
DESY Summerschool 2008

New tools for dCache∗
Malte Nuhn ,

DESY-IT, RWTH Aachen

Abstract. dCache is one possible implementation of LCG’s Storage El-
ement. It offers a comfortable way to access dCache’s namespace by
exporting metadata via NFS. dCache’s current implementation (pnfs)
uses NFS2/3 which unfortunately provides weak security and has other
disadvantages. To avoid using the NFS-export but still provide straight-
forward access, a set of tools is developed. These tools query dCache’s
new Information Provider to provide loadbalancing and automatic re-
trieving of dCache’s doors. In order to achieve good performance, a
new caching-service for dCache’s IP is implemented. These tools are
mainly used by users in the National Analysis Facility (NAF) but also
other sites seem to be interested in them.
Key words and phrases: dCache, dcTools, pnfs, information provider,
caching

.

1. INTRODUCTION

In order to cope with the huge amout of data pro-
duced by the Large Hadron Collider (LHC), the data
is distributed among all datacenters participating in
the LHC Computing Grid (LCG). Amongst others,
these datacenters need to install so called Storage
Elements (SE), which provide access to storage ca-
pacity via well defined protocols. A popular imple-
mentation of SEs is the dCache-System1.

2. DCACHE

dCache is a disk-caching system, developed by
DESY and Fermilab. Eventhough dCache was ini-
tially developed to provide disk caching for tertiary
storage, it is now often used as SE without tape
backend. It provides a single name space across the
entire pool of disk servers, making it look like a sin-
gle filesystem to the user. For more information see
(1).

RWTH Aachen, (e-mail:
malte(dot)nuhn(at)rwth-aachen(dot)de).

∗Supervisor: Andreas Gellrich & Yves Kemp
1Other implementations: CASTOR, StoRM, ...

2.1 dCache architecture

dCache consists of multiple subservices that can
- for scalability reasons - be spread among differ-
ent machines. (see fig. (1) and (6)). The so called
Pool Nodes manage the data storage. dCache al-
lows you to install multiple pool-nodes, which can
be fairly heterogeneous. Admin Nodes run adminis-
trative services and modules to keep the pools up-to-
date and can be put onto different machines, as well.
Door Nodes provide file access through different grid
transfer protocols. Being responsible of serving all
of dCache I/O, these machines must have sufficient
CPU and memory to handle the user’s requests. In
larger installations, multiple doors are used. The
pnfs2 Nodes are responsible for dCache’s namespace
and mainly do the mapping between logical names
and physical locations within dCache’s Pool Nodes.

2.2 Problems with pnfs

As mentioned above, pnfs provides a single name
space across the entire pool of disk servers so
that users can transparently access very large data
stores as though a single filesystem. Unfortunately

2Pretty Normal File System

1



2 MALTE NUHN, DESY-IT

Fig 1. dCache architecture

dCache’s implementation currently uses NFS2/33

which provides weak security. NFS2/3 security con-
cept mainly depends on a trusted networks. Besides
other problems (5) 4, this requirement can’t be sat-
isfied anymore, so that the usage of the current pnfs
implementation should be avoided. In order to pro-
vide a straightforward access to dCache’s storage
without using dCache’s current implementation of
pnfs, a set of tools is needed.

2.3 dcTools

Another way to access the dCache namespace (+
storage), is to access dCache’s running doors and
performing the needed operations there. Using this
method of accessing dCache needs a couple of un-
handy operations, e.g.: Checking for valid proxies
when using gsidcap and gsiftp; spotting available
doors; choosing the best door; loading libraries and
calling other tools. In order to gain better perfor-
mance on performing operations on specific doors,
loadbalancing with respect to dCaches new Infor-
mation Provider(2) should be performed.

3. PROJECTS OBJECTIVES

Until a new implementation of dCache’s pnfs is
available, dcTools need to be enhanced.

3This will hopefully change in the near future!
4(...) This is really bothering, not to have access to real file

info quickly and with ordinary shell commands (...)

3.1 Enhancements

• Enhance overall code
• Make it easier to maintain
• Remove needless requirements
• Produce better output

3.2 New features

In order to improve overall performance, dcTools
need new features.

