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Abstract

This report gives a summary of the work I did during the summer student programme
2009 and a subsequent three-week stay at DESY. I worked with the MPI Munich group of
the H1 collaboration, my supervisors were Dr. G. Grindhammer and R. Kogler.

I examined jet cross sections in proton-electron collisions in next-to-leading order, with
emphasis on scale dependence and the resulting uncertainties. I developed a method to of
writing out information about events generated using the program nlojet++, and analyzed
events that were obtained this way.
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1 Introduction

1.1 Experimental Setup

The HERA collider at DESY was operational from 1991 to 2007. It accelerated electrons!
and protons, which were then used for four experiments. Two of them, H1 and Zeus, recorded
collisions between both beams. The scattered electrons as well as the scattered proton (for elastic
processes) or the hadronic final state (for inelastic processes) were observed, their energies and
momenta were measured. These measurements can be used for a variety of physics goals, e.g. to
probe the structure of the proton and for precision measurements of the strong coupling as.

1.2 DIS Process and Kinematics

Figure 1: Leading Order Feynman Graph of Deep Inelastic Scattering

In electron-proton-scattering, the electron interacts with the proton by emitting a vector boson.
This can be a photon or Z boson (neutral current interactions), or it can be a W boson (charged
current interactions), in which case the electron turns into a neutrino. Because of the mass of
the weak bosons, W and Z exchange are suppressed at low momentum transfers. In my studies,
only neutral current processes were considered.

In this report, P, p., and p, will stand for the 4-momentum of the beam proton, the beam
electron, and the scattered electron, respectively. p; will denote the 4-momentum of the i-th jet
in the final state, ordered by pr. Other important kinematic quantities can be found in table 1.
Observed events can be categorized according to the hadronic final state. In elastic processes,
W = Mp, i.e. the proton does not break up. In inelastic processes, the proton breaks up. If
the scale is hard enough (e.g. Q? > 4GeV?), one talks about deep inelastic scattering (DIS). It
can be described as the photon interacting with one parton inside the proton. The dominant
Feynman diagram for this process can be seen in 1. The proton remnant disappears into the
beam pipe, the scattered quark makes a jet which can be observed in the detector.

1.3 Multijet Production

The process shown in fig. 1 does not contain an explicit strong vertex (all strong processes have
been “absorbed” into the proton). To measure ag, one therefore has to use events with more

'In the context of this report, “electron” will refer to both electrons and positrons.



’ ‘ formula ‘ meaning
(P + pe)? available energy in the center-of-mass system
q Pl — Pe momentum transfer between electron and proton
Q> —q? virtuality
x % Bjorken scaling variable
Y % inelasticity

2
<Z p¢> mass of the hadronic final state

Mo (p1 + p2)® | mass of the first two jets (in dijet events)

S

2
13 x- <1 + %) incoming parton’s momentum fraction (LO)

Table 1: Kinematic variables in the DIS process

Figure 2: Boson-gluon  Figure 3: QCD Com-  Figure 4: Real NLO  Figure 5: Virtual NLO
fusion process pton process contribution contribution

than one jet. The dominant Feynman diagrams for dijet production in DIS can be seen in fig. 3
and 2. They are referred to as QCD compton process and boson-gluon fusion.

1.4 Cross Section Definitions

There are two different ways of defining jet cross sections. For inclusive jet cross sections, one
counts jets that have certain criteria, independent of the properties of other jets in the event.
For the so-called dijet (trijet) cross sections, one counts events with at least two (three) jets with
certain criteria.

To get rid of QPM processes (cf. fig. 1), but not dijet events where one jet was not fully re-
constructed, jet finding and analysis is often performed in the Breit frame. It is defined as the
frame of reference where ¢+ 2-x- P = 0 and the scattered electron has ¢ = 0. In this frame, the
outgoing parton in fig. 1 has ppr = 0. Partons can only have py > 0 if there is more than one
outgoing parton. Cutting on jet pr in the Breit frame can therefore be used to identify multijet
events.

Differential cross sections can be defined approximately by counting events in certain bins. Mak-
ing the bin size infinitesimally small would give the differential cross section. Because of finite
statistics and detector resolution, finite bin sizes are usually used.



2 Cross Section Calculations

The cross section of a given process can be calculated by evaluating the relevant Feynman dia-
grams. Processes with quarks are generally difficult to calculate as quarks only propagate freely
at very high energies/short distances. They can only be observed in (colorless) bound states, the
hadrons. The processes inside hadrons can not be calculated peturbatively, Feynman calculus
can not be used. Typically, one divides the process into a “hard” (perturbatively calculable)
and a “soft” (non-perturbative) part. The nonperturbative part can often be parameterized by
a function that can be determined from other measurements.

