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1 ATLAS Very Forward Detectors

The ATLAS (A Toroidal LHC ApparatuS) experiment will measure colli-
sions of two 7 TeV protons. The aim of the Very Forward Detectors (VFD)
is to detect intact protons scattered at small angles. This will make possible
to have some events with all particles in the final state measured.

Protons travel the distance between interaction point (IP) and detector
in the beamline (in the magnetic field). The curvature of the proton that
interacted will be different that the one that did not.

There are plans to install a few different VFD in the distance 200 – 500 m
from the IP. The detectors are to be placed in the ,,Roman Pots” to be able
to move the detectors close (about 1.5 mm) to the beam.

1.1 Roman pots at 220 m

This project contains four detectors (two on each side) located at 216 m and
224 m from the IP. Detectors will measure the horizontal (x) and vertical (y)
position (z is the coordinate along the beamline) of protons at each plane
with resolution of 10 µm.

1.2 Absolute Luminosity for ATLAS

Absolute Luminosity For ATLAS (ALFA) are the ATLAS ultra-small-angle
detectors, which are to be located at 240 m on either side of the main ATLAS
detector. They will measure elastically scattered protons for the primary
purpose of absolute determination of the LHC luminosity at the ATLAS
IP. ,,Roman Pots” inserts position sensitive detectors in the beam pipe.
This will allow to detect scattered protons at small enough (mm) distances
away from the circulating beam, to reach the theoretically well-calculable
Coulomb scattering regime with the special LHC optics.

1.3 My tasks

The first task was to verify results produced by Rafa l Staszewski during last
year Sumer Student Program. I used a modified version of FPTrack (program
for transport simulation written by Peter Bussey) code. FPTrack computes
proton transport through the beamline using LHC optic files. I confirmed
Rafa l’s work using ”LHC Optic Version V6.500” for 7 TeV protons.

The next task was to perform the same analysis for ALFA. ALFA detec-
tor will be working with special high-beta optic. I investigated beam profiles,
position dependence on E and pT and I studied acceptance plots. Finally I
found dependence of position in detector as a function of the initial energy,
position and angle.
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2 Veryfication of results for standard LHC optics

2.1 Beam profiles

Using beam characteristics at ATLAS IP for normal LHC run (,,LHC Optics
Version V6.500 Collision” for 7 TeV protons) I generated a set of particle
momenta that was used as an input to FPTrack. I used: σ(x0) = σ(y0) =
16.6 µ m, σ(Θx) = σ(Θy) = 30.2 µrad, σ(E) = 0.77 GeV.

Magnets near ATLAS detector are shown in figure 1. The beam profiles
can be seen in figure 2.

Figure 1: Magnets near ATLAS detector (red lines – beam no. 1, black lines
– beam no. 2.).

2.2 Protons behavior

I studied protons position in the detectors plane as a function of their kine-
matics. I generated a set of momenta corresponding to pT = 0, 0.5, 1 GeV
and E = 6.8, 6.9, 7 TeV. Results are presented in figure 3.

I also generated a set of momenta corresponding to pT and E like above
but with non-zero azimuthal angle φ ∈ [0; 2π) with step 2π/24. Results are
presented in figure 4.
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Figure 2: Beam profiles at 216 m.
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Figure 3: Position at 216 m for different pT and E.
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I was interested to find which protons can be seen at 216 m. In order
to study this I created a plot of acceptance as a function of pT and E. In
this case acceptance is understood as a ratio of particles with given pT and
E observed on 216 m to the number of particles with the same pT and E
produced in the IP. The acceptance plot is shown in Figure 5. Since we
cannot measure protons in main beam, I use cut for |y| > 1.5 mm (see
Figure 6).

