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Abstract: Inclusive production of D*± in photoproduction using the event gener-
ators CASCADE and PYTHIA is studied. Values of photon virtuality of Q2 < 2GeV 2

and scattering inelasticity 0.1 < y < 0.8 are covered. In addition, the production of
jets with D∗± is analysed, using the same values for photon virtuality and scattering
inelasticity. Also, the difference between treating the D∗± meson as a leading particle
and considering inclusive jets is investigated. At the end, differential cross sections are
obtained.
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1 Kinematic variables

With the four-momentum of the proton P = (Ep,pp), the incoming electron k = (Ee,ke) and the
outgoing electron k′ = (Ee′ ,ke′) one can define the following variables:

Q2 ≡ −q2 ≡ −(k − k′)2

where q is the four-momentum of the exchanged virtual photon. Q2 is usually called the
virtuality of the photon.

The invariant mass squared (W 2) of the photon-proton system,

W 2 ≡ (P + q)2

is equivalent to the invariant mass squared of the hadronic system in the final state.

The scattering inelasticity

y ≡ q·P
k·P

gives the fractional energy loss of the lepton in the collision.

The pseudorapidity, η, is defined

η ≡ − ln(tan( θ
2))

where θ is the polar angle of the particle. Defined this way the pseudorapidity is positive in the
proton direction and negative in the electron direction.

2 Photoproduction and D∗± production

Photoproduction is regime corresponding to processes where the exchange photon has very small
virtuality (Q2 << 1GeV 2). In that case, the photon is near its mass-shell and can be considered
quasi-real. This regime is different from the deep inelastic scattering (DIS). In DIS Q2 >> 1GeV 2

and after the collision the proton ends completely destroyed.

2.1 Heavy quark production

In ep scattering heavy quarks are dominantly produced via the boson gluon fusion (BGF) process
(see figure 1).

The lightest heavy quark in the Standard Model is the charm quark, which has a mass of
m = 1.5 GeV . It fragments to a D∗± meson, which consists of a charm quark and a down quark
and its mass is m = 2.010GeV , with a probability of 25.7%, so if an event with a D∗± is found,
then a charm quark-antiquark pair was produced via BGF process.
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Figure 1: Feynman diagram for BGF in deep inelastic scattering

2.2 Hadronization: the Lund string model

In this model, the quark-antiquark pairs are bound by a colour flux tube which is called string.
The force between the quark and the antiquark increases with the distance. When the string has
enough energy to create a new quark-antiquark pair, it breaks. This new pair can split in another
quark-antiquark pair as long as it has enough energy to create the new pair. This process continues
until there is not enough energy to create a new pair. After this process ends, the quarks and the
antiquarks combine into colorless hadrons.

3 Jets

A jet is a strongly collimated flow of particles, produced by the hadronization of quarks or gluons.

In this project, a cluster-type jet algorithm [1] was used to find jets. In this algorithm the final
state of the collision is represented as consisting of a starting set of protojets i with momenta pµ

i .
Each protojet is characterized by its azimuthal angle φi, its pseudorapidity ηi = − ln(tan( θi

2 )) and
its transverse energy ET,i = |−→p T,i|. The algorithm depends on a parameter R, which is normally
chosen to be 1. The algorithm proceeds recursively as follows:

1) For each protojet define

di = E2
T,i

and for each pair of protojets define

dij = min(E2
T,i, E

2
T,j)

(ηi−ηj)
2+(φi−φj)

2

R2 .

2) Find the smallest of all the di and dij and label it dmin.

3) If dmin is a dij , merge protojets i and j into a new protojet k with:

ET,k = ET,i + ET,j ηk = ET,iηi+ET,jηj

ET,k
φk = ET,iφi+ET,jφj

ET,k
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4) If dmin is a di, then remove the corresponding protojet from the list of protojets and add it
to the list of jets.

5) Go back to step 1.

This procedure continues until there are no more protojets. It produces a list of jets with
successively larger di = E2

T,i.

4 Motivation

In order to be able to use perturbative quantum chromo dynamics (pQCD), the virtuality of the
photon has to be such that Q2 >> Λ2

QCD, where ΛQCD ≈ 300 MeV is a threshold of the theory,
because if the expansion is performed when Q2 ≈ ΛQCD the expansion diverges. On the other
hand, the dependence of the total cross section as a function of Q is σ ∼ 1

Q4 , which means that
the total ep cross section is dominated by photoproduction. In order to be able to use pQCD in
the photoproduction regime, one has to use another hard scale to perform expansions; a convenient
scale is mc, because mc >> ΛQCD.

