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Abstract
This is essentially a review paper on some of the potential string-induced phenomenol-

ogy that might be observed at the LHC. I briefly recap the motivations behind low mass
string theories and then discuss a number of potential experimental consequences, finally
focusing on a particularly promising signal for low mass strings : The gg → γg process
which only occurs at loop level in the SM, but which is present at the string disk level
(i.e. at tree level) in low mass string theories. Having worked out the relevant scattering
amplitudes I estimate the discovery reach for this type of signal at the LHC.
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1 Introduction : TeV scale strings as a solution to the

hierarchy problem

The question posed by the problem of mass hierarchy in fundamental particle physics is essen-
tially why there is such an enormous difference between the scales associated with gravitation
- the Planck mass MP ∼ 1019GeV - and with electroweak and strong nuclear forces - the elec-
troweak scale mEW ∼ 102GeV and the strong scale ΛQCD ∼ 100MeV . However, in a quantum
theory of particles along the lines of the standard model, radiative corrections to the masses of
all particles will be generated by the vacuum expectation value of the Higgs. These corrections
are proportional to the ultraviolet cutoff of the theory in question, which is given by MP in
the presence of gravity, and as such one should expect particle masses to lie in the region of
the Planck scale. To prevent this from happening and restore the actually observed particle
masses a severe fine-tuning in the fundamental parameters of the theory is required. Even the
smallest divergences (the fine-tuning would have to hold to more than 30 places) would result
in drastically different masses [1].

A number of different theories have been proposed to give a more natural explanation to the
observed mass hierarchy than coincidental fine-tuning. However, before having a closer look at
them, it is worth pointing out that, from a methodological point of view, most, if not all of them
share the common strategy of ”installing” a mechanism for cutting off the divergences in the
TeV region. As such they proceed in analogy to the electroweak case in the standard model,
where the radiative stability of the weak scale is ensured by taking mEW as the ultraviolet
cutoff of the theory. In other words, they effectively introduce a new scale at TeV energies thus
stabilizing particle masses at their experimental values - as opposed to attempting to find a
mechanism directly providing the apparent fine-tuning.

In low-energy supersymmetry scenarios with superparticle masses in the TeV region the
quadratic divergences in the Higgs-induced mass corrections are cut off by the supersymmetry
breaking mass splittings (in the softly broken case - in the exact supersymmetry limit they
cancel). The hierarchy problem is consequently solved by fiat and furthermore such theories
come equipped with a number of well-known other benefits such as the potential role of dark
matter candidates which the new superparticles can play. However, from a string theoretical
point of view, a serious problem remains. When embedding a low energy supersymmetric theory
into string theory the Planck scale becomes proportional to the string scale. Unfortunately the
embedding also gives rise to a separation of the grand unification and string scales by almost
two orders of magnitude. Thus it appears that a new hierarchy problem emerges which will
need to be explained by the introduction of yet again new parameters or scales.[1] Whilst this
does not take away from the benefits offered by low-energy supersymmetric theories, it raises
the question whether we can do without the introduction of these new parameters or scales.

Split supersymmetry is such a candidate. Here scalar masses are heavy, whereas fermions
such as gauginos and higgsinos are light. Gauge coupling unification is preserved, yet by
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introducing an explicit difference between the masses for supersymmetric fermions and scalar
particles the cancelation of divergent mass-correcting loop effects ceases to work as before and
one still either needs fine-tuning in the low energy regime or another mechanism accounting for
the mass hierarchy.

The emergence of new strong dynamics as provided by e.g. technicolor and little Higgs
models provides another option. Here a cutoff in the TeV range is introduced by rendering the
low(er) energy dynamics invalid at such scales. The generation of quadratic divergences via
Higgs-induced effects is avoided, since a different dynamics takes over at scales ≈ TeV.