In the case of DIS, the “hard” process (e.g. eg — eqq) can be calculated perturbatively. The
result has to be folded with the PDF, which describes the momentum distribution inside the
proton. One can then choose to simulate parton showers, where the outgoing partons radiate
soft /collinear gluons perturbatively, and hadronisation, which relies on non-perturbative models.
In the studies described here, neither parton showers nor hadronisation were taken into account.
One can now write a DIS cross section in the form

m=1 a

00 1
=3 [ uted) [ A @h) MU Erph), O
0

summing over the number m of partons in the final state as well as a generalized “flavor” a, which
describes the kind of parton (gluon, up- or down-type quark). {p},, is the set of the momenta
of the m particles in the final state, d['(™ the phase space for m (massless) particles. f, is the
parton distribution function, M the matrix element of the hard subprocess (which in itself is a
perturbation series in «y), and F)y the jet function.

The factorization or separation into soft and hard subprocesses introduces an arbitrary scale
py that divides the perturbative and non-perturbative regions. Because py is not a physical
parameter but a byproduct of the assumptions we make in the non-perturbative regions, the
physical cross section can not depend on py. In finite-order calculations, the dependence on py
can therefore be taken as a measure of the theory uncertainty of a given observable.

2.1 NLO Calculations

Let us now consider cross sections with n jets in the final state. m now runs from n to oo.
The perturbative parts of eq. 1, i.e. M({p,a}m), can be approximated by a power series in as.
Each term can be visualized in the form of a Feynman diagram. Strong vertices in the Feynman
diagrams correspond to factors a, in the cross section: For example, the cross sections for the
processes described by the diagrams in fig. 3 and 2 are both proportional to as. They are the
leading order (also called born level) diagrams for dijet production. Diagrams of higher order in
as contribute too to the observed cross section. Because of the relatively large value of «y, it
is very important not to neglect higher-order contributions in QCD processes. However, due to
the limits of current algorithms, only next-to-leading order calculations can be performed, i.e.
all terms of order a”*! and larger (for n-jet production) are neglected because they can not be
calculated at present time.

Considering only processes with n jets and taking only terms proportional to a?~! and a7
into account, the sum in eq. 1 now runs from m = n to n + 1. The matrix elements can be
approximated as

MU, a}a)® = | MO, ad) + 25 M ({poaka) | % [MOP 02 (M0 MY (2)
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and )
IM{p, atni1)* = |M%+1’ x ol (3)

The first summand of the first term is the leading order matrix element and corresponds to the
cross section on born level, o®. The second summand of the first term corresponds to wirtual
corrections due to interference of loop- or box-diagrams and born level diagrams (cf. fig. 5). The
second term corresponds to so-called real corrections with an additional parton in the final state
(cf. fig 4). Additional Feynman diagrams (e.g. the virtual corrections to M9L+1) are neglected
because they are of order a?*! or higher. Thus we can write the next-to leading order cross

section as
O_NLO — O_B(orn) + O_V(irtual) + O_R(eal)’ (4)

where the three terms can be calculated from the three terms mentioned above by performing
the phase space integral and summing over flavors etc. as needed. Trying to calculate each
term separately, one finds that ¢" and ¢’ are divergent. However, in the sum, the observed
divergences cancel.

It should be mentioned that both the leading order and the o2 loop diagrams also introduce
divergences. These can be removed by requiring a physical (measurable) region in phase space
(extremely collinear or soft jets cannot be resolved) or a redefinition of physical quantities (masses
and coupling constants). This leads to the running of the coupling constants and introduces a
second scale, the renormalization scale .

The two separate divergences that only cancel when the different contribtutions are summed
up pose difficulties for computer-based calculations. Numerically, one can not calculate infinite
integrals with a finite difference. One therefore has to cancel the divergences before evaluating
the integrals. The phase-space slicing method solves the divergences by separating out the
divergent regions of the phase space. The non-divergent regions can be integrated over without
problems. In the regions close to the poles, one can approximate the integrands so that the two
contributions cancel without performing the integrations. Problems with this method are that
is is process dependent and introduces another arbitrary scale, the cutoff parameter in the phase
space slicing.

