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Abstract

We study de Sitter vacua in general Supergravity models with N=1 Supersymmetry in four
dimensions. We will review the conditions for metastability of non-supersymmetric vacua and
analyse these conditions, reproducing the relevant equations. We go on to looking at particular
cases of metastability in large-volume scenarios, where the Kähler potential satisfies the no-
scale property. Finally we perform the derived analysis on several string-theoretically relevant
examples
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1 Introduction

The most accurate theory today to describe physical laws turns out to be the Standard Model,
a relativistic Quatum Field Theory. It consists of quantum mechanics and special relativity and
evolves around physical laws, wich are local. The most important experimental result underlining
the Standard Model was the Muon (g-2) Experiment at Brookhaven National Laboratory, which
measured the Anomalous Magnetic Moment of the Muon to unprecedented precision.

QFT is necessary for any relativistic system, but also highly useful in systems with many
particles. It has great importance in condensed matter, highenergy physics, cosmology, quantum
gravity and pure mathematics.

In QFT we quantize the classical field. The fundamental degrees of freedom in QFT are op-
erator valued functions of spacetime. Since there is at least one degree of freedom for every point
in space, we have the trouble of dealing with an infinite number of degrees of freedom.

The main principles governing the interactions in QFT end up being: locality, symmetry and
renormalization (difference of physics at small and large scales). [2]

We are interested in this symmetry and its features and where it is locally broken. It took
a long time to develop the current Standard Model. Now we are interested in what might lie
beyond its present ideas. An eventual goal is to see whether certain models of potential are
favoured above others. Supersymmetry is the basic idea of extending the Standard Model. In
particle theory, Supersymmetry is recognized as necessary to solve the Hierarchy problem of the
unification scale and the electroweak scale. It protects the Higgs boson mass against radiative
corrections, and can also provide a natural dark matter candidate. SuSy can either be global or
local, in the latter case it would be called Supergravity, as it includes gravity, and is most likely
to be the version chosen by Nature.

Our believe of the Standard Model of gauge interations to be incomplete is among others based
on the facts that the theory has too many parameters, its incapability to describe fermion masses
and why the number of generations is three. Neither does it contain the notion of gravity. So
we speculate a new symmetry: the yet undiscovered Supersymmetry. It deals with the problems
mentioned above, that the current non-supersymmetric field theory is not able to tackle.

Supersymmetry is expected to play a fundamental role during the early evolution of the Universe,
particularly during inflation. Invoking scalar fields means that Supersymmetry is involved and
it helps for the necessety of the potential to be very flat in the direction of the inflaton.[3]

Today’s observations strictly imply that in the case of Supersymmetry, it must be broken sponta-
neously. This spontaneous breaking occurs when supersymmetric system goes to a non-symmetric
vacuum state. Therefore we are interested in the vacuum expectation values of the potential. In
the low-energy regime we require the one generator supersymmetry kown as N=1.

Our study focuses on de Sitter vacua relevant in no-scale supergravities and Calabi-Yau string
models. It is mostly based on understanding the paper [1] and deriving the main equations and
conditions.

We perform a precise analysis of four-dimensional N=1 supergravities by paying particular
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attention to the mass of scalar superpartners of the Goldstino, which is relevant for metasta-
bility of the vacuum. Although the possibility of approprietely choosing the superpotential we
can make the scalar fields arbitrarily massive, it becomes impossible in the case of two sGold-
stinos. The reason is that within supersymmetry the Goldstino is massless and therefore the
sGoldstino cannot accquire its mass from the superpotential, but the mass is generated by the
SuSy-breaking mechanism, making it possibly negative. Around this fact the study for locally
stable de Sitter vacua is evolving. This strictly implies that for metastability of de Sitter vacua
we need a positive sGoldstino mass, which will solely depend on the Kähler Potential, but not
on the superpotential. This simplifies the search for stable de Sitter vacua and motivates the
following chapters. [1]

2 Conditions for Metastable vacua

We review and extend strategies from refs.[4, 5, 6], following closely ref.[1]. We study the stabil-
ity of non-supersymmetric vacua with N=1 supersymmetry in four dimensions, centering it on
theories with only chiral multiplets.