Finally models with TeV scale strings make use of the extra dimensions appearing in string
theory in order to lower the string scale MS so that it will act as a cutoff scale for the divergences.
Low energy supersymmetry is not needed in these frameworks. However, the fundamental idea
is in fact independent of the nature of the ultimate theory of gravity and hence not irrevocably
tied to string theory. Instead it is the existence of extra dimensions that serves as the basis for
such arguments. Suppose we have an additional n compactified spatial dimensions of radius
R, where we leave the exact topology associated with that compactification (e.g. a torus)
unspecified. Hence a 4+n dimensional theory is yielded. Now consider two test masses m1

and m2 placed at a distance r ¿ R from each other. Then we can neglect the fact that some
dimensions are compactified with radius R (whilst others are fully extended) and work out the
gravitational potential for 4+n dimensions via Gauss’ law to get

V (r) ∼ m1m2

Mn+2
P (4+n)

1

rn+1
, r ¿ R, (1)

where MP (4+n) is the ”Planck scale” of the 4+n dimensional theory. Contrast this case with
the one where the test masses are placed at a distance r À R. Here gravitational flux lines
cannot penetrate all the way into the extra dimensions and the familiar 1

r
potential (as in the

4-dimensional case) is yielded

V (r) ∼ m1m2

Mn+2
P (4+n)R

n

1

r
, r À R, (2)

and consequently, and this is the crux of the argument, the effective 4-dimensional Planck scale
MP is

M2
P ∼ Mn+2

P (4+n)R
n. (3)

The Planck scale of the underlying 4+n dimensional theory can therefore, in principle, be chosen
to be significantly smaller than the effective 4-dimensional scale at the expense of introducing
an additional n dimensions with a ”large” radius R. This is exciting news, because it opens
up the possibility of solving the hierarchy problem by nullification. If MP (4+n) ∼ O(TeV ),
then the weakness of gravity in 4 dimensions as compared to the other gauge interactions is
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a consequence of the large compactification radii R compared to the fundamental length scale
m−1

EW . As such gravitational forces do indeed become comparable to the other gauge forces at
the weak scale. Hence there is only one fundamental scale in the theory. If the abolition of
MP as a fundamental scale in nature seems too much of a blasphemy, one should keep in mind
that, whilst electroweak interactions have been tested at length scales ∼ m−1

EW , gravitational
interactions have only been probed to about ∼ 1cm and, from an experimental point of view,
the belief that MP stays a fundamental scale when probing gravity down to scales of about
∼ M−1

P = 10−33cm is certainly quite a leap of faith.
Of course there are constraints. The fact alluded to above, that gauge forces within the

standard model have been probed to scales of ∼ m−1
EW , also means that SM particles must be

localized on a 4-dimensional sub-manifold of the full 4+n dimensional space. Only the graviton
could propagate freely into the extra dimensions. Furthermore, as I will show in the following
section, there are constraints on the number n of extra dimensions via the size of R.

Up to now the argument has been independent of any specific realization of a theory of
quantum gravity. When embedding the above into string theory, which already comes equipped
with extra dimensions, the string scale MS takes over the role of the 4+n dimensional Planck
scale. For example, when considering a type I string theory with D-branes and 9 spatial
dimensions, one can create a so-called braneworld description of our universe, i.e. one where
our universe is localized on a p-dimensional hypersurface (where p > 3). Now, assuming an
isotropic transverse space of n = 9 − p compactified dimensions with a common radius R, we
get the analogue of (3) [1]

M2
P =

1

g2
M2+n

S Rn
⊥ , gS ' g2, (4)

where gS is the string coupling. This approach therefore radically breaks with the traditional
line of thought that string theory only becomes relevant at distances comparable to the Planck
length ∼ 10−33cm and utilizes the extra dimensions intrinsic to string theory to lower MS into
the TeV region.