The subtraction method is more general. It relies on adding a counter term to the virtual
integral and subtracting the same term from the real contribution. This has to be done before
performing the integral. The counter terms contain the divergences, so that the integration can
now be performed safely. The difficulty lies in calculating the counter terms do?.

2.2 Monte Carlo Integration

Rather than integrating (analytically) over the whole phase space, Monte Carlo event generators
use a (pseudo-) random number generator to generate possible phase space configurations/events.
These are then weighted according to the phase space/matrix element of the pertinent Feynman
graphs. Adding up all weights and dividing by the number of generated events gives the total
cross section. Most programs use importance sampling, i.e. generate more events in regions
where the integrals diverge.

3 The Program nlojet++

nlojet++[1] by Zoltan Nagy is a program which calculates jet cross sections in next-to-leading
order using the Monte Carlo technique. It contains NLO matrix elements for several processes.
For the studies presented here, deep inelastic scattering events (with two or three partons in final



state in leading order) were studied. A user routine was set up that is able to save information
about the generated events in the form of a ROOT tree. This tree can than be read back in and
studied further, e.g. with different jet algorithms, cuts, ...

3.1 Some Remarks on Nomenclature

In NLO calculations like the ones performed by nlojet++, one needs to be careful with the
definition of the word event. For each event with a fixed phase space (fixed x, @?), nlojet++
generates several configurations, corresponding to the different Feynman graphs that contribute
(e.g. leading order terms, interference terms etc.). Each configuration consists of several particles:
Incoming and outgoing lepton, incoming parton and two to four outgoing partons, each described
by its momentum. Fach configuration has three contributions, on from gluons, one from up-
type and one from down-type quarks.

Each configuration has a type. The possible types are born, real, sub, and fini. The latter can
be further split into finix and finil. born refers to leading order terms (i.e. QCD-Compton
or boson-gluon fusion processes for dijet production), real to NLO terms with one additional
parton in the final state. sub refers to dipole (subtraction) terms, fini to finite remainders
of the interference terms after the divergences have been subtracted. For each phase space
configuration, exactly one configuration of type born, real, finil and finix is generated as
well as several subtraction terms.

3.2 Usage

To generate events or calculate cross sections, the user has to provide a wuser rou-
tine. This needs to be compiled using libtool so it can be dynamically linked
from the main program. A sample makefile can be found in the folder /af-

s/desy.de/user/f/fleish/h1/nlojet/eptojets. The program can then be started with
nlojet++ --calculate -c full -n mame -u user-routine.la [--max-event
number] [--save-after number] [-s seed] [-d outputdir].

The option --calculate tells the program to start the event generation routines. With -c
option one can choose between only LO contributions (born), only NLO contributions (nlo)
or both (full). mame is a name associated with the output file. This is enables one to run
nlojet++ simultaneously with different options/user routines. The last four options are op-
tional. --max-event number sets the number of events to be generated. If no such number is
given, the program runs until it is terminated from the outside. --save-after number sets the
number of events that are kept in memory before they are written to file. The default value is
10000. -s seed sets a seed for the random number generator. If no argument is given, the seed
is calculated from the system time. outputdir is the name of the directory where the output files
will be saved (default: ./output).

The output is saved as a binary file?. It contains information about the number of generated
events as well as any histograms specified in the user routine. The filename consists the name
that was given earlier as well as some information about the generated process. A sample file-
name would be ./output/name-dis-full-2jet.

If one wants to access the information in the histograms, one needs to call
nlojet++ --add -u user-routine.la [-d ¢nputdir] [-r outputdir] namel
[name2 ...].

20ne can switch to output in text format by using the option --txt. Version 4.0.1 of nlojet++ has a bug, it
needs a dummy argument after --txt, e.g. --txt x.



This adds the results from the earlier runs and normalizes them. Statistical errors are also cal-
culated.

wputdir and outputdir refer to the directory where the binary files can be found resp. where
the results should be placed (Defaults: ./output resp. ./result). namel, name2 etc. refer to
the names specified during generation, not to the full filename! The corresponding files should
have been generated using the same user routine. The result file is placed in the outputdir
directory. The filename is always result-0, the path depends on the simulated process, e.g.
./outputdir/dis/2-jet/full /result-0. This file contains information about the filled histograms (ti-
tles, bin limits, values and their errors) in text format. It can be read in and parsed to produce
a graphic output.

3.3 The User Routine

The user class should inherit from one of the existing base classes. A valid user routine needs
to contain at least two functions, initfunc() and userfunc(). The first one is called once
at the beginning of the calculations. It can be used to initialize global variables and to book
histograms. The user function is called once for each event. It can be used to fill histograms or
write information to file.

