
A graphical user interface for the Millepede
production system

Luis Alberto Sánchez Moreno
Centro de Radioastronomı́a y Astrof́ısica, UNAM

58089, Morelia, Mexico
Email: l.sanchez@astrosmo.unam.mx

Track-based alignment procedure for CMS involves the determination of O(100, 000)
parameters which handle each module position and orientation. Three algorithms have
been suggested to address this issue, we will focus on Millepede-II which is a non-
iterative method based on linear least-squares fitting that has been successfully used
in other experiments. An environment for using Millepede in CMS tracker align-
ment known as the Millepede production system has been developed, in this paper an
implementation of a GUI in Perl/Tk for this production system is described.

1 Introduction

1.1 The CMS detector

CMS (Compact Muon Solenoid) is one of the
two general purpose detectors [1] located at
LHC interaction points. It is designed to cover
the full solid angle and most importantly to re-
sist the harsh radiation environment that is ex-
pected from the high LHC luminosity.

Both the tracker and the electromag-
netic/hadron calorimeters are enclosed inside
the superconducting magnet, this solenoidal
magnet operates at 4 T and stores 2.7 GJ in its
magnetic which is the highest energy achieved at
a detector and its crucial to its “compact” de-
sign as it bends the trajectories to a relatively
small radius, besides the obvious fact that it
is large enough to allow both the tracker and
calorimeters inside the coil. Great emphasis has
been placed in accurate measurement of high pT

particles, specially muons.

1.2 CMS tracker

The tracker is the device responsible for recon-
structing the trajectories and momentum of the
particles emerging from the pp collisions, in par-
ticular the CMS tracker is the largest silicon de-
tector ever build and represents a significant ad-
vance in detectors technology.

A major requirement has been to achieve at
least a 10% accuracy in the determination of the

transversal momentum pT , specially for muons
as this allow us to determine secondary ver-
texes, especially for heavy hadron interactions
[3]. This implies that spatial accuracy and the
relative alignment of all the planar elements that
make up the detector is of utmost importance.

The tracker system consists of a series of
concentric cylindrical detectors located inside a
solenoid magnet that create an axial magnetic
field, this geometry is commonly used in detec-
tors as it produces circular trajectories in the
azimuthal plane (r, φ).

The detectors form a cylinder by assembling a
set of rectangular sub-assemblies with the right
orientation. This design is claimed to achieve a
98% reconstruction efficiency for muons which
is only possible due to the high granularity in
the innermost regions of the tracker.

Fig. 1: The pixel detector is composed by two bar-
rel layers, it is located surrounding the immediate
vicinity of the interaction region at 4 and 7 cm at
low luminosity and at 7 and 11 cm at high luminos-
ity, while the endcaps go from a radii of 6cm to 15
cm.

1



2 1 Introduction

The layout comprise 25,000 silicon sensors
having a composite surface of 210 m2. The di-
ameter is 2.4 m and the length is 5.4 m. The
innermost component is the pixel detector which
is divided in two structures: the pixel barrel
(PB) for transversal trajectories and the pixel
endcaps (PE) for forward trajectories. If we
move a bit outward we arrive to the silicon strip
tracker which is also composed of several sub-
detectors: the tracker inner barrel (TIB), the
tracker outer barrel (TOB), the tracker inner
disks (TID) and the tracker endcaps (TEC).

Fig. 2: Layout for the silicon strip detector which is
composed by several sub-detectors, namely the TIB,
TOB, TID and TEC.

1.3 Why a silicon detector?

Gas detectors are intrinsically limited in posi-
tion reconstruction due to diffusion, where the
limit on the localization of the drifting ioniza-
tion is of order 100 µm from drift distances ∼ 1
cm. This means that if we want to resolve the
main decay vertex from secondary vertex which
usually are separated by cτ ∼ 10-50 µm (where
τ is the “intrinsic” lifetime of the particles cre-
ated in the main vertex) we need a detection ele-
ment with better spatial resolution than propor-
tional wire chambers [2], for this reasons silicon
detectors are the first choice for inner tracking
detectors.

To see that silicon detectors are indeed suit-
able to this task, consider the typical values of
the “pitch” P , which is the spacing of the elec-
trode strips which collect the signals in silicon

detectors, that are usually in the range of 20-100
µm.