The other way for graphical transport parameterization are chromatic-
ity plots. They are created by generating events with energy and angle (for
chosen axis) taken from a Cartesian grid and transporting them to a chosen
area. I generated a set of (E, x′0) points for x (figure 7) and (E, y′0) for y (fig-
ure 8). Lines with the same energy (angle) are connected giving chromaticity
grid.
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Figure 5: Acceptance at 216 m for beam no. 1.
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Figure 6: Acceptance at 216 m for beam no. 1 (|y| > 1.5mm).
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Figure 7: Chromaticity at 216 m for beam no. 1 (left) and no. 2 (right).
Points of the same energy are connected with a solid line. Points of the
same angle at the IP are connected with a dashed line.
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Figure 8: Chromaticity at 216 m for beam no. 1 (left) and no. 2 (right) Points
of the same energy are connected with a solid line. Points of the same angle
at the IP are connected with a dashed line.

2.3 Position in detector as a function of initial energy and
position

Using FPTrack for computing positions of protons at the detector planes is
time consuming. That is why I investigated the possibility of describing the
position in the detector as a function of kinematics at the IP.

x′0 =
px

pz
(1)

x0 − position of the IP (2)

2.3.1 Dependence on E

I checked the dependence of the x-position on E (for x′0 = 0 and x0 = 0). The
results are shown in figure 9 where I also present a fitted cubic polynomial
defined in equation 3. The figure on the right shows the difference between
FPTrack and fit values. The degree of the polynomial is the smallest one
that gave errors below 10µm (which is the detector resolution). Values of
the coefficients of the fitted polynomial can be found in table 1.

x(E) = a0 + a1E + a2E
2 + a3E

3 (3)

Coefficient Value
a0 4.835268 · 102

a1 −1.531573 · 10−1

a2 1.662796 · 10−5

a3 −6.594669 · 10−10

Table 1: x(E) fit coefficients.
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Figure 9: Dependence of x on E.

2.3.2 Dependence on x-slope

I checked how x position depends on the x′0 for different E (figure 10). The
linear fit was good enough to fit the data (see figure 11) with sufficiently
small error.
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Figure 10: Dependence of x on x′0 for few different energies.

The next step was to find how coefficients change with changing energy:

x(x′0, E) = x(E) +B(E)x′0 (4)

For each plot I compute linear regression slope coefficient. In figure 12
I present this coefficients as a function of E. I fitted the distribution with
a cubic polynomial:

10



’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 6000 GeVE = 6000 GeV

’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 6200 GeVE = 6200 GeV

’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 6400 GeVE = 6400 GeV

’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 6600 GeVE = 6600 GeV

’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 6800 GeVE = 6800 GeV

’ [mrad]0x
-0.3 -0.2 -0.1 0 0.1 0.2 0.3

 [
n

m
]

fi
t

x 
- 

x

-10

-8

-6

-4

-2

0

2

4

6

8

10

E = 9000 GeVE = 9000 GeV

Figure 11: Dependence of x on x′0 – fit error.

B(E) = B0 +B1E +B2E
2 +B3E

3 (5)

Values of the coefficients can be found in table 2.
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Figure 12: Dependence of x on x′0 for different energies.

2.3.3 Dependence on x0

Finally I investigated the dependence on x0. The linear fit was good enough
to fit the data (see figure 13).

x(x0, E) = x(E) + C(E)x0 (6)

In figure 14 I present these coefficients as a function of E. I fitted the
distribution with a cubic polynomial:
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Coefficient Value
b0 7.425955 · 102

b1 −1.879737 · 10−1

b2 1.436254 · 10−5

b3 −3.853871 · 10−10

Table 2: B(E) fit coefficients.
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Figure 13: Dependence of x on x0 for few different energies.
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C(E) = C0 + C1E + C2E
2 + C3E

3 (7)

Values of the coefficients can be found in table 3.
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Figure 14: Dependence of x on x′0 for different energies.

Coefficient Value
c0 −1.574817 · 10−6

c1 9.577077 · 10−9

c2 −1.443628 · 10−13

c3 6.850247 · 10−17

Table 3: C(E) fit coefficients.

13



3 Studies of the ALFA detector

3.1 Beam profiles

Using beam characteristics at ATLAS IP for high-beta LHC run I generated
a set of particle momenta that was used as an input to FPTrack. I used:
σ(x0) = σ(y0) = 0.061 mm, σ(Θx) = σ(Θy) = 0.23 µrad, σ(E) = 0.77GeV.

