV.
The speed of the analysis can and should be optimized further, e.g. by reducing the time spent
on �nding jets.
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A Plots

All of the plots can be found in the folder /afs/desy.de/user/f/�eish/h1/nlotree/plots/. They
are sorted into folders histos_{ηmax}_{R}_{jet-algo}/, where jet-algo=0 means kt-jets. As the
three jet algorithms that were tested give the same results, only this algorithm was used for the
plots. The folder histos_NLO_analyse_Q2/ contains plots produced using µ2

r = Q2, ηmax = 2.5,
and R = 1.0. The folder histos_NLO_analyse_pt2/ contains plots produced using µ2

r = p2
T for

inclusive cross sections and µ2
r = 〈pT 〉2 for dijet cross sections, ηmax = 2.5, and R = 1.0. The

folder histos_NLO_analyse_ptmean/ contains plots produced using µ2
r = 0.5 ·

(
Q2 + 〈pT 〉2

)
for

all cross sections, ηmax = 2.5, and R = 1.0.
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Figure 6: Di�erential inclusive jet cross section dσ
dQ2 for several values of the renormalization scale µr.
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Figure 7: Di�erential inclusive jet cross section dσ
dQ2 for several values of the renormalization and factor-

ization scales.
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Figure 8: Di�erential dijet cross section dσ
d〈pT 〉 for several values of the R parameter (top: R = 0.7, middle:

R = 1.0, bottom: R = 1.3) and ηmax (left: ηmax = 2.5, right: ηmax = 2.0).
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Figure 9: Double di�erential dijet cross section d2σ
dQ2d〈pT 〉 for R = 0.7 and ηmax = 2.5 as a function of

fµr = µr

µr,0
, normalized to the value of the cross section at fµr = 1.
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Figure 10: Double di�erential dijet cross section d2σ
dQ2d〈pT 〉 for R = 1.0 and ηmax = 2.5 as a function of

fµr = µr

µr,0
, normalized to the value of the cross section at fµr = 1.
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Figure 11: Double di�erential inclusive cross section d2σ
dQ2dpT

for R = 0.7 and ηmax = 2.5 as a function of
fµr

= µr

µr,0
, normalized to the value of the cross section at fµr

= 1.
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Figure 14: Double di�erential inclusive cross sections d2σ
dpT dηlab

and d2σ
dQ2dηlab

for R = 0.7 and ηmax = 2.5
as well as the single di�erential cross section dσ

dηlab
as a function of fµr

= µr

µr,0
, total and normalized to

the value of the cross section at fµr
= 1.
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Figure 15: Double di�erential inclusive cross sections d2σ
dpT dηlab

and d2σ
dQ2dηlab

for R = 1.0 and ηmax = 2.5
as well as the single di�erential cross section dσ

dηlab
as a function of fµr

= µr

µr,0
, total and normalized to

the value of the cross section at fµr
= 1.
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Figure 16: Di�erential dijet cross section dσ
dxP DF

for several values of the R parameter (top: R = 0.7,
middle: R = 1.0, bottom: R = 1.3) and ηmax (left: ηmax = 2.5, right: ηmax = 2.0).

25



P
D

F
bo

rn
x

-2
10

-1
10

1

024681012

<1
1

T
<2

00
,  

 7
<p

2
15

0<
Q

gl
uo

n-
in

du
ce

d

to
ta

l

<1
1

T
<2

00
,  

 7
<p

2
15

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1

0123456

<1
1

T
<2

70
,  

 7
<p

2
20

0<
Q

<1
1

T
<2

70
,  

 7
<p

2
20

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1

0

0.
51

1.
52

2.
53

<1
1

T
<4

00
,  

 7
<p

2
27

0<
Q

<1
1

T
<4

00
,  

 7
<p

2
27

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1

0

0.
2

0.
4

0.
6

0.
8

<1
1

T
<7

00
,  

 7
<p

2
40

0<
Q

<1
1

T
<7

00
,  

 7
<p

2
40

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

5

0.
01

0.
01

5

0.
02

0.
02

5

0.
03

<1
1

T
<5

00
0,

   
7<

p
2

70
0<

Q
<1

1
T

<5
00

0,
   

7<
p

2
70

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
180.

