A new DAQ for the ZEUS MVD telescope

Summerstudent Program 2008, DESY

Christian Rudolph®

@ Technische Universitdt Dresden

16th September 2008

Abstract

This project covers modifications and improvement of the data acquisition soft-
ware for the ZEUS MVD telescope at the DESY test beam. It shortly characterises
the ZEUS test beam and explains basics of the telescope and hardware. The main

part describes the data acquisition and data analysis of the telescope data.

Contents

1 Introduction 2
2 The DESY Test Beam 2
3 The ZEUS MVD Telescope 3
3.1 The Telescope Reference Planes 3
3.2 The VME Crate e 3
3.2.1 The CAEN V550A ADC module 4

3.2.2 The CAEN V551B Sequencer Module 5

3.3 Trigger System oL 5

4 Software 7
4.1 The Data Acquisition Software. 0., 7
4.1.1 The Calibration 8

4.1.2 Thedata takingrun oL 8

4.1.3 The display data takingrun 0oL 9

4.2 The Data Analysis Software 11

5 Results 12
6 Conclusion 14
7 Acknowledgements 14

1 Introduction

Test beam facilities are very important during the phases of research and development
but also during the commissioning of a high energy physics detector. DESY offers at its
site a 6 GeV electron test beam facility and necessary infrastructure, such as two beam
telescopes. Beam telescopes are used to determine the particle tracks of the test beam
very precisely. This information is then used to qualify detector modules, for example
figures of merit such as efficiency and resolution are measured. One of the available test
beam telescopes is the so-called ZEUS MVD telescope.

In the following sections the DESY test beam and the MVD telescope will be described.
The main work of this summer was focused on the improvement of the data acquisition

system of this telescope.

2 The DESY Test Beam

y et
le=

secondary

target

primary

collimator

DESY II

Figure 1: Generation of electrons for the DESY test beam.

The electrons/positrons for the test beam are provided as sketched in Figure 1: a
Bremsstrahlung beam is generated by a 7 um carbon fibre (primary target) in the cir-
culating electron synchrotron beam DESY II, a metal plate (secondary target) is used
to convert these Bremsstrahlung photons into electron/positron pairs, a dipole magnet
spreads the beam out into a horizontal fan, and a set of collimators form the extracted
beam. The magnet is used to control the energy of the beam. This parasitic test beam
provides electron energies from 1 to 6 GeV/c. In this range the electrons are minimal
ionising particles (MIPs). Therefore the physics of the test beam line is simple. The
Bremsstrahlung spectrum has a 1/E dependence. The energy distribution of the elec-

tron/positron pair conversion is nearly flat. The accelerator control room handles the

fibre target and the beam intensity in DESY II. The test beam user contacts the control
room if changes are necessary. The magnet settings for the selection of the momentum,
the choice of the conversion target and the collimator settings are under control of the

test beam user.

3 The ZEUS MVD Telescope

The ZEUS MVD telescope was was originally designed and constructed by the ZEUS
collaboration to test the modules for the Micro Vertex Detector (MVD). Since then it
was used by many different collaborations to study newly developed detector systems. It
mainly consists of three detector reference planes, a trigger system, readout electronics,
and software. The silicon detectors are located in an electric shielded metal box with
very thin aluminium windows on beam line to minimize multiple scattering. On both
ends of the telescope, plastic scintillators with photo multipliers are placed for triggering
purposes, one at the rear and two at the front. All active components are mounted on
an optical bench, which is situated on a translation stage controlled by the user from the

testbeam hut.

3.1 The Telescope Reference Planes

The beam telescope consists of three reference detector modules (Ref.det 1, 2 and 3).
Each of them provides two space coordinates (X and Y) of a track through the telescope.
The Z coordinate is defined by the telescope geometry. The modules are a version of
a CERN development. They consist of two 300 pum thick single-sided silicon sensors of
32mm x32mm size with a strip pitch of 25um and a readout pitch of 50um; the strip
directions of the two sensors in one module are perpendicular to each other. The 640
readout strips on each sensor are read out by the VA2 chips'. All modules have a very
good signal-to-noise (S/N) ratio for MIP (80 < S/N < 130), and a high intrinsic position

resolution of better than 15 um.