The beam profiles can be seen in figure 15.
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Figure 15: Beam profiles at 240 m.

3.2 Protons behavior

I studied protons position in the detectors plane as a function of their kine-
matics. I generated a set of momenta corresponding to pT = 0, 0.025, 0.05 GeV
and E = 6.7, 6.8, 6.9, 7 TeV. Results are presented in figure 16.

I also generated a set of momenta corresponding to pT and E like above
but with different azimuthal angle φ ∈ [0; 2π) with step 2π/24. Results are
presented in figure 17.

I was interested to find which protons can be seen at 240 m. In order to
study this I created a plot of acceptance as a function of pT and E. In this
case acceptance is understood as a probability of observing particles with
given pT and E at 240 m. The acceptance plot is shown in figure 18. Since
we cannot measure protons in main beam, I use cut for |y| > 1.5 mm (see
figure 19).

I also generated physical events using PYTHIA MC generator. I selected
non-dissociative protons from a single diffraction process (proc. 93). Accep-
tance plots are in figure 20 and figure 21.
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Figure 16: Position at 240 m for different pT and E.
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Figure 18: Acceptance at 240 m for beam no. 1.
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Figure 19: Acceptance at 240 m for beam no. 1 (|y| > 1.5mm).
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Figure 20: Acceptance at 240 m for beam no. 1 (PYTHIA MC).
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Figure 21: Acceptance at 240 m for beam no. 1 (|y| > 1.5mm) (PYTHIA
MC).
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3.3 Position in detector as a function of initial energy and
position

I investigated the possibility of describing the position in the detector as a
function of kinematics at the IP.

3.3.1 Dependence on E

I checked the dependence on the x-position on E (for x′0 = 0 and x0 =
0). The results are shown in figure 22 where I also present a fitted cubic
polynomial defined in equation 3. The figure on the right shows the difference
between FPTrack and fit values. The degree of the polynomial is the smallest
one that gave errors below 10µm (which is the detector resolution). Values
of the coefficients of the fitted polynomial can be found in Table 4.
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Figure 22: Dependence on x on E.

Coefficient Value
a0 −8.956236 · 102

a1 3.086196 · 10−1

a2 −3.576431 · 10−5

a3 1.421976 · 10−9

Table 4: x(E) fit coefficients.

3.3.2 Dependence on x-slope

I checked how x position depends on the x′0 for different E (Figure 23). The
linear fit was good enough to fit the data (see Figure 24) with a sufficiently
small error.

The next step was to find how coefficients change with changing energy:
For each plot I computed linear regression slope coefficient. In figure 25

I present this coefficients as a function of E. I fitted the distribution with a
cubic polynomial 5.
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Figure 23: Dependence on x on x′0 for few different energies.
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Figure 24: Dependence on x− xfit on x′0 – fit error.
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Values of the coefficients can be found in table 5 and fit error in figure
25.
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Figure 25: Dependence on Bx(E) on E and fit error.

Coefficient Value
b0 −2.288562 · 102

b1 1.873498 · 10−1

b2 −2.861954 · 10−5

b3 1.289187 · 10−9

Table 5: B(E) fit coefficients.

3.3.3 Dependence on x0

Finally I investigated the dependence on x0. The linear fit was good enough
to fit the data (see figure 26 and 27).

For each plot I computed linear regression slope coefficient. In figure I
present these coefficients as a function of E. I fitted the distribution with
a quadratic polynomial:

C(E) = C0 + C1E + C2E
2 (8)

Values of the coefficients can be found in table 6.

Coefficient Value
c0 −8.979846
c1 2.312172 · 10−3

c2 −1.432485 · 10−7

Table 6: C(E) fit coefficients.
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Figure 26: Dependence on x on x0 for few different energies.
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Figure 27: Dependence on x− xfit on x0 – fit error.
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Figure 28: Dependence on Cx(E) on E and fit error.

4 Summary

Beam profiles, acceptance and position reconstruction in the ATLAS forward
detectors were studied.
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