Assuming uniform illumination if only which
strip is recorded then the resolution is the pitch
divided by

√
12 as can be shown with a quite

simple calculation.

σ2 = 〈(y − 〈y〉)〉2 (1)

=
∫

y2 dy∫
dy

(2)

=

∫ P/2

−P/2
y2 dy∫
dy

(3)

= P 2/12 (4)

For a pitch of P=50 µm then the resolution is
15 µm. A more detailed calculation shows that
for a drift voltage of 50 V and a drift distance
of 300 µm then σx ∼ 10 µm.

This is just the resolution we need for an ex-
cellent identification of heavy flavour hadrons,
which will be produced in great quantities at
QCD processes in LHC. For this reason the deci-
sion of using silicon detectors for all the tracking
system was taken, this also has the advantage of
precise momentum measurement through all the
measured path of the particles.

1.4 Tracker alignment: an overview

To achieve high precision (the design value is
around 10 µm) in particle trajectory determina-
tion is of crucial importance to know with high
precision the position of every single element of
the tracker, unfortunately enough this is impos-
sible to achieve at this level of precision by me-
chanical means.

At the time of assembly utmost care was
taken to place each piece as close as possible
to the design position using precision measure-
ments. Also a laser alignment system (LAS)
is integrated into the silicon strip tracker, for
this purpose some of the silicon detectors in the
TEC are transparent to infrared wavelengths
and are located at rings 4 and 6 where detec-
tors that measure a laser which follows a trajec-
tory through the TEC-TIB-TOB can measure
the position of each element [4] .

Despite that, previous experience has shown
that track-based alignment is the optimal
method for aligning large detectors, for CMS
this is a complicated issue as every module needs
6 parameters (3 for position, 3 for rotation)



3

which implies around O(100, 000) parameters
for the whole detector.

Three alignment algorithms have been im-
plemented. The first one is the Hits and Im-
pact method which minimizes a local χ2 func-
tion constructed from the track hit-residuals on
the sensor, this is an iterative method and its
rather computationally light as it avoids large
matrix inversion. The Kalman filter algorithm
is another iterative method that avoids large
matrix inversion and can use prior information
from mechanical alignment surveys and the laser
alignment, in this method the speed of conver-
gence depends on the layer. Finally, Millepede
is a well tested algorithm which in its previ-
ous version has been used successfully at H1,
CDF and other experiments. This is a non-
iterative method based on linear least-squares
fitting and achieves high precision, it involves
the inversion of large matrices but this new ver-
sion is equipped with efficient algorithms for
sparse matrices and can handle the problem in
reasonable CPU time.

As mentioned before CMS will perform a
track based alignment, with data samples com-
ing from [5] :

• High pT muons from Z,W: These are al-
most ideal tracks for alignment because of
their high transversal momentum and lit-
tle scattering in the tracker material. This
requires a powerful enough beam to pro-
duce them, so they might not be available
as soon as the LHC is commissioned.

• Cosmic muons: The advantage of cosmic
rays is that they are available before the
beams start colliding so we can start the
alignment process in advance, they are spe-
cially useful for the barrel tracker and the
muons detectors.

• Beam halo muons: Near horizontal beam
halo beam are valuable for alignment of the
endcaps, this will be available as soon as the
LHC is commissioned with single beams.

• Muons from J/Ψ and b hadron de-
cays: This muons despite lacking high pT

are useful since they will be available since
the early phases of LHC when luminosity
will be still rather small.

• Isolated tracks from QCD events: At
low luminosities these tracks are the only

option available, evidently they suffer from
multiple scattering although they might
still be useful for the pixel detector.

2 The Millepede algorithm

Most track based algorithms are based on the χ2

minimization principle. In the CMS tracker one
usual track consists of 20 measurements, a helix
track can be determined from only five parame-
ters which implies that it is overdetermined from
measurements. Then this measurementes um

are compared to predictions of the track model.
The algorithms try to minimize the residuals be-
tween the track hits and the track model.