The reason to search for D∗± mesons is that they are produced by the fragmentation of a charm
quark, with a probability of 27.5%. So if a D∗± meson is found in an event, it means that a charm
quark-antiquark pair was produced. And this pair is mainly produced via the BGF process, which
involves a gluon from the proton. So investigating these events with charm quark production, one
can get information about the gluons inside the proton.

5 Parton Evolution Models

5.1 DGLAP

In this DGLAP1 model [2] the parton densities depend on Q2. In this model, the emitted partons
are strongly ordered in the transverse momentum squared: kT,i−1 << kT,i. All parton transverse
momenta are limited from below by a fixed value Q2

0 at which the evolution starts, and from above
by the virtuality of the photon, Q2, such that Q2

0 > Q2.

5.2 CCFM

In this CCFM2 model [3], the gluon ladder is ordered in the quantity q = pT
1−z where pT is the

transverse momentum of the emitted parton and z the fraction of the parent momentum carried
by the emitted parton. Also ordering in emision angle is required, since pT = q0 sin θ: θi+1 > θi.

1Dokshitzer, Gribov, Lipatov, Altarelli and Parisi
2Catani, Ciafaloni, Fiorani and Marchesini
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Figure 2: Diagram for higher order processes

6 Tools used

6.1 Monte Carlo Event Generators

6.1.1 Cascade

Cascade [3] is a Monte Carlo event generator that uses the CCFM evolution equation to determine
the probability for a parton to branch. The matrix elemnts depend on k⊥. For the hadronization,
the Lund string model is used.

6.1.2 Pythia

Pythia [4] is a Monte Carlo event generator that uses the DGLAP parton evolution model. It
also uses the Lund string model for hadronization. In this project, two different settings for this
generator were used.

Pythia inclusive mode, where all the possible QCD processes are considered.

The second one is the direct charm producion one, where always a charm quark-antiquark pair
is produced.

6.2 Hztool

For the analysis of the events hztools were used [5].
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7 HERA

The Hadron Electro Ring Accelerator (HERA) is a electron-proton collider built in Hamburg. The
tunnel is 6.3 km long and it runs 10 to 25 meters underground. It began operation on November
8, 1992, and it was closed down on June 30, 2007. The electrons were accelerated to energies of
27.5GeV and the protons to energies of 920GeV , which gives a center of mass energy of 318GeV .
The values of the electron and proton beam energies in the Monte Carlo generators were set to
27.5GeV and 920GeV respectively in order to simulate a collision in the HERA ep.

8 Event selection and analysis

Kinematic variable cuts of Q2 < 2 GeV 2 and 0.1 < y < 0.8 were defined in order to select
photoproduction. When a D∗± meson is found, cuts on the D∗± meson transverse momentum of
pT (D∗±) > 1.8 GeV and on the D∗± meson pseudorapidity of |η| < 1.5, both of them measured
in the laboratory frame, are imposed. Afterwards, the D∗± meson is set to be stable, and all its
decay products are set to be unstable so that the D∗± meson can be treated as a leading particle
and reconstructed in a jet quantities.

To find the jets, a kT cluster in E recombination scheme (massive mode) algorithm (corre-
sponding to algorithm number 9 of the hztool routine HZJTFIND) was used. It was demanded
that two or more jets were produced. In the events with two or more jets, the two jets with highest
transverse momentum were selected, as long as both of them fulfilled the requirements for trans-
verse momentum pT (jet) > 3.0 GeV and pseudorapidity |η(jet)| < 1.5. After the D∗± meson was
set to stable, the selected jets were the one containing the D∗± meson and the jet with highest
trasverse momentum which did not contain the D∗± meson. For the D∗± meson jet, the transverse
momentum and pseudorapidity requirements were pT (jet) > 3.0 GeV and |η(jet)| < 1.5 respec-
tively. For the other jet, the transverse momentum requirement was also pT (jet) > 3.0 GeV , but
the pseudorapidity was considered in two different cases: |η(jet)| < 1.5 and −1.5 < η(jet) < 2.9.

In addition to differential cross section calculations of pt(D∗±, η(D∗±), W , pt(jet) and η(jet),
plots were made of the invariant mass of the jets,

Mhad
jj =

√
|p(jet1) + p(jet2)|2

and its deviation from the invariant mass at partonic level, Mpart
jj

res =
Mpart

jj −Mhad
jj

Mpart
jj

;

the difference in η

∆η = η(jet1)− η(jet2),

and the difference in the azimuthal angle φ

∆φ = |φ(jet1)− φ(jet2)|.