The functions inputfunc() and psinput () can be used to set the number of partons in the final
state or the available phase space (beam energies or cuts in z, Q2 ...).

3.4 Writing out Events

In its original form, the output of nlojet++ consists of the histograms that were filled in the user
function. If one fills the histograms with weights calculated by nlojet++, they correspond to
(differential) cross sections. However, the physical cross sections depend on the jet algorithm that
was used, and of course on the cuts that were made. To be able to use different jet algorithms
and cuts, it is therefore desirable to save information about each event that can be used to
reconstruct the cross sections afterwards. As all the particles and jets are considered massless,
we chose to write out the following information about each event:

1. The momentum of the outgoing electron

2. The momentum of the incoming parton

3. The momenta of the outgoing partons

4. The values of z and Q>

5. The values of the scales py and p, that were used to calculate the event weight
6. The event weight calculated by nlojet++

7. The value of o used to calculate the event weight

8. The type of event (born, real, ...)

9. The order of ay

10. The values of the PDF for the three contributions (gluon, up- and down-type quarks) used
to calculate the weight



11. For events of type finix and finil: Two/three weights needed for the scale independent
decomposition of the matrix element

12. For finix events: The value of the _M_fini.x-variable (needed to re-calculate the PDF
for this type of event).

To be able to manipulate the weights with their three contributions comfortably and indepen-
dently of the nlojet++ libraries, the class NLOweight was created. Events are saved as objects
of the NLOevent class. Some general information (e.g. beam momenta) is saved only once per
file as it does not change on an event-to-event basis.

To make sure that no information is lost/that the write-out procedure worked, some simple his-
tograms were filled during the write-out run and compared to histograms filled using events read
in from the file.

The user routines set up to write out events (write.cc and write_flat.cc) can be found in the

folder /afs/desy.de/user/f/fleish/h1/nlojet/eptojets.

3.5 Changes Made to the nlojet++ Source Code

To be able to use ROOT classes as well as my own classes for NLO weights, the com-
pilation/linking routine had to be changed. A sample Makefile can be found in the ap-
pendix. The necessary routine my-create-nlojet-user can be found in the folder /af-
s/desy.de/user/f/fleish/h1/nlojet/eptojets as well as the appendix. One also needs to set the
library path, e.g. via executing set_lib_path.sh in the same folder.

The source files for the classes NLOevent and NLOweight can be found in the folder /af-
s/desy.de/user/f/fleish/h1/nlotree. The main routines of nlojet++ are main.cc, main_calc.cc,
and main_add.cc in the folder nlojet++-4.0.1/src. main.cc parses the first command
line argument and then calls either the adding or the calculating routine. main_calc.cc
or main_add.cc then parse the rest of the arguments, load the requested user routines and
start the calculation/addition of histograms. In the main.cc routine, no changes were made.
In the main_calc.cc and main_add.cc routines, a small change was necessary: For some
reason, loading the custom-made user routine (including the root libraries) breaks the pars-
ing of the command line arguments. This causes the main routine to start parsing again
from the beginning and calling the calc/add routine again. It can be fixed by placing
optind = argc; somewhere after handle = 1t_dlopen(user);. Two smaller changes were
also made to main_calc.cc: The line {"txt", required_argument, 0, O } was changed to
{"txt", no_argument, O, O } to reflect the fact that the option --txt does, in fact, not
require an argument. The line <<"Random Seed Value : "<<seed<<"\n" was added after
<<"Time rate In+1:In : "<<in.time<<":1\\n" to make reproducing results easier.

The actual cross section calculations are controlled by the routines nlo-integral_i1f0.h and
nlo-process_i1f0.h in the folder nlojet++-4.0.1/nlo-core/bits/ (copies of these files are
placed in the include directory when compiling them). The function calculate(unsigned long
int mxne, unsigned int time_rate_rf) (in nlo-integral_ilf0.h), sets up the phase space,
calls the initfunc(), and contains the event generation loop. In this loop, events are gener-
ated, the amplitude calculations for the different contributions are set up and the user function
is called once for every contribution. At the end of the loop, the function end_of_event() is
called which increments the histograms as well as the event counter that determines when the
histograms are being written to file. However, in the original version, the end_of_event () func-
tion was also called after a “numeric_error” or a “fp_exception” was caught (without the user
function being called before). This led the counter controlling the histograms to differ from the
one controlling the event generation loop, which caused problems when determining when to



close the file with the ROOT tree. Because of that, I took out the calls to the end_of_event ()
function after catching the errors.