3.2 The VME Crate

The main data acquisition electronics is positioned in a VME crate, which holds two
V550A ADC modules, one V551B sequencer module, and a single-board computer (CE-
TTA) holding a PowerPC processor providing the VME-bus and network access. A picture
of the crate with its modules and wiring is shown in Figure 2. The V550A modules each

provide two ADCs. Since there are only three telescope planes, one of them is unused.

VA2 chip product of IDE AS, Norway

Figure 2: The VME crate at the test beam area 22.

3.2.1 The CAEN V550A ADC module

The V550A C-RAMS (CAEN Readout for Analog Multiplexed Signals) is a VME module
which holds two independent ADC blocks. A photograph of this module is shown in

Figure 3. Each of the blocks can handle positive, negative and differential input signals.

Figure 3: The CAEN V550 ADC.

The number of input channels must be specified before data taking. When an external
CONVERT signal (from the V551 sequencer module) occurs, the input signal is sampled
by the ADC into a 12 bit digital value. The module has an internal storage for pedestal and
threshold values for every input channel. Thus, after the conversion, if the digital value
is over threshold for the appropriate channel, the corresponding pedestal is substracted
and the result is put into a first-in-first-out (FIFO) logic. Also, if data are in the FIFO,
the module goes into DATA READY state signaling that data can be read via the VME
bus. The V550A module holds several important registers which can be accessed by the
VME bus, given the right address. The two most important are:

e the WORD COUNTER registers, which are read only registers holding 11 bit for
each ADC block, containing the number of data in FIFO

e the FIFO registers, read-only registers of 32 bit, where the first 12 bit contain the
channel data, the next 11 bit contain the channel number, followed by 7 unused bits

and two control bits which are of no interest right now

3.2.2 The CAEN V551B Sequencer Module

Figure 4: The CAEN V551 Sequencer

The V551B C-RAMS sequencer (see Figure 4) is a module which handles the data
acquisition of multiplexing chips (such as the VA2 chips used at the telescope). It controls
the signals going to the V550 modules. Again the number of channels must be given
to the module first. After receiving the multiplexing trigger signal, the module runs a
programmable duty cycle in which it sends signals to both the front-end chips (VA2) for
multiplexing purposes and the V550A modules via VME to make them start the analog-
to-digital conversion. Time steps in this duty cycle can be set by the user; with the
current settings one duty cycle takes about 5 us. The module also generates a data ready
signal when one of the V550A modules is in data ready state, this signal can be read out
via VME.

A sketch how the modules in the VME crate are linked is shown in Figure 5

3.3 Trigger System

As mentioned above the trigger of the telescope consists of 3 scintillators. Their output
signals are combined in an AND coincidence logic to form a trigger signal. This signal
is then used by the V551B sequencer module to initiate the conversion cycle (see sec-
tion 3.2.2). An automated trigger signal for the use without beam can also be created

using a NIM gate generator.

trigger from hut

(B1)

BUSY to hut TTL.
-

(B2)

@ s00hms

V551B N V550
co©\\ IN 8 Mes
t1 A ®

oRG|
#%

’ fla

Tot
BU%
CL|

teble
Hescope

Te il

:
§

Tel 1l

Figure 5: The cabeling of the CAEN modules within the VME crate.

Trigger for telescope

I;Ieass do not remove this cables.
You need to change somethin,
Please change it back at the eng:

1001 Maria Gragor 53035

Figure 6: The telescope trigger coincidence logic and gate generator

4 Software

4.1 The Data Acquisition Software

During my work as a summer student I modified the existing telescope data acquisition
software written in June 2008 by Lukasz Macewski, called DAQ-test. Different versions of
the program are located on the zenpixell2 machine, directory /home/Lynz/C604b/Home/eudet/.
The executable can be found in different folders (see below) and is called daq.exe It is
based on a program written by Sergey Fourletov called SI-tele. The program itself is
divided into 4 sections, two of those with two subsections each, and three additional

functions:
e 3 main routine

the user menu

e run part, optional with data display

calibration part, either with software or external trigger

a function to reset all pedestals and thresholds in the V550A modules to zero

two functions for interrupt signal handling

The main routine initializes the V551B and V550A modules with a specified number
of channels (1280) using functions defined in an external VME library. It furthermore
links the signal handler functions with the appropriate signals and then starts the user

menu. The user menu shown in Figure 7 is where the user interacts with the program.

rt Run
rt Fun in the display mode
Calibration with the auto trigger

Calibration with the external trigger

Set pedestals and thresholds to O

ouit

Figure 7: The console view of the DAQ menu

By selecting one of the shown letters (not case-sensitive), the user can choose whatever
he likes to do. Before a new run can be started, though, one has to make a pedestal and

noise calibration run.