The Millepede algorithm is a linear least-
squares method focusing on certain type of
problem where parameters can be separated into
global and local. This method is relevant for
tracker alignment based on tracks measurement
where we are interested in finding adequate val-
ues for global parameters which specify the po-
sition of the modules and not in the details of
the track itself.

The predicted measurements un depend for
track j, on the vector of track parameters τj and
the parameters p that describe the position, ori-
entation and deformation of the detectors. The
residual is then uij;m − uij;p(τj ,p) making the
normalized residual zij given by:

zij =
uij;m − uij;p(τj ,p)

σij
. (5)

Then χ2 is given by

χ2(τ,p) =
∑

j

∑
j

z2
ij(τj ,p)

 (6)

which should be minimized for all τj and p.
Generally, all the overdetermined parameters
are usable for alignment purposes.

Minimizing this function is a complicate issue
and we will only sketch it, for more details see
[7]. It first involves the linearization of normal-
ized residuals, this essentially consists of creat-
ing a a matrix with the values of the residuals
and its first order derivatives. The geometric
correction parameters p are known as global pa-
rameters as they are not specific to a single track
or event. The parameter corrections for a track
are specific of the event to which the track be-
longs so the τj are known as local parameters.
The number of local parameters can be order of



4 3 The Millepede production system

millions, nonetheless we are only concerned with
global parameters which are around 50 000.

The next step is matrix reduction, which is
mandatory considering the size of the matrix.
The resulting matrix only contains global pa-
rameters and is only possible because the origi-
nal matrix has some particular structure.

Constraints are then imposed using Lagrange
multipliers and the resulting system should be
solved, for this purposes efficient sparse matrix
methods are used which allow a computationally
feasible task, otherwise the CPU time will be
excessive for practical purposes.

Because analysis time is a major concern it
is crucial to collect information efficiently in
Millepede. The collection of measurements and
derivatives from data has been parallelized. For
this purposes the program is split in two parts,
one part (Mille) produces binary files with the
data needed for the alignment procedure and
has been interfaced to the CMS softwarem the
remaining part (Pede) determines the alignment
parameters from the binary input and is a stan-
dalone FORTRAN program. This structure also
allows Pede to be used in other experiments if
required as it is kept experiment independent.

3 The Millepede production system

The Millepede production system (MPS) is a
set of Perl scripts developed to allow the user to
run a large number of Mille jobs, to fetch the
output, and feed it into the Millepede program.

The Millepede II procedure is divided in two
main steps: Mille and Pede. The first step,
Mille, processes all tracks and hit residuals and
prepares the information for the final global fit,
which is written out to a ”Millepede binary file”.
The second step, Pede, reads the information
from all binary files and performs the global
fit that results in the full set of alignment con-
stants.

3.1 Usage of MPS

The main idea of MPS [8] is that it will set up
and control a job series performing one Mille-
Pede alignment task. Every job series should
be set up in its own particular directory, and
the MPS commands will create and maintain
a subdirectory structure and additional files in
this directory. All MPS commands referring to
a job series must be issued from the same UNIX

working directory. The setup parameters and
the current state of each job are maintained in
a file named mps.db, all job-specific information
is stored in a directory tree named jobData. For
each job a directory jobData/jobNNN is cre-
ated, where NNN stands for the three-digit job
number. The maximum number of Mille jobs
MPS sets up in parallel is 999. The Pede job is
assigned a special directory jobData/jobm. As
a result, an arbitrary number of alignment job
series can be run in parallel without interfering,
but one should never attempt to set up two job
series in the same directory. For example, the
mps stat.pl command will always show the jobs
related to the job series that was initiated in the
same directory.

3.2 List of MPS scripts

The MPS consists of a series of scripts imple-
mented in Perl, essentially every routine con-
trols a different part of the process, from the
setup to the retrieval of jobs. The scripts are:

• mps setup.pl: This is the main command
that sets up a job series and defines what
should be done. After mps setup.pl, the
jobs are in SETUP state.

• mpsfire.pl: This routine is the one that ac-
tually submits the first nJobsSubmit jobs
that are in SETUP state.

• mps stat.pl: This command is used to dis-
plays the updated status of all jobs belong-
ing to the job series, making it a monitoring
tool. The possible status of a job is further
explained in fig 3.