To obtain the invariant mass at partonic level, two different expressions were used:
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Mpart
jj =

√
|pc + pc|2

where pc is the momentum of the charm quark, and pc the momentum of the charm antiquark;
and

Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

where zc = Ec−pc,z

2Ebeamy
.

Also, since the algorithm used to find jets is in massive mode, the jets were made massless
before calculating Mhad

jj ,that way better resolutions were obtained when plotting the deviation
from Mpart

jj .

9 Results

9.1 D∗± meson production

Differential cross sections as a function of the D∗± meson transverse momentum and pseudorapidity
are shown in figures 4 to 7. The total cross sections obtained integrating the histograms are:

1) Inclusive D∗± meson

a) Total cross section obtained integrating dσ
dpT

i) Cascade: 26.3212 nb

i) Pythia inclusive mode: 29.3836 nb

i) Pythia direct mode: 19.8147 nb

b) Total cross section obtained integrating dσ
dη

i) Cascade: 53.9983 nb

i) Pythia inclusive mode: 59.7379 nb

i) Pythia direct mode: 40.4853 nb

2) D∗± meson after changing it to stable and selecting the D∗± jet and the highest transverse
momentum jet without the D∗± meson, both with pT (jet) > 3.0 GeV and |η(jet)| < 1.5

a) Total cross section obtained integrating dσ
dpT

i) Cascade: 13.0136 nb

i) Pythia inclusive mode: 13.8757 nb

i) Pythia direct mode: 10.804 nb

b) Total cross section obtained integrating dσ
dη

i) Cascade: 15.3793 nb

i) Pythia inclusive mode: 16.329 nb

i) Pythia direct mode: 12.9604 nb

The results obtained for Cascade and for Pythia inclusive mode are quite similar, while the
results for Pythia direct mode are much lower than the others. This is because in the direct mode
only point-like photons interacting directly with the quarks are considered, while in the other cases
more processes are considered, like the onez with a resolved photon.
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9.2 Invariant mass of jets

The differential cross sections as a function of the invariant mass of the jets, Mhad
jj , are shown in

figures 8 to 10. Changing the D∗± meson to stable and all its daughters to unstable, or selecting
the D∗± meson jet and the jet with highest transverse momentum instead of selecting the two jets
with highest transverse momentum without looking for the D∗± doesn’t produce any real difference
in the differential cross sections. In all three cases, both Cascade and Pythia inclusive mode give
almost the same differential cross section.

The deviation of the invariant mass of the jets, Mhad
jj , from the invariant mass at partonic level,

Mpart
jj is shown in figures 11 to 16. The mean value and the RMS for each histogram are as follow:

1) Before changing the D∗± to stable.

a) Using Mpart
jj =

√
|pc + pc|2

i) Cascade mean: −0.04026
ii) Cascade RMS: 0.4361

iii) Pythia inclusive mode mean: 0.06147
iv) Pythia inclusive mode RMS: 0.3703
v) Pythia direct mode mean: 0.0133

vi) Pythia direct mode RMS: 0.2835

b) Using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

i) Cascade mean: 0.5272
ii) Cascade RMS: 0.4159

iii) Pythia inclusive mode mean: 0.1259
iv) Pythia inclusive mode RMS: 0.3263
v) Pythia direct mode mean: 0.1177

vi) Pythia direct mode RMS: 0.3075

2) After changing the D∗± to stable and selecting the two highest transverse momentum jets.

a) Using Mpart
jj =

√
|pc + pc|2

i) Cascade mean: −0.07681
ii) Cascade RMS: 0.4285

iii) Pythia inclusive mode mean: 0.008258
iv) Pythia inclusive mode RMS: 0.3786
v) Pythia direct mode mean: 0.04837

vi) Pythia direct mode RMS: 0.2967

b) Using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

i) Cascade mean: 0.01358
ii) Cascade RMS: 0.4129

iii) Pythia inclusive mode mean: 0.07479
iv) Pythia inclusive mode RMS: 0.3433
v) Pythia direct mode mean: 0.06346
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vi) Pythia direct mode RMS: 0.3236

3) After changing the D∗± to stable and selecting the D∗± meson jet and the highest transverse
momentum jet without the D∗± meson.

a) Using Mpart
jj =

√
|pc + pc|2

i) Cascade mean: −0.04021
ii) Cascade RMS: 0.3975

iii) Pythia inclusive mode mean: 0.02257
iv) Pythia inclusive mode RMS: 0.3739
v) Pythia direct mode mean: 0.06377

vi) Pythia direct mode RMS: 0.2878

b) Using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

i) Cascade mean: 0.0477
ii) Cascade RMS: 0.3902

iii) Pythia inclusive mode mean: 0.09262
iv) Pythia inclusive mode RMS: 0.3318
v) Pythia direct mode mean: 0.0807

vi) Pythia direct mode RMS: 0.3147

Better values for both the mean value and the RMS are usually obtained when Mpart
jj =√

|pc + pc|2 instead of Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)
is considered, so Mpart

jj =
√
|pc + pc|2 is a better choice

for the invariant mass at parton level.