In supergravity theory we find that the two-derivative Lagrangian is defined by a real function
G, depending on Φi and Φ̄ī. Since we are using Planck units G can be written as following:

G(Φ, Φ̄) = K(Φ, Φ̄) + log W (Φ) + log W̄ (Φ̄) (1)

The Kähler Potential K and the Superpotential W are defined only up to Kähler transfor-
mations, which for an arbitrary holomorphic function f act as K → K + f + f̄ and W → We−f

Before we start a couple of words on notation. Φi will generally denote a chiral superfield
and Φ̄ī its complex conjugate. Derivatives with respect to these fields will be denoted by lower
indices i and ī respectively.

The nabla symbol ∇i denotes the covariant derivative, which acting on a function f(Φ, Φ̄) is
defined to be ∇i=∂i − Γk

ij and Γk
ij=Gijl̄G

l̄k. The associated Riemann Curvature Tensor we ac-
cept without further explanation to be Rij̄mn̄=Kij̄mn̄ −Kimr̄g

r̄sKsj̄n̄

Planck units will be imposed with MP =1.

Throughout the article we will use the summation convention of repeated indices and the Kähler
metric gij̄=Kij̄=∂i∂j̄K is used to raise and lower indices. It is assumed to be strictly greater
than 0 for the scalars kinetic energy to be positive.

The Potential takes the form:

V = eG(GiGi − 3) (2)

The auxiliary fields of the chiral multiplets are determined by their equations of motion to be
F i=m3/2G

i with a scale defined by the gravitino mass m3/2=eG/2. Supersymmetry is sponta-
neously broken, when F i is non-vanishing on the vacuum. The Goldstino, which is absorbed by
the gravitino during SuSy-breaking, is defined by the direction Gi in the space of chiral fermions.
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2.1 Derivation of the Metastability Condition

Assuming that the cosmological constant is not negative metastale susy-breaking vacua are asso-
ciated to the global minima of the Potential V ≥ 0, while the auxiliary fields and chiral multiplets
are not 0. At the vaccuum expectation value (vev) the conditions for the stationary points are
V ′ = 0 (critical point, necessary condition) and the Hessian matrix should be positive definite:
V ′′ ≥ 0 (Stability).

Let us take first and second order derivatives of V. Since V is a scalar function we find Vi=∇iV.
Then using Gi=Gij̄Gj̄ and the Product Rule of the covariant Derivative and noting that
∇iG

ij̄=∇iGij̄=0 on (2) we find:

Vi = ∇iV = ∇i(eG)(Gkj̄GkGj̄ − 3) + eG∇i(Gkj̄GkGj̄ − 3)

= GiV + eG[(∇iG
kj̄GkGj̄ + Gkj̄∇iGkGj̄ + Gkj̄Gk∇iGj̄ ]

= GiV + eG[Gkj̄∇iGkGj̄ + Gkj̄Gk∇iGj̄ ]

= GiV + eG[Gk∇iGk + Gkj̄GkGij̄ ]

Using the Statioary condition and Gkj̄Gij̄=δk
i we get

GiV + eG[Gk∇iGk + Gi] = 0 (3)

Now taking higher order Derivatives Vij̄ and Vij we get

Vij̄ = ∇j̄∇iV = ∇j̄(GiV + eG[Gk∇iGk + Gi])

= eG(Gj̄(Gi + Gk∇iGk) + Gij̄ +∇j̄(G
k∇iGk)) + Gij̄V + Gi∇j̄V (4)

By the Stationary Condition (3) we get eG[Gk∇iGk + Gi] = −GiV and Gi∇j̄V = 0

So
Vij̄ = eG(Gij̄ +∇j̄G

k∇iGk + Gk∇i∇j̄Gk)−GiGj̄V + Gij̄V (5)

Now

Gk∇i∇j̄Gk = Gk∇i[Gkj̄ − Γm̄
k̄j̄Gm̄]