• mps kill.pl: Cancel all or a selection of jobs.
The cancelled jobs will be moved to FAIL
state.

• mps fetch.pl: Fetch all jobs that are in
DONE state, including the Pede job if there
is one, and perform checks on the output.
After mps fetch, the jobs will be moved ei-
ther to OK or to FAIL state.

• mps retry.pl: In case one job was sus-
pended or ended with the fail status, this
routine allows to retry all or a selection of
jobs. The retried jobs will once more go to
SETUP state, and can be resubmitted with
the mps fire command.



5

• mps auto.pl Calls mps stats.pl and
mps fetch.pl in intervals of ’seconds’ sec-
onds to update the statistics of the mille
jobs. Then it tries mps fire.pl -m to submit
the merge job. Quits if that is successful.
This means that it is continually moni-
toring the status of jobs and fetching the
output of finished jobs.

• mps save.pl: It essentially saves all the out-
put of the process, which is usually scat-
tered in multiple files.

Fig. 3: We illustrate the situation of jobs status in
this diagram. Jobs are first set up (using mps setup)
and then submitted (that’s managed by mps fire).
Once the jobs are running is possible to get the sta-
tus of each one which should pending, running or
suspended, after the jobs ends successfully the sta-
tus set as done, otherwise the user has the option of
retrying it.

4 Implementing a GUI for the MPS

Considering that MPS is written in Perl, the use
of Perl/TK for the GUI follows rather directly.
It should be added that there are many GUI li-
braries written for Perl like Gtk2-Perl, although
Perl/Tk is probably the most stable one, at least
it is the most tested as it has been used for many
years in all sorts of projects allowing enough op-
portunities to iron most of the wrinkles of the
code. Another thing that should be mentioned
is that the GUI itself can be done in any other

language as it only calls for Perl scripts, so it
is in principle possible to do it in some fancier
library like Qt which also has a fancy IDE.

The decision for Perl/Tk was mostly based
on the fact that is an interpreted language
that has been ported to practically every plat-
form/operating system so it can run on practi-
cally every computer in which it is correctly con-
figured. Because the code is interpreted there is
no necessity to recompile binary files if a differ-
ent computer is used so the user does not have
to worry about compatibility issues, this is spe-
cially important when a new operating system
is installed (or more usually, just updated) in
the lxplus cluster1 which is something to be ex-
pected to happen every few years.

For our work we found an extremely useful
(and rather unknown) tool for GUI building
known as ZooZ [9]. Using ZooZ it’s possible to
build a rudimentary GUI that can be exported
to Perl/Tk and once this foundational code is
obtained it’s possible to modify it, and because
it is written in Perl we can essentially use the
same kind of code that is already implemented
in MPS.

Fig. 4: ZooZ is a Perl/Tk application that allows
the production of GUI’s in a simple way inside a
graphical environment. The elements of the GUI
are available as widgets and their properties can be
easily edited. It uses its own format for storing the
windows implemented in it but it can easily export it
to Perl/Tk which is then possible to modify in any
text editor.

We started implementing an interface for
mps setup.pl, that is certainly the most com-
plex, as the other scripts have far less param-
eters (if any at all). For this task we essentially

1 Current implementations of MPS must run on
CERN’s lxplus cluster.



6 4 Implementing a GUI for the MPS

needed user input for specifying paths to data, a
config file and some scripts, in addition to that
the number and the batch queue of jobs should
be specified and a name for the batch system is
also required.

Our first GUI for this was a rather crude
implementation where we only had some input
fields for every single of the mps setup, this was
essentially the same option as just using the con-
sole where the user still needed to write all the
parameters in the correct order to get it every-
thing started.

Fig. 5: Our first attempt of a GUI. It consisted of
a collection of input fields for every parameter of
MPS, the output was printed in a new window after
pressing the SETUP JOBS button.

After this basic interface had been imple-
mented we designed a new one using ZooZ which
allowed us to create a “skeleton GUI” on which
we could later add the required functionality.
All the paths to user defined directories were
changed to a browser input (the user could still
manually add a route if desired) and some of the
parameters were now available as radio buttons
or menus. A new read-only text output field
was added to the button of the window allowing
immediate visualization within the same GUI so
the input and output could be displayed at the
same time.