9.3 Transverse momentum and pseudorapidity of jets

Differential cross sections as a function of the transverse momentum and the pseudorapidity of the
D∗± jet and the highest transverse momentum jet without the D∗± meson are shown in figures 17
to 24. Figures 17 to 20 correspond to the cuts pT (jets) > 3.0 GeV , |η(jets)| < 1.5; and figures 21
to 24 correspond to the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9.

In both cases, the results obtained for Cascade and Pythia are similar for the differential
cross sections of the D∗± jet and for the differential cross section as a function of the transverse
momentum on the other jet. But they are completely different for the differential cross section as
a function of the pseudorapidity of the other jet. This is seen better in figure 23, where graphic
corresponding to Cascade is shifted towards the forward direction, being centered between η = 1.0
and η = 1.5 while the ones corresponding to Pythia are centered in η = 0.

9.4 Inclusive jets and D∗± meson leading jets

Differential cross sections as a function of the transverse momentum and the pseudorapidity of the
two highest transverse momentum jets for the cuts pT (jets) > 3.0 GeV , |η(jets)| < 1.5 are showhn
in figures 25 to 32. The ones for the two highest transverse momentum jets after selecting the D∗±

meson are shown in figures 25 to 28. The ones for the two highest transverse momentum jets after
changing the D∗± meson to stable are shown in figures 29 to 32.
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Figure 3: 2-jet photoproduction event at H1

In both cases Cascade and Pythia give similar results for the differential cross sections as a
function of the transverse momentum of both jets and the pseudorapidity of the first jet, but the
results are different for the pseudorapidity of the second jet. In this case, the results for Cascade
are shifted in the forward direction while the results for Pythia are shifted in the opposite direction.

Also is noteworthy that the results obtained considering the D∗± meson as part of the jets are
slightly different for the ones obtained when the particles in the jet are the decay products of the
D∗± meson. This might be because when reconstructing the jet, the algorithm may assign one of
the decay products to a jet that it is not the correct one.

9.5 Difference of pseudorapidity, ∆η, and azimuthal angle, ∆φ, of
jets

Differential cross sections as a function of the difference of pseudorapidity and azimuthal angle of
jets are shown in figures 33 to 40. Figures 33 to 36 correspond to the cuts pT (jets) > 3.0 GeV ,
|η(jets)| < 1.5; and figures 37 to 40 correspond to the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5,
−1.5 < η(otherjet) < 2.9.

The study of differential cross sections as a function of ∆η and ∆φ is interesting because, when
there is a clean event like the one shown in figure 3, where there are only two jets, which come
from the hadronization of the charm quark and antiquark, it usually corresponds to ∆φ ≈ 180◦ and
∆η ≈ 0. But there are some events with large difference in the pseudorapidity and small difference
in the azimuthal angle. in those events, the selected jets are not the ones associated to que charm
quark and antiquark, but the jets associated to the D∗± meson, that it is associated to the charm
quark or antiquark, and a jet associated to a gluon that has been emmited.

Also, when looking at the differential cross sections as a function of ∆φ for |∆η| > 1.0, one can
notice that, for small differences in angle, the differential cross section when we consider jets without
the D∗± meson with pseudorapidity −1.5 < η(otherjet) < 2.9 is higher that the one obtained when
ets without the D∗± meson with pseudorapidity −1.5 < η(otherjet) < 1.5 are considered. This is
because when we allow the secon jet to have a higher pseudorapidity, more events where the second
jet is associated to a gluon are considered.