= Gk∇i(Gkj̄ −Gk̄j̄rG
rm̄Gm̄i)

= Gk(Gk̄j̄i −∇iGk̄j̄rG
r −Gk̄j̄rG

rm̄Gm̄i)

Note that Grm̄Gm̄i=δr
i , so that Gk̄j̄rG

rm̄Gm̄i=Gk̄j̄i.
So Gk∇i∇j̄Gk becomes

Gk∇i∇j̄Gk = −GkGr∇iGk̄j̄r = GkGr(Gk̄j̄ri − Γm
irGmk̄j̄)

= −GkGr(Gk̄j̄ri −Girs̄G
s̄mGmk̄j̄)

= −GkGr(Kk̄j̄ri −Kirs̄g
s̄mKmk̄j̄) = −Gk̄GrRij̄rk̄ (6)

Hence from (5) we find

Vij̄ = eG(Gij̄ +∇iG
k∇j̄Gk −Gk̄GrRij̄rk̄)− (GiGj̄ + Gij̄)V (7)

Similarly we can calculate Vij=∇i∇jV :
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Vij = ∇j(eG[Gk∇iGk + Gi] + GiV )
= eG(Gj(Gi + Gk∇iGk) +∇jGi +∇jG

k∇iGk + Gk∇j∇iGk)
+∇jGiV + Gi∇jV

= eG(Gj(−GiV )e−G +∇jGi + Gkm̄∇jGm̄∇jGk + Gk∇j∇iGk) +∇jGiV

= eG(∇jGi + Gkm̄Gm̄j∇jGk + Gk∇j∇iGk) + (∇jGi −GjGi)V

since Gkm̄Gm̄j=δj
k and ∇jGi=Gij − Γk

ijGk=Gji − Γk
jiGk=∇iGj we conclude

Vij = eG(2∇jGi + Gk∇j∇iGk) + (∇jGi −GjGi)V (8)

So to ensure metastability we need the Hessian Matrix M2 to be positive definite, where

M2 =

(
Vij̄ Vij

Vij Vīj

)
(9)

Recall that derivatives of G with mixed holomorphic and antiholomorphic indices depend only
on K, unlike the K- and W-dependent Gi, ∇iGj and ∇i∇jGk. Fixing K and varying W we can
tune Vij to 0 by adjusting ∇i∇jGk. Also we make most eigenvalues of Vij̄ positive by adjusting
∇iGj . Further we can arbitrarily choose Gi, not forgetting to keep Gi fixed as imposed by the
Stationary Condition. Therefore to analyse metastability it suffices to study the projection of
the diagonal Block Matrix Vij̄ along Gi. After rescaling the quantity by the convenient m2

3/2

(see[1]) we consider the following parameter:

λ = e−GVij̄G
iGj̄ (10)

Using equations (7) we find:

λ = ((Gij̄ +∇iGk∇j̄G
k −GkGrRij̄rk̄)− (GiGj̄ + Gij̄)V e−G)GiGj̄ (11)

Define A:=GkGk=Gij̄Gj̄Gi=Gij̄G
iGj . Then:

λ = Gij̄G
iGj̄ + (Gi∇iGk)(Gj̄∇j̄G

k)−Rij̄rk̄G
k̄GrGiGj̄ − (Gij̄G

iGj̄ + GiG
iGj̄G

j̄)(GkG
k − 3)

= A + (Gi∇kGi)(Gj̄∇j̄G
k)−Rij̄rk̄G

k̄GrGiGj̄ + (A−A2)(A− 3)

= A + (Gi∇kGi)(Gj̄Gks̄∇j̄Gs̄) + (A−A2)(A− 3)−Rij̄rk̄G
k̄GrGiGj̄ (12)

Now Gi∇kGi=−GkV e−G −Gk=−Gk(A− 3)−Gk and λ becomes:

λ = A + (−Gk(A− 3)−Gk)(Gks̄(−Gs̄(A− 3)−Gs̄) + (A−A2)(A− 3)−Rij̄rk̄G
k̄GrGiGj̄

= A + (Gk(A− 3) + Gk)(Gk(A− 3) + Gk) + (A−A2)(A− 3)−Rij̄rk̄G
k̄GrGiGj̄

= A + A(A− 3)2 + A(A− 3) + A(A− 3) + A + (A−A2)(A− 3)−Rij̄rk̄G
k̄GrGiGj̄

= 2A−Rij̄rk̄G
k̄GrGiGj̄

⇔ λ = 2gij̄G
iGj̄ −Rij̄rk̄G

k̄GrGiGj̄ (13)
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e−G is positive definite, for the Hessian to be positive definite we need Vij̄z
izj̄>0 for all non-

zero vectors zi and zj̄ . Taking zi=Gi the condition on the Hessian to be positive definite results
in the condition [4]:

λ > 0 (14)

We would like to rewrite λ:

λ = 2gij̄G
iGj̄ −Rij̄rk̄G

k̄GrGiGj̄

= −2
3
(A− 3)A +

1
3
(gij̄G

iGj̄gmn̄GmGn̄ + gin̄GiGn̄gmj̄G
mGj̄)−Rij̄rk̄G

k̄GrGiGj̄

= −2
3
(A− 3)A + [

1
3
(gij̄gmn̄ + gin̄gmj̄)−Rij̄rk̄]G

k̄GrGiGj̄

We could go on to studying the implications of the metastability condition λ>0 for models
with a fixed cosmological constant, as done in refs. [4, 5]. Instead we will require the cosmological
constant to be non-negative by having some Gi=O(1) so that te quadratic and quartic terms of
λ compete and its sign would strongly depend on the curvature tensor Rij̄rk̄.

Defining σ:=[13(gij̄gmn̄ + gin̄gmj̄)−Rij̄rk̄]G
k̄GrGiGj̄ we find:

λ = −2
3
e−GV (e−GV + 3) + σ (15)

with
σ = Sij̄rk̄G

iGj̄GrGk̄ (16)

where
Sij̄rk̄ =

1
3
(gij̄gmn̄ + gin̄gmj̄)−Rij̄rk̄ (17)

We identify the condition of λ>0 with σ>0 because for V >0 the first term of (15) is clearly
negative and its value depends only on the length of Gi. The second term depends on the
orientation of Gi, but not on its length. More precisely the reason is that with an arbitrary Gi

giving σ(Gi)>0 we can always adjust the superpotential W to get Gi rescaled for some real r
resulting in V(rGi)=0. This implies λ(rGi)>0, showing the possibility of Minkowski vacua. By
increasing r we can achieve both V(rGi)>0 and λ(rGi)>0, which would give us the existence of
de Sitter vacua. Keeping the gravitino mass scale m3/2=eG/2 fixed the size of the cosmological
constant is implied by keeping λ>0 depending on σ in the situation of V(Gi)=0. Similarly it is
impossible to get V≥0 and λ>0 simultaneously provided σ<0. Therefore the existence of viable
de Sitter vacua is only possible for

σ > 0 (18)

In the following section we will analyse some examples arising from string theory, finding σ
and discussing its implication.

3 Simple Kähler-Potential Models

This section is completely determined to applying the discussed method to some interesting
examples. We will follow step-by-step the way of obtaining σ. The Models will generally con-
sist of one modulus T and its conjugate T̄ as well as up to one matter field Φ with conjugate
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Φ̄. Partial derivatives with respect to any of these fields will be denoted by writing it as an index.

Let us derive a general formula for σ, which depends on one mudulus and one matter field
and their conjugates.