2

0.
22

0.
24

-3
10×

<1
1

T
<1

50
00

,  
 7

<p
2

50
00

<Q
<1

1
T

<1
50

00
,  

 7
<p

2
50

00
<Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
2

0.
4

0.
6

0.
81

1.
2

1.
4

1.
6

<1
8

T
<2

00
,  

 1
1<

p
2

15
0<

Q
<1

8
T

<2
00

,  
 1

1<
p

2
15

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
2

0.
4

0.
6

0.
81

<1
8

T
<2

70
,  

 1
1<

p
2

20
0<

Q
<1

8
T

<2
70

,  
 1

1<
p

2
20

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
1

0.
2

0.
3

0.
4

0.
5

<1
8

T
<4

00
,  

 1
1<

p
2

27
0<

Q
<1

8
T

<4
00

,  
 1

1<
p

2
27

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
02

0.
04

0.
06

0.
080.

1

0.
12

0.
14

0.
16

0.
180.

2

<1
8

T
<7

00
,  

 1
1<

p
2

40
0<

Q
<1

8
T

<7
00

,  
 1

1<
p

2
40

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

1

0.
00

2

0.
00

3

0.
00

4

0.
00

5

0.
00

6

0.
00

7

0.
00

8

0.
00

9

<1
8

T
<5

00
0,

   
11

<p
2

70
0<

Q
<1

8
T

<5
00

0,
   

11
<p

2
70

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
02

0.
04

0.
06

0.
080.

1
-3

10×
<1

8
T

<1
50

00
,  

 1
1<

p
2

50
00

<Q
<1

8
T

<1
50

00
,  

 1
1<

p
2

50
00

<Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
02

0.
04

0.
06

0.
080.

1

<3
0

T
<2

00
,  

 1
8<

p
2

15
0<

Q
<3

0
T

<2
00

,  
 1

8<
p

2
15

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
01

0.
02

0.
03

0.
04

0.
05

0.
06

0.
07

<3
0

T
<2

70
,  

 1
8<

p
2

20
0<

Q
<3

0
T

<2
70

,  
 1

8<
p

2
20

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

5

0.
01

0.
01

5

0.
02

0.
02

5

0.
03

0.
03

5

0.
04

0.
04

5

<3
0

T
<4

00
,  

 1
8<

p
2

27
0<

Q
<3

0
T

<4
00

,  
 1

8<
p

2
27

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

2

0.
00

4

0.
00

6

0.
00

8

0.
01

0.
01

2

0.
01

4

0.
01

6

0.
01

8

0.
02

<3
0

T
<7

00
,  

 1
8<

p
2

40
0<

Q
<3

0
T

<7
00

,  
 1

8<
p

2
40

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

02

0.
00

04

0.
00

06

0.
00

08

0.
00

1

0.
00

12

0.
00

14

0.
00

16

<3
0

T
<5

00
0,

   
18

<p
2

70
0<

Q
<3

0
T

<5
00

0,
   

18
<p

2
70

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0510152025

-6
10×

<3
0

T
<1

50
00

,  
 1

8<
p

2
50

00
<Q

<3
0

T
<1

50
00

,  
 1

8<
p

2
50

00
<Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

05

0.
00

1

0.
00

15

0.
00

2

0.
00

25

0.
00

3

0.
00

35

0.
00

4

<5
0

T
<2

00
,  

 3
0<

p
2

15
0<

Q
<5

0
T

<2
00

,  
 3

0<
p

2
15

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

05

0.
00

1

0.
00

15

0.
00

2

0.
00

25

<5
0

T
<2

70
,  

 3
0<

p
2

20
0<

Q
<5

0
T

<2
70

,  
 3

0<
p

2
20

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

02

0.
00

04

0.
00

06

0.
00

08

0.
00

1

0.
00

12

0.
00

14

0.
00

16

0.
00

18

<5
0

T
<4

00
,  

 3
0<

p
2

27
0<

Q
<5

0
T

<4
00

,  
 3

0<
p

2
27

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
00

02

0.
00

04

0.
00

06

0.
00

08

0.
00

1

<5
0

T
<7

00
,  

 3
0<

p
2

40
0<

Q
<5

0
T

<7
00

,  
 3

0<
p

2
40

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
02

0.
04

0.
06

0.
080.

1

-3
10×

<5
0

T
<5

00
0,

   
30

<p
2

70
0<

Q
<5

0
T

<5
00

0,
   

30
<p

2
70

0<
Q

P
D

F
bo

rn
x

-2
10

-1
10

1
0

0.
51

1.
52

2.
53

3.
54

-6
10×

<5
0

T
<1

50
00

,  
 3

0<
p

2
50

00
<Q

<5
0

T
<1

50
00

,  
 3

0<
p

2
50

00
<Q

]3
 [p

b/
G

eV
P

D
F

,b
or

n
dx T

dp2
/d

Q
in

cl
je

t
σ3 d

Figure 17: Triple di�erential inclusive cross section d3σ
dpT dQ2dxP DF

in bins of pT and Q2 for R = 0.7 and
ηmax = 2.0.
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