4.1.1 The Calibration

In this part of the program it simply takes 1000 events and determines pedestal and noise
values for every channel of the three telescope planes. In auto trigger mode, the program
itself sends a signal to the V551 module causing it to start a conversion cycle, in external
trigger mode the trigger signal is taken from the trigger input. The calibration should
only be made with closed beam shutter, as no particle tracks should be taken into ac-
count. The procedure is quite simple. At first, the program waits for the DATA READY
signal from the V551 module, then it looks into the WORD COUNTER register of each
(active) ADC of each V550 module and then takes as much data out of each FIFO as
written in the WORD COUNTER. As the taken data should simply be background, an
easy calculation is done by the program to calculate the pedestal and threshold for each

channel:

n

1
Ped; = — Z(ChannelDataivj) (1)

n“
j=1

/1 . S)
Thr; = Ped; + 2 x . 1 x (Z(ChannelDatai’j) — H(Z(ChannelDataLj))) (2)

j=1 j=1
Where i is the channel number and n is the number of entries in the channel. So
the pedestal for a channel is simply the mean value of all entries in that channel, while
the threshold is set to the mean value plus a 2-sigma deviation. These values are then
written to the pedestal /threshold memory of the V550 modules for each channel. At the
end of the calibration run, several simple ASCII histograms with the gained pedestal and

threshold information for each telescope plane are printed on the screen.

4.1.2 The data taking run

The run mode is quite similar to the calibration run, except that the user is required
to give some extra specifications on the run. At first, a run number must be entered.
To store the run data, a file si_runX.dat in the /DATA/ subfolder is created, where X
is the entered run number. If that file already exists, the user is asked if it should be
overwritten. Next the user is asked for a number of events, after which the data taking
should automatically stop. If zero is entered, the data taking runs infinite. Finally the

user has the chance to enter a comment which will be stored in the data file aswell. Now

the program writes some header information to the file, containing start date and time
of the run and some information about ADC status and V551 module conversion cycle
time configuration. The run itself is analog to the calibration run, except that all data
of one event is put into one single integer array called EVENT. At the beginning of each
event,the event number, and the event time in seconds and microseconds is added to the
EVENT array. Then, all different ADCs are asked for the amount of data in their FIFOs,
and this data is read out and written to the EVENT. Note that both channel number and
channel data are now stored in one integer number,and must be separated later in data
analysis. After each ADC a separation pattern of 4 bytes(= memory size of one integer
value)is added to the EVENT. This allows to separate the different telescope planes in
one event later during data analysis. At the end of the event (when all FIFO data has
been read out), an end pattern is added and the EVENT array is written to the data file.
For the next event the EVENT array is reset afterwards.

4.1.3 The display data taking run

This was the main part of my work, and I had several approaches to online data display
from different directions. They all have in common that the display run is basically
a normal data taking run with all its specifications, plus an additional part where the
online display is handled. The idea is to take every 10th event in the detector and display
it as follows: For each of the three telescope planes two histograms should be drawn, one
for the silicon strips in X-direction and one for the strips in Y direction (the Z axis is the

beam axis). To achieve this I made three different approaches:

e writing a display file:
In this program the display routine simply puts a display file containing the EVENT
array to a separate display folder every 10 events. If this display file already exists,
nothing is done at all by the program. The data display itself is made by an-
other (ROOT-based) program called disp running on zenpixell2, which has ROOT
libraries installed and access to the location of the display file. It is located in
zenpizell2: /home/Lynz/C604b/Home/eudet/ODisplay/. This additional program
reads the display file and uses the separators set by the DAQ to distinguish between
the different telescope planes and X- and Y-orientated strips. It then fills an TTree
object with the event data, which is then used to easily fill a set of 6 histograms
and draw them. After the display file is fully read, it is deleted by the disp pro-
gram, which then waits in a loop for another display file to be created by the DAQ.
Although the principle should work fine, it did not during several test runs. The
problem is not the creation and read-out of the display file, but the time it takes