σ = ST T̄T T̄ GT GT̄ GT GT̄ + ST T̄ΦT̄ GT GT̄ GΦGT̄ + ST Φ̄T Φ̄GT GΦ̄GT GΦ̄ + ST Φ̄ΦT̄ GT GΦ̄GΦGT̄

+ST T̄T Φ̄GT GT̄ GT GΦ̄ + ST T̄ΦΦ̄GT GT̄ GΦGΦ̄ + ST Φ̄T T̄ GT GΦ̄GT GT̄ + ST Φ̄ΦΦ̄GT GΦ̄GΦGΦ̄

+SΦT̄ T T̄ GΦGT̄ GT GT̄ + SΦT̄ΦT̄ GΦGT̄ GΦGT̄ + SΦΦ̄T Φ̄GΦGΦ̄GT GΦ̄ + SΦΦ̄ΦT̄ GΦGΦ̄GΦGT̄

+SΦT̄ T Φ̄GΦGT̄ GT GΦ̄ + SΦT̄ΦΦ̄GΦGT̄ GΦGΦ̄ + SΦΦ̄T T̄ GΦGΦ̄GT GT̄ + SΦΦ̄ΦΦ̄GΦGΦ̄GΦGΦ̄ (19)

It is obvious that Sij̄rk̄ is invariant under permutation of holomorphic and antiholomorphic
indices if K depends only T ,T̄ ,Φ and Φ̄. σ then becomes:

σ = ST T̄T T̄ GT GT̄ GT GT̄ + SΦΦ̄ΦΦ̄GΦGΦ̄GΦGΦ̄ + ST Φ̄T Φ̄GT GΦ̄GT GΦ̄ + SΦT̄ΦT̄ GΦGT̄ GΦGT̄

+2SΦT̄ T T̄ GΦGT̄ GT GT̄ + 2SΦΦ̄T Φ̄GΦGΦ̄GT GΦ̄ + 2ST Φ̄ΦΦ̄GT GΦ̄GΦGΦ̄ + 2ST Φ̄T T̄ GT GΦ̄GT GT̄

+4ST T̄ΦΦ̄GT GT̄ GΦGΦ̄(20)

We shall use this formula in the following cases.

3.1 A Separable Model Goverened by a Single Modulus and One
Matter Field

The following Example arises from string compactifications described by a single modulus T and
a Kähler Potential of the following form:

K = −3 log(T + T̄ )− |Φ|2 (21)
⇔ K = −3 log(T + T̄ )− ΦΦ̄ (22)

If assuming W to be also separable implying solely gravitational interaction between the
two fields it would be possible to uplift any would-be supersummetric minimum in the T sector
with a Φ sector that breaks supersymmetry spontaneously well below the Planck scale [4]. For
a generalization of to a certain type of non-seperable W consult [9], and specific examples are
discussed in [10, 11].

We find

KT = KT̄ = − 3
T + T̄

KT T̄ = gT T̄ =
3

(T + T̄ )2
(23)

KTT T̄ = KT T̄ T̄ = − 6
(T + T̄ )3

KT T̄T T̄ =
18

(T + T̄ )4
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Also

KΦ = Φ̄ KΦ̄ = Φ

KΦΦ̄ = 1

We find all other derivatives up to fourth order to vanish. Hence we can see from (23) that
KT T̄ = (T+T̄ )2

3 .

Hence from plugging the values into (17)

ST T̄T T̄ = SΦT̄ T T̄ = ST Φ̄tT̄ = SΦT̄ΦΦ̄ = SΦT̄ΦT̄ = ST Φ̄T Φ̄ = 0

ST T̄ΦΦ̄ =
1

(T + T̄ )2

SΦΦ̄ΦΦ̄ =
2
3

which immediately implies

σ =
4

(T + T̄ )2
GT GT̄ GΦGΦ̄ +

2
3
(GΦGΦ̄)2

=
4

(T + T̄ )2
(GT T̄ )2(GΦΦ̄)2GT GT̄ GΦGΦ̄ +

2
3
((GΦΦ̄)2(GΦGΦ̄)2)2

=
4

(T + T̄ )2
(GT T̄ )2(GΦΦ̄)2GT ḠT GΦḠΦ +

2
3
(GΦΦ̄)4|GΦ|4

Plugging in (GT T̄ )2=(KT T̄ )2=( (T+T̄ )2

3 )2 and (GΦΦ̄)2=1 we conclude:

σ =
4(T + T̄ )2

9
|GT |2|GΦ|2 +

2
3
|GΦ|4 (24)

Provided that GΦ 6=0, meaning we need only the matter fields to break SuSy, σ consists of
positive definite summands, hence σ>0. Note also that the sign of σ is independent of GT , so the
existence of stable de Sitter vacua for the considered model depends only on the matter fields.