Inside the nlo-process_i1f0.h routine, the weights of the different configurations and contri-
butions are calculated. Because we need access to some previously private data members (e.g.
the scale independent decompositions of the matrix element), I removed the “private:”
190.

The jet finding and recombining of partons to jets was performed inside the user function us-
ing the routine described in hiljet.cc. It implements a simple kr algorithm with an pr re-
combination scheme. There was a bug that caused the recombination routine to give back
jets with a wrong azimuthal angle ¢ in the Breit frame, leading to a wrong jet pseudorapid-
ity in the laboratory frame. The fixed recombination routine can be found in the folder /af-

s/desy.de/user/f/fleish/h1/nlojet/eptojets.

in line

3.6 Scale Dependence of the Weights

For the cross section calculation, one needs to specify the values of the renormalization and
factorization scale. The nominal values used for the analysis presented here are py = /Q2,

2
My =1/ M where (pr) is the mean transverse momentum in the Breit frame of all jets with
pr > 5 GeV.
The weight calculated using the amp (mu2f, mu2r) function can be parameterized as follows:

= Ws paf (Zp) a2 M (g - 0 (@) - (e 6
Here,

w is the event weight with its three components (the total weight is given as the sum of the
three components),

Wps is a (scalar) phase space weight,

pdf (%, I f> refers to the value of the parton distribution function for the incoming parton (three

components),
xy is an additional parameter needed to describe finil configurations (z; = 1 otherwise),
a is the strong coupling,
n is the number of strong vertices,

M (pg, pr) is the weight from the matrix element (Feynman diagram) without taking into ac-
count the coupling constants.

a?, (QQ) is the electromagnetic coupling of the photon to the electron and quark,

(hc)2 =1 is the factor needed to convert the cross section from GeV~2 to pb.

Of these factors, Wpg, a2, and (hc)®> = 1 are scale independent. pdf depends on pyp. It is
calculated using an external PDF library linked to nlojet++. These calculations can be redone
using another scale independently of nlojet++ if one wants to vary the factorization scale.

as depends on pu,. It is also taken from the external PDF library. M is a special case. For



born, real, and sub events, it is scale independent. For fini events, the scale dependence can be
parameterized as

2 2

M(:uf’,ur) :M0+Mf’10g (gé) + M, - log <g§> (6)
The scales represent an arbitrary “border” of perturbative QCD. If one could calculate physical
quantities to all orders, they should be independent of any scales. As we can currently only calcu-
late up to next-to-leading order in deep inelastic scattering, there is a residual scale dependence.
This can be used to estimate the theory uncertainty due to missing higher order corrections. The
convention is to vary scales up by a factor of 2 and down by a factor of 0.5 to get the theory
uncertainty. For most of the results presented here, only u, was varied as the dependence of the
cross sections on gy is much weaker.
With the parameterization introduced above, re-calculating the weights for a different value of the
renormalization scale is almost trivial: For most configurations, only «; has to be recalculated.
For finil configurations, the matrix element has to be recalculated according to 6.

4 Setup

4.1 Event Selection and Phase Space

All generated events have 150 GeV? < Q% < 15000 GeV? and 0.2 < y < 0.7. For inclusive jet and
dijet studies, processes with two outgoing partons on born level were used. For trijet studies,
three outgoing partons on born level were required. The kinematical cuts for the three type of
studies were different.

inclusive jets: For these studies, calculating observables and filling histograms was done for
each jet separately. All jets were required to have a transverse momentum between 7 GeV
and 50 GeV in the Breit frame. The pseudorapidity had to satisfy —0.8 < n < 2.5 in the
laboratory frame. Studies using jets with —0.8 < 1 < 2.0 were also done.

dijets: Here, observables were calculated once per event. Each dijet event has to have at least
two jets with 5GeV < pr < 50GeV and —0.8 < 1 < 2.5(2.0). To avoid a region where
perturbation theory is unreliable, we also require the invariant mass of the first two jets to
be above 16 GeV.

Some of the first studies were done in a slightly different phase space: The transverse momentum
cuts were between 5 GeV < pp < 200 GeV for all jets, minimum 7 was —1.0.