for the different machines to recognise that changes inside the display file directory

have been made. So the DAQ still sees an existing display file, therefore does not
create a new one, while the online display program has deleted the file almost one
minute before. Because of these file system problems, the attempt has not been
followed further. The executable of the program can be found in the /DAQ-disp-1/
subdirectory on zentele: /nfs/C604b/Home/eudet/.

using sockets to send the display data through the network:

After the display file approach did not work as expected, my next intention was
to use the socket(); command in c++ to create a server-client-relationship between
the DAQ (server) and an online display program analog to the one described above.
Unfortunately all attempts to add network capabilities to the DAQ have resulted
the program collapsing, and I did not find the reason for that so far.However this
option seems to be the most promising possibility to add effective online data display
capabilities to the DAQ software. The executable of the program can be found in
the /DAQ-disp-2/ subdirectory on zentele: /nfs/C604b/Home/eudet/

using ASCII histograms:

Finally, I remembered the built-in ASCII-histogram option of the DAQ mentioned
in the calibration section. To create and fill appropriate ASCII histograms, several
arrays besides the EVENT array described in section 4.1.2 were needed because of
the given program structure. At first, three additional arrays are created, one for
each telescope plane. Each of these arrays is filled with the event data when the
corresponding ADC is read out by the DAQ program, while all data is still written
to the EVENT array. Every 10th event, two additional arrays are created, one for
X-strips and one for Y-strips. Then the 3 arrays for each plane, which still contain
both information about channel number and channel data, are converted into the
two arrays for X and Y. This is done by first separating the channel number from
the channel data, and then determining if the channel number corresponds to a
X or Y readout strip: the first 640 channels are linked to the X-strips, channels
640-1280 are connected to Y-strips. At the end two histograms are drawn, each
virtually separated into three parts (one for each telescope plane), each covering
640 channels:

This solution is rather slow and ineffective, as one might lose some events due to
the time it takes to create the ASCII histograms. It is also not quite comfortable to
see the histograms more or less flashing by in the console. But at the moment this

version is the only one that works properly.

10

Figure 8: Fxample for the ASCII histogram online display output

4.2 The Data Analysis Software

To analyse data taken by the DAQ, an existing ROOT-based software called TELAna is
available on zentauruspc:/home/eudet/datal /TELE zentele/TELAna. To run it, how-
ever, one not only has to copy the data file from the DAQ /DATA/ directory to the
TELAna /DATA/ directory, but also has to create a configuration file, in which the tele-
scope characteristics such as number of planes, Z-distance of the planes, number of silicon
strips for each direction (X and Y) for each plane and several other values have to be
stored. Once this is done, one has to type ./tel X to run the analysis, where X is the run
number. The program then automatically creates several of histograms. The program is
very modular; to change its behavior, though, one has to edit the source code of the main
program and recompile it. The main program calls the contructor of the class TELFile,
in which the run data file is opened and all data is read in and filled to a TTree object,
which in turn is written to a root-file. Besides the constructor, the TELFile class has 4

different procedures:

e SimplePed()
This function is quite similar to the calibration run in the DAQ), since it simply
calculates pedestal and noise values for a run without beam. It reads the T'Tree from
the root-file created in the contructor and creates ROOT histograms for pedestal,

noise and the ADC signals for each plane’s X and Y orientated strips.

e PedNoi()
In this function pedestal and noise for each channel are calculated and displayed
aswell, but this time each single event is compared with all other events before and
is rejected if it does not lay within 3 standard deviations from the mean value of all

events before.

11

e FindClusters()
This function finds detector hit clusters and performs an alignment of the detector
planes, correcting possible angular misalignment of the telescope planes. It uses

another class called TELTrack to reconstruct the particle tracks.

e HitNtuple()
Here a ROOT ntuple with the track detector hits is built from the cluster and track
information gathered in the HitNtuple() function and the TELTrack class functions.