It is remarkable that all of the above proposals for ”solving” the hierarchy problem will
be experimentally testable at the LHC and one can therefore be hopeful that there will be
additional guidance from experiments on how to best approach the hierarchy problem in the
near future. In the remainder of this paper, however, I will focus on theories with TeV scale
strings and the possible phenomenology they might induce. By making use of the intrinsic
resources of string theory (extra dimensions) and since they do not need the introduction of
other additional parameters and scales, they do appear to be a very natural answer to the
hierarchy problem from inside string theory - a theory which, after all, has long been viewed as
the primary candidate for a unification of Planck scale quantum gravity and (sub-)TeV scale
standard model physics.
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2 Potential low mass string signals at the LHC

In this section I will try to give a very broad overview of some of the possible string phe-
nomenology at the LHC and other experiments, before focussing on the particular example of
the gg → γg interaction in section 3. So what are the experimental signatures one can expect
from TeV scale strings and extra dimensions?

1) Production of Regge excitations. The existence of such excitations is due to having TeV
scale strings and does not itself require the existence of extra dimensions. For MS in the TeV
region a tower of infinite string excitations opens up above the string mass threshold, with new
particles following the Regge trajectories for vibrating strings [2]

j = j0 + α′M2, (5)

where j is the spin and α′ the Regge slope parameter, which is related to the string mass scale
by

M2
S = (α′)−1. (6)

The string states associated to these excitations will yield new contributions to standard model
processes such as the scattering of quarks and gluons. At tree-level the contributions are due
to the exchange of massive string excitations which encompass all Regge recurrences. For some
processes, e.g. n-gluon scattering in QCD, these contributions are independent of the details
of compactification and therefore provide a model-independent signature for TeV scale strings.

2) New exotic particles may appear around MS. As an example new massive Z’ gauge
bosons are predicted by many string models. These new particles are connected to additional
U(1) gauge symmetries, which are a consequence of the fact that the gauge group for open
strings terminating on a stack of N identical D-branes (see section 3.1. for details on why this
is relevant) is U(N) and not SU(N), where N > 2.

3) Kaluza-Klein and winding excitations for all standard model particles along the extra
dimensions parallel to the p-brane (i.e. the p-dimensional hypersurface our universe is localized
on). Their spectrum depends on the topology of the extra-dimensions and hence on the details
of compactification for those dimensions. As an example, the masses of these excitations for
one extra parallel spatial dimension are [1]

M2
m = M2

0 +
m2

R2
‖

, m = 0,±1,±2, ... (7)

where R‖ is the compactification radius of the parallel dimension. The virtual exchange of
such excitations will then contribute to standard model processes and lead to deviating cross-
sections, which will in turn also establish experimental bounds on R‖. At high enough energies
a direct production of these excitations is possible as well.
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4) In typical type I string theories, SM particles are open strings completely confined to a
specific D-brane, but gravitons are free to propagate into the extra dimensions. At energies
above MS a large number of events with missing energy carried away by the gravitons will be
observable. In hadron colliders, processes with jets + missing energy provide a good signature
for this kind of effect. Furthermore, gravitational interactions just prior to collisions will lead
to an abrupt decrease in the beam energy.

In other possible realizations of theories with extra-dimensions (see section 1) which do not
completely confine standard model particles to our 4-dimensional world, but only localize them
up to some energy scale allowing escape of such particles above this scale, even more spectacular
”escape” phenomenology could be yielded, with high energy SM particles disappearing and
appearing again seemingly out of nowhere. For details, see [3].

5) As equation (1) might already have suggested, radical modifications to gravitational
forces on scales below 1 cm are possible. When putting MP (4+n) ∼ mEW in (3) and demanding
that MP takes its familiar value we obtain

R ∼ 10
30
n
−17cm×

(
1TeV

mEW

)1+ 2
n

. (8)

Hence, for n = 1 we get R ∼ 1013cm which would lead to modifications to gravity on solar
system scales and which is consequently excluded empirically. For n = 2 however one only
gets R ∼ 1mm. Table-top experiments which have already tested Newtonian gravitation at
short distances (e.g. involving a torsion pendulum) should be able to test this case soon. As
can be seen from (1) and (2) one would expect a change in Newton’s law from a 1

r
to a 1

rn+2

behavior for n = 2 at these scales. For higher values of n the associated compactification radius
R becomes yet smaller and modifications to gravitational force-laws at small scales will unlikely
be observed in the near future. For other potential new sub-millimeter forces such as new scalar
forces related to supersymmetry breaking, see [1].