4.2 Jet Algorithms

Three different jet algorithms were studied and compared: Kt[2, 3], anti-Kt[4], and Cambridge-
Aachen[5, 6]. All of these algorithms are longitudinally invariant, infrared and ultraviolet safe.
They each have a parameter R that is analogous to the cone radius of a cone algorithm.

For combining the partons to jets, the ppr recombination scheme was used. It produces massless
jets whose transverse momentum is the scalar sum of the transverse momenta of the constituents.
Pseudorapidity n and azimuthal angle ¢ of the jet are given as the pp-weighted sums of 1 and ¢
of the constituents.



4.3 Parton Distribution Functions and Strong Coupling Constant

The cteq6-pdf set was used for finding the parton distribution functions. The running strong
coupling constant was extracted from the PDF.

4.4 Factorization and Renormalization Scale, Theory Uncertainty

For most of the studies presented here, the factorization scale was chosen as ,u} = (2. As the
cross section does not depend strongly on iy (c.f. section5), it was not varied to find the theory
error.

The choice of the renormalization scale is not as trivial. There are several hard scales (Q? and
jet pr) in each event. Several combinations of these scales were tested. The recommended choice
is p2 = 0.5 - (p3 + Q?) for inclusive jets and p2 = 0.5 - ({(pr)* + Q?) for dijets and trijets, where
the mean is taken from the first two (three) jets that pass all required kinematic cuts.

The theory uncertainty was calculated by raising the value of u, by a factor of 2 and lowering it
by a factor of 0.5.

4.5 Statistical Uncertainties

As only a finite amount of Monte Carlo events can be produced, there will always be statistical
fluctuations in the weights and resulting uncertainties on the cross sections. However, the goal is
to produce enough events so that the statistical uncertainties are much smaller than the theory
uncertainty that comes from the scale dependence, and can be neglected.

An estimator for the differential cross section in each bin is given by do = (w) = Z wj, where

N is the number of events that were generated and wj; is the sum of the welghts of the different

configurations of event i that contribute to that bin, summed over the three contributions (gluons,

up, down type quarks). (If the bin is not filled during the ith event, wi = 0.) Its uncertainty is
( )

given by 4/ —=~, where the variance is defined as V' (w <w2> , assuming no correlations
between the events. It would be wrong to use the Welght from each conﬁguratlon separately as
the configurations of a given event are correlated with each other. This is the approach used by
nlojet++.

Most of the results shown here were obtained using 938 samples with two million events each, i.e.
1876000000 events total, not all of which pass the jet cuts. One can see in the plots discussed
further down that the statistical error is small compared to the theory uncertainty due to scale
dependence. However, there are some regions in phase space where the cross section is low and
larger statistics might be necessary.

4.6 Event Generation and Analysis

A given number of trees with NLO events can be generated by calling the script submit. jobs.sh
in the folder /afs/desy.de/user/f/fleish/h1/batchscript. The number of events to be generated
can be set in the script submit.one.nlo.tree.sh. It should be the same number as the one
specified in the user routine! The folder where the results should be copied needs to be made by
hand.

A sample analysis can be found at /afs/desy.de/user/f/fleish/h1/nlotree/NLO_analyse.C.
It analyses a single tree. Histograms are scaled by the inverse of the number of events in the

10



tree and by the inverse bin width?. The histograms are than saved to files. The results from
the different trees than have to be added, e.g. using the script add.all.histos.sh which uses
the program hadd (part of the ROOT libraries, adds histograms and trees inside ROOT files).
The final averaging and calculation of the statistical uncertainties is performed using the RooT
macro NLOplot.C which will also plot some of the histograms.

5 Results

5.1 Choice of u,

For the studies presented here, the factorization scale was chosen as ,uff = (?. As can be seen
in fig. 7 (middle left), which shows the Q? distribution for inclusive jets, the dependence of the
cross section on gy is small. Thus, when varying the scales to find the theory uncertainty, pr
was left constant and only u, was varied.

There are several hard scales in the DIS process: The photon virtuality @2 and the transverse
energy/momentum of the jets. It makes sense that the renormalization scale should depend on
both of these scales. Several different variants were considered:

oy’ = p2T, where in a multi-jet event each jet would have its own scale and its own weight,

o u2= (pT)Q, the mean transverse momentum of all jets with pr > 5 GeV,
o ui=Q%

e 112 =05 (p2 + @Q?), where in a multi-jet event each jet would have its own scale and its
own weight,

e u2=105- (pZTymax + @Q?), where PT,maz 15 the largest transverse momentum of the event,
and

e 12 =05 ((pr)* + Q2), where (pr) is the mean transverse momentum of all jets with
pr > 5 GeV.