The analysis software is very complex and powerful. Unfortunately, it is also poorly

commented, so it is very difficult to extract information how it actually works.

5 Results

Since the DESY test beam was only available right at the end of the summer student
program 2008, only one real data run with the new data acquisition software could be
done. I started a simple data taking run with pedestals and thresholds in the V550A ADC
modules set to zero. The intention was to determine pedestals and noise of the readout
channels with the TELAna analysis software. As I did so, it turned out that the results
looked not as we expected (see figures 9 and 10).

Instead of being rather flat and commonly distributed, the pedestals and noise are very
chaotic. In addition, they are also pretty high. The first intention was that something is
wrong with the wiring, as this had been modified and improved since the last data run.
However, no error could be found there.

A comparison of the analysis of binary run data files acquired with the older Sl-tele
software (see section 4.1) with the analysis of latest binary run data showed that the
error is obviously software-generated. Somehow the output binary data files of the new
data acquisition program are corrupted. Since this comparison had never been done before

in my summer student program, the error remained undiscovered till the end.

12

3|

3
S
<

|

Ped X3
o eyt Q,
s

et 2 S
F 331 5
§° £l Sl
Brar 230 3
& & m & f
o1z 25|

| .
A
008 i
006F

0.04F

L) H‘“l
WO FTRRTIY 1 O o (A PRI i
0 100 200 300 400 500 600 100 200 300 400 500

l.h

600

Chanel number Chanel number
Ped_Y_1 Ped Y 2 Ped_Y_:
Zsf éuo gm
3 Zso) E
3 $ H
£aol £n oo
3 g 3
£ & 4
70 [
‘ 0
30 60
504
20- 40
40
10 i 2
20
.~ il G SRR TP (AT L OO, NN SO il 1)
00 200 300 400 500 600 00 200 300 400 500 600 %100

300 400 500 600
Chanel number

Chanel number Chanel number

Figure 9: reconstructed pedestals of the test beam run on 11th September 2008

o I
ge g
g 2
%’I.B E r
] L
14 F
12 20|

1 15
0.8
0.6; 10|
0.4

5

0.2

I L I | I I
% ~""f00 200 300 400 500 60O

il
00 200 300 0~ 600 %
Chanel number Chanel number
Noi Y 2

= = =
8 Sa 8s0
Sr0- g <
8 8 8
260 2 240
S0

%0
4
30, 20
20|

10|
10|

Rt - eabun-cl PO T %
900 200 300 400 500 G0 00 200 300 400 500 600 %100 200 300 400
Chanel number Chanel number

00
Chanel number

Figure 10: noise distributions of the test beam run on 11th September 2008

13

6 Conclusion

During my work I proved that online data display with the current DAQ is possible. I
outlined different possibilities to implement the online data display. In conclusion one
can say that the server-based data display is probably the best sollution, even though it
is not working yet.

Thus, the next steps are very clear:
e One has to find and fix the error in the new DAQ that creates corrupted binaries

e One has to find and fix the bug in the server-client-based data acquisition software.
I assume that this approach is most the most promising attempt to build in effective

online data display in the current DAQ

e With proper network capabilities added to the DAQ, one might think of enhancing
the data acquisition to become completely server-based. In this case the user could
easily program his own client to receive the event data, and even control the DAQ

program remotely.

7 Acknowledgements

I want to thank Ingrid-Maria Gregor for overseeing my project work, giving me hints
where to find essential information, explaining the test beam and telescope setup and
answering my questions. Thanks to Jolanta Sztuk who provided lots of information about
the data acquisition and data analysis software and helping me whenever I had problems
with programming. Furthermore I want to thank Ulrich K6tz who explained several
hardware components and their functions. My thanks also go to Krzysztof Wrona, giving

programming solutions and hints whenever I got stuck somewhere.

References

[1] Characterisation and Monte-Carlo study of the T22 Electron Test Beam Line at
DESY 11, H.de la Torre Perez et al., EUDET-Memo-2007-49

[2] MOD V550 Technical Information Manual, Revision n. 3, CAEN S.p.A, 2002

[3] MOD V551 Technical Information Manual, Version 1.2, CAEN S.p.A, 2003

14