Another thing that can be observed is that when ∆φ decreases, the differential cross sections
obtained ysing Pythia decrease faster that obtained when using Cascade.
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10 Conclusion

When studying the differential cross sections as a function of variables like the transverse momentum
of the jets, both Cascade and Pythia give very similar results, but in other cases, like in the
differential cross sections as a function of the difference in the azimuthal angle, the results are
completely different, so the study of D∗± meson production events is a powerful tool to compare
different physical models, using the results from Cascade and Pythia.
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Figure 4: Differential cross section as a function of the transversal momentum of the D∗±

meson after the cuts pT (D∗±) > 1.8 GeV and |η(D∗±)| < 1.5

Figure 5: Differential cross section as a function of the pseudorapidity of the D∗± meson
after the cuts pT (D∗±) > 1.8 GeV and |η(D∗±)| < 1.5
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Figure 6: Differential cross section as a function of the transversal momentum of the D∗±

meson for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5

Figure 7: Differential cross section as a function of the pseudorapidity of the D∗± meson
pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5
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Figure 8: Differential cross section as a function of the invariant mass of the jets for the
cuts pT (jets) > 3.0 GeV , |η(jets)| < 1.5, before changing the D∗± to stable

Figure 9: Differential cross section as a function of the invariant mass of the jets for the
cuts pT (jets) > 3.0 GeV , |η(jets)| < 1.5, after changing the D∗± to stable
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Figure 10: Differential cross section as a function of the invariant mass of the jets for the
cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5

Figure 11: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,
|η(jets)| < 1.5, before changing the D∗± to stable, using Mpart

jj =
√
|pc + pc|2
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Figure 12: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,

|η(jets)| < 1.5, before changing the D∗± to stable, using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

Figure 13: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,
|η(jets)| < 1.5, after changing the D∗± to stable, using Mpart

jj =
√
|pc + pc|2
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Figure 14: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,

|η(jets)| < 1.5, after changing the D∗± to stable, using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

Figure 15: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,
|η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5 using Mpart

jj =
√
|pc + pc|2
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Figure 16: Deviation of the invariant mass of the jets for the cuts pT (jets) > 3.0 GeV ,

|η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5 using Mpart
jj =

√
p2

T,c+m2
c

zc(1−zc)

Figure 17: Differential cross section as a function of the transverse momentum of the D∗±

jet for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5
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Figure 18: Differential cross section as a function of the pseudorapidity of the D∗± jet for
the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5

Figure 19: Differential cross section as a function of the transverse momentum of the jet
without the D∗± meson for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| <
1.5
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Figure 20: Differential cross section as a function of the pseudorapidity of the jet without
the D∗± meson for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5

Figure 21: Differential cross section as a function of the transverse momentum of the D∗±

jet for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9

20



Figure 22: Differential cross section as a function of the pseudorapidity of the D∗± jet for
the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9

Figure 23: Differential cross section as a function of the transverse momentum of the jet
without the D∗± meson for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 <
η(otherjet) < 2.9
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Figure 24: Differential cross section as a function of the pseudorapidity of the jet without the
D∗± meson for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9

Figure 25: Differential cross section as a function of the transverse momentum of the jet
with highest transverse momentum just after selecting the D∗± meson
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Figure 26: Differential cross section as a function of the pseudorapidity of the jet with highest
transverse momentum just after selecting the D∗± meson

Figure 27: Differential cross section as a function of the transverse momentum of the jet
with the second highest transverse momentum just after selecting the D∗± meson
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Figure 28: Differential cross section as a function of the pseudorapidity of the jet with the
second highest transverse momentum just after selecting the D∗± meson

Figure 29: Differential cross section as a function of the transverse momentum of the jet
with highest transverse momentum just after changing the D∗± meson to stable
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Figure 30: Differential cross section as a function of the pseudorapidity of the jet with highest
transverse momentum just after changing the D∗± meson to stable

Figure 31: Differential cross section as a function of the transverse momentum of the jet
with the second highest transverse momentum just after changing the D∗± meson to stable
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Figure 32: Differential cross section as a function of the pseudorapidity of the jet with the
second highest transverse momentum just after changing the D∗± meson to stable

Figure 33: Differential cross section as a function of ∆φ of the D∗± jet for the cuts pT (jets) >
3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5, for |∆η| < 1.0
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Figure 34: Differential cross section as a function of ∆φ of the D∗± jet for the cuts pT (jets) >
3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5, for |∆η| > 1.0

Figure 35: Differential cross section as a function of ∆φ of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5, for |∆η| < 1.0
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Figure 36: Differential cross section as a function of ∆φ of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, |η(otherjet)| < 1.5, for |∆η| > 1.0

Figure 37: Differential cross section as a function of ∆η of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9
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Figure 38: Differential cross section as a function of ∆φ of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9

Figure 39: Differential cross section as a function of ∆φ of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9 for |∆η| < 1.0
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Figure 40: Differential cross section as a function of ∆φ of the jet without the D∗± meson
for the cuts pT (jets) > 3.0 GeV , |η(D∗±jet)| < 1.5, −1.5 < η(otherjet) < 2.9 for |∆η| > 1.0
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