The latter three choices lead to similar cross sections as well as similar scale dependences (cf. 7,
middle right and bottom). For my studies, the fourth variant was used for inclusive jets, the last
one for dijets and (using only the first two jets that pass all kinematic cuts when calculating the
mean). It can be seen here that the uncertainty that comes from choosing a different scale p,. is
much smaller than the one that comes from varying the numerical value of the scale.

The first, third, fourth and last method are compared in fig. 6, which shows the differential cross
ddé’Q for inclusive jets. It can be seen that the fourth and last variants lead to almost the
same cross section and scale dependence. Using pu? = Q? gives a similar shape but a slightly
lower total cross section. u? = p2. gives a slightly higher total cross section and a non-linear scale
dependence.

section

3The newer ROOT versions have a more comfortable way to do this, by calling Scale (1.0/NEvents, "width").
However, that functionality is bugged in the currently used version 5.22.
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5.2 Comparison of Jet Algorithms

For the inclusive jets and dijet analyses, the same Monte Carlo samples were used (with two
outgoing partons on born level). For these samples, all three jet algorithms find exactly the
same jets. Thus, the cross sections do not depend on the jet algorithm used. They do depend
on the value of the R parameter, though.

Three values of the R parameter were compared: R = 0.7, R = 1.0, and R = 1.3. In 8, the
differential dijet cross section is shown for the three values of R. One can clearly see that the scale
dependence increases for larger R in most bins, but it increases in the first bin (5GeV < pr <
7GeV). A similar thing can be observed in figs. 9 and 10, which show the double differential cross
51533;; as a function of f,, = #“:O for different values of R. For R = 1.0, the dependence
on f,, is stronger in almost all bins. However, in the first pr bin (5 GeV < pr < 7GeV), the u,
dependence is actually much stronger for R = 0.7. In this region, perturbation theory becomes
unreliable and some of the calculated cross sections are negative. Because of this, one should
not use dijet events with pr < 7GeV, especially not in combination with a jet algorithm with
R = 0.7. For the inclusive cross sections, one can observe a similar behavior (cf. figs. 11, 12).
Here, R = 0.7 is favored in all bins.

section

5.3 Pseudorapidity Range

In fig. 13, one can see the pseudorapidity distribution in the laboratory and Breit frames for
inclusive jets. The distribution is similar for the different values of R. The pu, dependence
increases strongly with 7. To get a smaller overall scale uncertainty, it is advisable to use a
tighter cut on the pseudorapidity, e.g. —0.8 < mp < 2.0. In fig. 8, one can see that such a
cut leads to a smaller overall scale dependence. In figs. 14 and 15, the py and Q? distribution
for inclusive jets is shown in bins of 7,,,. One can see that the larger scale dependence in the
forward region is not due to the pp or Q? distribution in this region. Even though jets in the
forward region tend to have larger pr and Q?, the scale dependence increases in almost all bins
in pr and Q? when going to larger n;4 (for 30 GeV < pr < 50GeV and —0.8 < g < —0.5,
there is not enough statistics.). The f,, “scans” (also in figs. 14 and 15) show that the scale
dependence does in fact increase with 74, and R.

5.4 Parton Momentum Fraction

The parton momentum fraction zppp is defined as the fraction of the proton momentum that is
carried by the interacting parton in the born configuration®. The xppp distribution is important
for PDF fits. It is shown in fig. 16 for different values of R and 7,4,. The scale dependence
is quite large, especially for larger xpppr. For small xppr, there is a “cross-over”, i.e. the cross
section goes up for larger scales instead of down. That might indicate that perturbation theory
starts breaking down in this region. This behavior seems to be worst for R = 0.7.

Fig. 17 shows the triple differential inclusive cross section dpﬂi;;% in bins of pr and @Q?
for R = 0.7 and pq, = 2.0, with the gluon contribution shown separately. Gluon contribution
dominates for small jet py and small Q2. In the largest Q% bin (5000 GeV? < Q2 < 15000 GeV?),

quark-induced events dominate.