3.2 A Non-Separable No-Scale Kähler Potential with One Mod-
ulus and One Matter Field

Let us consider the following Model:

K = −3 log(T + T̄ − |Φ|2) (25)
= −3 log(T + T̄ − ΦΦ̄) (26)

On side note the fact that this Kähler Potential is a no-scale model, i.e. it satisfies the condition
[14]:

KiKi = 3 (27)

Noting this property the analysis can be largely simplified and calculations easily manipulated.
As for our example we continue with the regular investigation and show that in this example σ=0
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indepentdently of GT and GΦ excluding possible dS vacua. More general models with numer-
ous matter fields are considered in [12] and a recent general study of this type of uplifting in [13].1

We find

KT = KT̄ = − 3
T + T̄ − ΦΦ̄

KΦ =
3Φ̄

T + T̄ − ΦΦ̄
KΦ̄ =

3Φ
T + T̄ − ΦΦ̄

KT T̄ = KTT =
3

(T + T̄ − ΦΦ̄)2
(28)

KT Φ̄ = KT̄ Φ̄ = − 3Φ
(T + T̄ − ΦΦ̄)2

KTΦ = KT̄Φ = − 3Φ̄
(T + T̄ − ΦΦ̄)2

KΦΦ̄ =
3(T + T̄ )

(T + T̄ − ΦΦ̄)2
KΦΦ =

3(Φ̄)2

(T + T̄ − ΦΦ̄)2

So

Kīj =

(
KT T̄ KT Φ̄

KΦT̄ KΦΦ̄

)
=




3
(T+T̄−ΦΦ̄)2

−3Φ
(T+T̄−ΦΦ̄)2

−3Φ̄
(T+T̄−ΦΦ̄)2

3(T+T̄ )
(T+T̄−ΦΦ̄)2


 (29)

Hence

Kīj =

(
KT T̄ KT Φ̄

KΦT̄ KΦΦ̄

)
=

(
(T+T̄ )(T+T̄−ΦΦ̄)

3
Φ(T+T̄−ΦΦ̄)

3
Φ̄(T+T̄−ΦΦ̄)

3
T+T̄−ΦΦ̄

3

)
(30)

KTT T̄ = KT T̄ T̄ = − 6
(T + T̄ − ΦΦ̄)3

KΦΦΦ̄ =
6(T + T̄ )Φ̄

(T + T̄ − ΦΦ̄)3
KΦ̄Φ̄Φ =

6(T + T̄ )Φ
(T + T̄ − ΦΦ̄)3

KT T̄Φ =
6Φ̄

(T + T̄ − ΦΦ̄)3
KT T̄ Φ̄ =

6Φ
(T + T̄ − ΦΦ̄)3

KΦΦ̄T = KΦΦ̄T̄ =
3(T + T̄ + ΦΦ̄)
(T + T̄ − ΦΦ̄)3

KT T̄T T̄ =
18

(T + T̄ − ΦΦ̄)4
KΦΦ̄ΦΦ̄ =

6(T + T̄ )(T + T̄ + 2|Φ|2)
(T + T̄ − ΦΦ̄)4

KT Φ̄T Φ̄ =
18Φ2

(T + T̄ − ΦΦ̄)4
KΦT̄ΦT̄ =

18Φ̄2

(T + T̄ − ΦΦ̄)4
KΦT̄ T T̄ = − 18Φ̄

(T + T̄ − ΦΦ̄)4

KΦΦ̄T Φ̄ = KT Φ̄ΦΦ̄ = −6Φ((2T + 2T̄ + ΦΦ̄)
(T + T̄ − ΦΦ̄)4

KT Φ̄T T̄ = − 18Φ
(T + T̄ − ΦΦ̄)4

KT T̄ΦΦ̄ =
6(T + T̄ + 2ΦΦ̄)
(T + T̄ − ΦΦ̄)4

1A simpler case without matter fields is discussed in [7]. See also [8]
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We expect the de Sitter vacua to occur at vanishing vev of the matter fields, so setting
Φ=0⇔Φ̄=0 we have the only nonvanishing derivatives up to fourth order being:

KT = KT̄ = − 3
T + T̄

KΦΦ̄ = − 3
T + T̄

KT T̄ =
3

(T + T̄ )2

⇔ KΦΦ̄ = −T + T̄

3
KT T̄ =

(T + T̄ )2

3

KΦΦ̄T = − 3
(T + T̄ )2

KT T̄ T̄ = KT̄ TT = − 6
(T + T̄ )3

KT T̄T T̄ =
18

(T + T̄ )4
KT Φ̄ΦT̄ =

6
(T + T̄ )3

KΦΦ̄ΦΦ̄ =
6

(T + T̄ )2

Plugging all these into Sij̄rk̄ we find it to be 0 for any indices. So σ is 0, independently of GT or
GΦ, so we can see that de Sitter vacua are excluded in the considered non-separable case with
one modulus and one matter field.

3.3 A more general case

Any holomorphic function can be expressed in terms of a Taylor Expasion around Φ=0. Suppose
we have an expansion of the form

K = −3 log(T + T̄ ) + A(T, T̄ )|Φ|2 + B(T, T̄ )|Φ|4 + h.o.t. (31)

We observe that σ in this case would be dependent on A(T, T̄ ) and B(T, T̄ ) (though not on the
h.o.t.). However, there is a way of reducing the Problem to a single function by writing

K = −3 log(T + T̄ − f(T, T̄ )|Φ|2) (32)

with f(T, T̄ ) such that KΦΦ̄(Φ = 0)=A(T, T̄ ) and KΦΦ̄ΦΦ̄(Φ = 0)=4B(T, T̄ ). Considering all
dervatives up to fourth order we find:

KT = KT̄ = − 3
T + T̄ − f(T, T̄ )|Φ|2 + O(ΦΦ̄) KΦ = O(Φ̄) KΦ̄ = O(Φ)

KT T̄ = KTT =
3

(T + T̄ − f(T, T̄ )ΦΦ̄)2
+ O(ΦΦ̄) KT Φ̄ = KT̄ Φ̄ = O(Φ)

KTΦ = KT̄Φ = O(Φ̄) KΦΦ̄ =
3f(T, T̄ )(T + T̄ )

(T + T̄ − f(T, T̄ )ΦΦ̄)2
+ O(ΦΦ̄) KΦΦ = O(Φ̄2)

KTT T̄ = KT T̄ T̄ = − 6
(T + T̄ − f(T, T̄ )ΦΦ̄)3

+ O(ΦΦ̄) KΦΦΦ̄ = O(Φ̄) KΦ̄Φ̄Φ = O(Φ)

KT T̄Φ = O(Φ̄) KT T̄ Φ̄ = O(Φ) KΦΦ̄T = KΦΦ̄T̄ =
3(fT (T + T̄ − f(T, T̄ )|Φ|2)− f)

(T + T̄ − f(T, T̄ )|Φ|2)2 + O(ΦΦ̄)
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KT T̄T T̄ =
18

(T + T̄ − f(T, T̄ )|Φ|2)4 + O(ΦΦ̄) KΦΦ̄ΦΦ̄ =
6f2(T + T̄ )(T + T̄ − f(T, T̄ )ΦΦ̄)

(T + T̄ − f(T, T̄ )|Φ|2)4 + O(Φ)

KT T̄ΦΦ̄ =
3(fTT (T + T̄ − f(T, T̄ )|Φ|)2 − 3(fT + fT̄ )(T + T̄ − f(T, T̄ )|Φ|2) + 2f