6) Finally, at energies above the string scale, quantum gravity effects related to string physics
such as mini black-hole production are possible. For further details, see e.g. [4].

The particular signature gg → γg we will consider in the next section essentially falls into
categories 1) and 2) above.
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3 The case of gg → γg

3.1 Regge recurrences and an additional U(1) symmetry

In a type I string theory gauge interactions emerge as excitations of open strings with endpoints
confined on D-branes. In a stack of N identical D-branes, each D-brane ”gives rise” to a U(1)
gauge symmetry, so to speak, so that the whole stack generates a U(N) gauge theory with
an associated U(N) gauge group. Strings whose endpoints are fixed to the same stack are
associated with gauge bosons, whereas strings stretching between two different stacks give rise
to chiral matter such as fermions. Here we will consider processes taking place on a U(3)
color stack of D-branes. Open strings with endpoints confined to this stack include the SU(3)
gluons and an extra U(1) boson Cµ. The familiar electroweak hypercharge boson Yµ is a linear
combination of Cµ and other possible U(1) bosons terminating on different branes. The crucial
point here is that the photon Aµ, via its dependence on Yµ, will contribute to the tree-level
gluon scattering on the U(3) color brane [5].

The gg → γg process includes the SU(3) gluons g and a photon γ and is now possible at
tree-level due to the new U(1) symmetry arising in the above construction. Hence this process
has no equivalent in the standard model, where this symmetry is missing. Its observation
would therefore amount to direct evidence for a low string mass Regge recurrence and will
be observable as a contribution to pp → γ + jet. Moreover, since string disk amplitudes
(which govern processes involving four gluons and those involving two gluons and two quarks)
are independent of the details of compactification, gg → γg provides a completely model-
independent signature for low mass strings.

3.2 Amplitudes

In order to calculate the amplitude for gg → γg we will make use of so-called partial maximally
helicity violating (MHV) amplitudes. These take a particularly simple form for the scattering
of n gauge bosons and represent the amplitudes for the scattering of particles in specific helicity
eigenstates. However, it is possible to ”sew” such individual MHV amplitudes together in order
to build arbitrarily complex tree diagrams, so that one is able to compute the full scattering
amplitude by summing over the appropriate partial amplitudes.

As conjectured in [6] and later on derived in [7] the standard model n-gluon scattering
helicity amplitudes M(n)(h1, h2..., hn) for gluons 1, ..., n with momenta k1....kn and helicities
h1....hn are given by

∣∣M(n)(+ + + + +..)
∣∣2 = cn(g,N)[0 + O(g4)] (9)

∣∣M(n)(−+ + + +..)
∣∣2 = cn(g, N)[0 + O(g4)] (10)
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∣∣M(n)(−−+ + +..)
∣∣2 = cn(g,N)

[
(k1 · k2)

4
∑

p

[(k1 · k2)(k2 · k3)(k3 · k4)..(kn · k1)]
−1 + O(N−2) + O(g2)

]
,

(11)
where N is the number of colors, cn(g, N) = g2n−4Nn−2(N2 − 1)/2n−4n and we are summing
over all permutations p of 1, ....., n. Clearly the first two amplitudes, i.e. the ones that most
violate helicity conservation, are zero at tree-level. Furthermore, due to the fact that the
gluons in question need to obey Bose-Einstein statistics, any permutation of the gluons leaves
the expressions for the amplitude unchanged, i.e. for example M(n)(− + ++) is of the same
form as M(n)(+−++). Also the sign of the helicities involved does not change the form of the
expression so that M(n)(−+ ++) = M(n)(+−−−). For later reference let us note that for a
4-gluon process it therefore follows that the only amplitude which is non-zero at tree-level is
(11), as here equations (9),(10) and (11) cover all possible cases.