At this stage of development the GUI was
more of a ”road plan” and little (if any) func-
tionality was actually implemented. The menus
were empty, there were no variables associated
with the input fields, the buttons did not per-
formed any action when clicked and the output

window was not able to fetch anything from the
terminal. Despite that it included enough ele-
ments (widgets in Perl/Tk terminology) to work
as a solid base on which to add code to perform
the required actions like retrieving the input into
variables, present the user a readable menu and
presenting the terminal output of MPS in the
button part of the window..

Fig. 6: The“skeleton GUI” produced by ZooZ, the
paths to files/directories to which the user has con-
trol could now be easily selected in a browser. Sys-
tem paths are intended to be typed in an input field.
Finally the parameters controlling the system/queue
class and the number of jobs were implemented in
menus. The option to set a Pede job was intended
to be selected by a radio button. As is evident from
the figure, the menus are still empty.

The next stage of development consisted of
actually getting this “dummy” GUI to work,
this was essentially achieved by implementing
a set of subroutines that managed the task of
variable fetching and storing the terminal out-
put in a variable to be displayed. The variables
were defined globally which has the advantage of
making possible to retrieve their value from any
part of the code in case of future modifications
that require it.

When this was achieved, we decided to im-
plement three additional scripts to the interface:
mps stat.pl,mpsfire.pl and mps fetch.pl which al-
lows us to have an almost full functionality for
the whole MPS . This task was quite similar to
the implementation of mps setup and it will not
be discussed in detail.



References 7

The current implementation of the GUI has
basic functionality for the central MPS scripts:
it is possible to setup jobs, submit them, fetch
them once they are finished and monitor the sta-
tus of the jobs while they are running.

Fig. 7: The fully functional GUI. The first two
columns fetch all the necessary input to setup jobs.
The last button of the second column is used to mon-
itor the status of jobs. Once the jobs are set up the
third column acquires the necessary information to
send and fetch them.

Acknowledgments

This work was done during DESY Summer Stu-
dent Program 2008. The author thanks all
the people in charge of the program specially
Joachin Meyer and Andrea Schrader for orga-
nizing an unforgettable experience at DESY-
Hamburg.

Financial support for travel expenses came
from the particles and fields division of Mexi-
can Physical Society who organizes summer in-
ternships for students, with special mention to
Heriberto Castilla and Ricardo López.

My supervisor at home, Susana Lizano al-
lowed me to spent two months away at the only
time of the year when we can really work, it goes
without mention all the support from her in all
these years.

Finally I am particularly grateful with my su-
pervisors at DESY: Silvia Miglioranzi and An-
drea Parenti who have been very friendly and
helpful through all the program (even before it

actually started) and contributed to a really nice
working environment. I just can hope I filled
their expectatives for the project!

References

[1] S. Chatrchyan et al. (CMS Collaboration),
JINST 3, S08004 (2008). arxiv:0709.3360

[2] Dan Green, High PT Physics at Hadron
Colliders, Cambridge University Press,
2005.

[3] Dan Green, The Physics of Particle Detec-
tors, Cambridge University Press, 2000.

[4] R. Adolphi, Construction and calibra-
tion of the laser alignment system for
the CMS tracker, PhD. Thesis, RWTH-
Aachen, 2006.

[5] F.P. Schilling in Proceedings of the 1st LHC
Detector Alignment Workshop, 2006.

[6] G. Flucke et al. , CMS silicon tracker align-
ment strategy with the Millipede II algo-
rithm. JINST 3, P09002, 2008. .

[7] Volker Blobel, Millepede II: Lin-
ear Least Squares Fits with a Large
Number of Parameters. Available at
http://www.desy.de/ blobel/mptwo.pdf.

[8] Reiner Mankel, Andrea Parenti, CMS
Web Documentation: The MillePede
Production System (MPS), available at
https://twiki.cern.ch/twiki/bin/view/CMS/
SWGuideMillepedeProductionSystem#The
mps setup Command

[9] Zooz is available free of charge at
http://search.cpan.org/∼aqumsieh/ZooZ-
1.2/ZooZ.pl.