• Spot available doors through dCaches Informa-
tion Provider

• Provide load balancing
• Take blackbox tests into account
• Still support static configruation

4. SOLUTION

The objectives mentioned cannot be achieved by
a straight forward implementation of a better client.
A monolithic client, querying dCache’s IP to get an
up-to-date doorstatus without caching would be too
slow. dCache’s IP Output is an XML with a size of
about 150 Kbyte. Downloading and parsing this file
just in time would

• Produce too much traffic on dCache’s IP
• Have to much overhead
• Not be able to take blackbox tests into account

Because of this, some sort of caching is needed. Be-
cause blackbox tests cannot be effectively done on
clientside and a lot of IP queries can be avoided when
performing caching on a third location, dcCache and
dcPrepare come into play. (See also fig. 2)

Fig 2. Basic concept



WAITING FOR NFS V4 3

4.1 dcCache

dcCache is a cronjob currently running on the
PAL-Cluster distilling all information about avail-
able SEs. The configuration is mainly done by a
directory-structure representing all SEs to be pro-
cessed.

• Each SE may have an update script to process
the IPs output

• Each SE must have an xml file describing avail-
able doors

After that, the cronjob summarizes all these sub files
resulting in a file less than 500 Bytes in size. This file
is then accessible using http or a distributed file sys-
tem (e.g. Andrew File System). This makes dcCache
lightweight, simple to maintain and keeps it flexible
by allowing the update scripts to be customized eas-
ily.

4.2 dcPrepare

dcPrepare is a selfcontained tool performing the
following tasks

• Mapping between logical filenames and SEs
• Interaction with dcCache
• Loadbalancing (currently weighted random)
• Configuration for environment-variables and

possible postprocessing

dcPrepare can be fully configured via an xml file con-
taining information about how to map logical file-
names to the SEs. This is done by defining regular
expressions and possible substitution rules. Further-
more the location of dcCache’s output is specified
here. Additionaly, parsing and initialisation scripts
can be defined for different protocols. This informa-
tion will later-on be consumed by the tools perform-
ing specific operations like for example dcls, dcrm,
. . .

4.3 dcls, dcrm, . . .

The specific operations are basically very short
scripts wrapping together all needed commands. All
they do is

• Ask dcPrepare for a door
• Check for a proxy if needed
• Load possible libraries (e.g. dCache preload

libs)
• Execute other tools (e.g. edg-gridftp-ls)

• Pipe output through the configured postpro-
cessing script

5. RESULTS

The concept seems to work out quite well. Because
the whole concept is kept strictly modular, different
administrators should easily be able to adopt the
tools to their needs.

5.1 Timing

The caching algorithm gives an enormous boost
in performance. While dcCache’s update scripts take
up to ≈ 5 seconds to update5, dcPrepare constantly
provides output in under ≈ 0.2 seconds.

5.2 Postprocessing

Being able to provide different postprocessing
scripts for different SEs, consistent output along dif-
ferent versions of dCache can be achieved.

5.3 File Locations

The dcTools can be found on
/afs/desy.de/group/it/services/dcache/bin
along with the new documentation on
/afs/desy.de/group/it/services/dcache/doc

REFERENCES

[1] dCache website
http://www.dcache.org/

[2] P. Millar (2008).
New Information Service in dCache 1.8.0-16
DESY/FNAL Announcement

[3] Paul Millar (2008).
New Information Service in dCache 1.8.0-16: XML-Output
https://www.desy.de/~paul/Info/dCache-info-bumblebee.xml

[4] Marcello Barisonzi (2008).
Data Storage at the NAF
https://znwiki3.ifh.de/ATLAS/WorkBook/NAF/Data%20Storage

[5] Mario Kadastik (2008).
pnfs and directory usage
http://www.dcache.org/archive/user-forum/0257.shtml

[6] Christian Forrest (2008).
Overview of Storage Resource Manager (SRM) and dCache
for OSG
https://twiki.grid.iu.edu/bin/view/Documentation/StorageDcacheOverview

5eventhough this is rarely the case