“The parton of the finiz configuration has a slightly larger momentum than the parton of the associated born
configuration. For the plots shown here, only the born-level zp DF was used.
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5.5 Performance of the Analysis

| C] S | Events/Tree |  Size | Total Time | Time/Event | CPU Time | Time/Event |
0 0 700000 | 1.8GB 481.28s 0.688ms 455.82s 0.651ms
0 1 600000 | 1.6 GB 504.4s 0.841ms 481.16s 0.802ms
0 99 700000 | 1.7GB 632.83s 0.904ms 564.85s 0.807ms
1 2000000 | 1.6 GB 1458.7s 0.729ms 1386.06s 0.693ms
1 1 2000000 | 1.6 GB 1797.62s 0.899ms 1663.61s 0.832ms
1 99 2000000 | 1.6 GB 1575.74s 0.788ms 1460.1s 0.730ms
0] 1 (flat) 700000 | 1.7GB 534.75s 0.764ms 508.64s 0.727ms
1 1 (flat) 2000000 | 1.5GB 1589.43s 0.795ms 1527.24s 0.764ms
0| 0O (skip) 700000 | 1.8GB 390.01s 0.557ms 363.25s 0.519ms
1] 0 (skip) 2000000 | 1.6 GB 1281.68s 0.641ms 1142.31s 0.571ms
1199 (skip) 2000000 | 1.6 GB 1329.53s 0.665ms 1195.33s 0.598ms

Table 2: Performance of the analysis on hlmpim11. C stands for compression level, S for split level. Flat
refers to trees filled with single variables, not objects. Skip refers to analyses where the jet finding was
skipped for finil and finiz contributions.

One motivation for my work was to eventually be able to use the events written out by nlojet+-+
for fitting, e.g. to extract the strong coupling constant. To do that, a short analysis that reads
in the trees, recalculated the weights and fills some histograms should be as fast as possible. The
read speed for Root trees depends on the structure of the tree (split level, basket size) and the
compression used for the file containing the Root tree. Several combinations of compression level
and split level were tried. Without any compression, a tree (which should not be larger than
about 2GB) can fit about 600000-700000 events (for dijet production), depending on the split
level. The analyses were made for trees/branches generated and filled with complex objects of
type NLOevent (containing TClonesArrays, TVector3s, doubles and integers as data members)
as well as for a tree that had just integer, doubles and TVector3d branches. The results can be
seen in table 2. The performance seems to be best using unsplit branches with a no compression.
Compressing the files slightly increases the time by about 6%, but decreases the disk space by
about two thirds. Changing the basket size of the branch or the cache size of the file in memory
might change these results.

Most of the time is actually spent on jet finding (including resetting/setting up the jet finder).
It is possible to make the analysis faster by using the fact that some contributions will have
the same final state partons as the born level one. The events configurations are produced by
nlojet++ in the order born, finil, finiz, real, subtraction terms. The finil contribution and one
of the subtraction terms have exactly the same partons in the final state as the born contribution.
The finiz contribution has one additional parton in the z direction which will not influence the
output of the jet finder. The analysis time can be reduced by about 20% by just skipping the
jet finding for finil and finiz contributions. One might be able to gain some more time by not
recalculating the boost vector for every contribution.

6 Summay and Outlook

I have successfully used the program nlojet++ to calculate NLO jet cross sections in DIS, and 1
have developed a method of writing out events from this program, making it possible to change
the renormalization scale later on. I have examined the renormalization scale dependence as a
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measure of the theory uncertainty, and shown that the choice of R = 0.7 for the jet algorithm,
together with the cut 0.8 < n;,, < 2.0, leads to a smaller overall scale dependence than other
choices. However, for R = (.7, some regions in phase space can not be described as well, e.g. the
dijet cross section for 5 GeV < (pr) < 7GeV.

The speed of the analysis can and should be optimized further, e.g. by reducing the time spent
on finding jets.
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A Plots

All of the plots can be found in the folder /afs/desy.de/user/f/fleish/h1/nlotree/plots/. They
are sorted into folders histos_ {maz}_ {R}_ {jet-algo}/, where jet-algo—0 means kt-jets. As the
three jet algorithms that were tested give the same results, only this algorithm was used for the
plots. The folder histos_ NLO_analyse_ )2/ contains plots produced using p? = Q?, Nmaez = 2.5,
and R = 1.0. The folder histos_ NLO_analyse_pt2/ contains plots produced using u? = p2 for
inclusive cross sections and p? = <pT>2 for dijet cross sections, 74, = 2.5, and R = 1.0. The

folder histos_ NLO_ analyse_ ptmean,/ contains plots produced using p? = 0.5- <Q2 + <pT>2> for
all cross sections, Nmqer = 2.5, and R = 1.0.
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Figure 6: Differential inclusive jet cross section ddé’? for several values of the renormalization scale p,..
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