(T + T̄ − f(T, T̄ )|Φ|2)3 + O(ΦΦ̄)

KT Φ̄T Φ̄ = O(Φ2) KΦT̄ΦT̄ = O(Φ̄) KΦT̄ T T̄ = O(Φ̄)
KΦT̄ΦΦ̄ = O(Φ̄) KΦΦ̄T Φ̄ = O(Φ) KT Φ̄T T̄ = O(Φ)

Hence at vanishing matter fields, i.e. Φ=Φ̄=0

Kīj =

(
KT T̄ KT Φ̄

KΦT̄ KΦΦ̄

)
=




T+T̄−f(T,T̄ )ΦΦ̄
3 0
0 (T+T̄−f(T,T̄ )ΦΦ̄)2

3f(T,T̄ )(T+T̄ )


 (33)

So at Φ=0 we find the only non-vanishing Sij̄rk̄ to be:

ST T̄ΦΦ̄ =
−3(f ∗ fT T̄ − fT fT̄ )(T + T̄ ) + 6f(fT + fT̄ )

(T + T̄ )2
(34)

Therefore

σ =
−3(f ∗ fT T̄ − fT fT̄ )(T + T̄ ) + 6f(fT + fT̄ )

(T + T̄ )2
(GT̄ T )2(GΦ̄Φ)2|GT |2|GΦ|2

=
−3(f ∗ fT T̄ − fT fT̄ )(T + T̄ ) + 6f(fT + fT̄ )(T + T̄ )

3f(T, T̄ )
|GT |2|GΦ|2 (35)

It is obvious that |GT |2 and |GΦ|2 are positive definite provided GT 6=0 and GΦ 6=0. Therefore
it is necessary for the moduli and the matter fields to break SuSy in order to have de Sitter
vacua. So the sign of σ at Φ=0 depends only on −3(f∗fTT̄−fT fT̄ )(T+T̄ )+16f(fT +fT̄ )(T+T̄ )

3f(T,T̄ )
. Provided

it is greater than 0 we achieve de Sitter vacua at Φ=0. Looking at the Taylor expansion we can
rewrite this condition simply in terms of A(T, T̄ ).

4 Conclusion

We have studied the Stability arising in Supergravity Theories and the circumstances for a
symmetry-breaking minimum of the Scalar Potential implying de Sitter vacua. Although the
investigation of the Eigenvalues of the Hessian Matrix is very important, we were able to derive
a rather simple necessary condition depending only on the Kähler Potential and independent of
the form, that the Superpotential W might take. These conditions need to be satisfied to make
sure the possibility of de Sitter vacua to exist. Nevertheless it is not to forget that we did not
find the sufficient condition and the existence of the vacua can not be guaranteed, but has to be
determined by the particular form of the Kähler Potential and the Superpotential. It becomes
sufficent as soon as we can assume complete freedom of W [4].

Summarizing our results we find:

• K=−3 log(T + T̄ ) − |Φ|2 has σ>0 if the matter fields break SuSy, i.e. GΦ 6=0, implying
possible exitence of de Sitter vacua.

• K=−3 log(T + T̄ − |Φ|2) has σ=0 idependently of GT and GΦ, so de Sitter vacua are
excluded.
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• K=−3 log(T +T̄−f(T, T̄ )|Φ|2) we have sgn(σ)=sgn(−3(f∗fTT̄−fT fT̄ )(T+T̄ )+16f(fT +fT̄ )(T+T̄ )

3f(T,T̄ )
),

where sgn is the sign function, if GT and GΦ are non-zero simultaneously. Therefore de
Sitter vacua can only exist if −3(f∗fTT̄−fT fT̄ )(T+T̄ )+16f(fT +fT̄ )(T+T̄ )

3f(T,T̄ )
>0 and the moduli and

matter fields both break SuSy.

The obtained results are relevant in order to identify promising models for the potential in String
Theory. Further study should involve more complicated cases and examples where more moduli
and matter fields are involved, particularly vector superfields. We leave this for future analysis.
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