But for now consider the general case of tree-level scattering of n gauge bosons in Yang-Mills
theory, i.e. in the Standard Model. We take the n gauge boson momenta k1, k2... kn to all
be directed inward. In order to get the MHV amplitude we assume that the two bosons with
momenta k1 and k2 have negative helicities, whilst the remaining gauge bosons have positive
helicities. Furthermore the n gauge bosons are in U(N) gauge group states corresponding to the
generators T a1 , T a2 ...T an respectively, which completely determine their color charges. Then
the explicit amplitude (which follows from equation (11) above) for such a maximally helicity
violating process is given by [8]:

M(n)
Y M = ign−2Tr(T a1T a2 ...T an)

〈12〉4
〈12〉 〈23〉 ... 〈n1〉 , (12)

where g is the U(N) coupling constant. The spinor product 〈k1k2〉 is defined to be

〈k1k2〉 = u−(k1)u+(k2), (13)

and the following properties hold

〈k1k2〉 = −〈k2k1〉 and 〈k1k2〉 〈k1k2〉∗ = 2k1k2 . (14)

Now, taking into account string effects and restricting ourselves to 4 gauge bosons, the
amplitude is modified and we get [9]

M(4) = V (k1, k2, k3, k4)M(4)
Y M , (15)

where the stringy effect on the amplitude is completely contained in the Veneziano form-factor
V (k1, k2, k3, k4) :

7



V (k1, k2, k3, k4) =
Γ(1− s)Γ(1− u)

Γ(1 + t)
, (16)

where s, t and u are the familiar Mandelstam variables normalized to string units

s =
2k1k2

M2
S

, t =
2k1k3

M2
S

, u =
2k1k4

M2
S

, and s + t + u = 0, (17)

and the Gamma function is defined to be Γ(z) =
∞∫
0

tz−1e−tdt, i.e. an extension of the factorial

function for an arbitrary complex number z with positive real part, as usual.
Hence we can now write down the full partial MHV amplitude for the scattering of four

gauge bosons as appropriate when considering gg → γg. N here equals 4 and we have two
gauge bosons (1 and 2) with negative helicities and two (3 and 4) with positive helicities - the
only amplitude we need to compute for 4-gluon scattering as shown above. The full partial
MHV amplitude therefore is [10]

Mpart(1
−, 2−, 3+, 4+) = 4g2Tr(T a1T a2T a3T a4)

〈12〉4
〈12〉 〈23〉 〈34〉 〈41〉V (k1, k2, k3, k4). (18)

Consider the generators T a1 , T a2 ...T a4 in this expression. For three SU(N) gluons g1, g2, g3

and one U(1) gauge boson γ4 they take the following form in the fundamental representation

T a1 = T a , T a2 = T b , T a3 = T c , T a4 = QI, (19)

where Q is the associated U(1) charge and I is the identity matrix. Using the normalization
condition for the U(N) generators

Tr(T aT b) =
1

2
δab, (20)

the color factor in the expression for the amplitude (18) is

Tr(T a1T a2T a3T a4) = Q(dabc +
i

4
fabc), (21)

where dabc is the symmetrized trace and hence totally symmetric, whereas fabc is the totally
antisymmetric structure constant.

Summing the partial amplitudes over all permutations σ of {1,2,3} we obtain the total MHV
amplitude

M(g−1 , g−2 , g+
3 , γ+

4 ) = 4g2 〈12〉4
∑

σ

Tr(T a1σT a2σT a3σT a4)V (k1σ, k2σ, k3σ, k4)

〈1σ2σ〉 〈2σ3σ〉 〈3σ4〉 〈41σ〉 , (22)
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where the fact that the summation only runs over permutations in the denominator (except for
gauge boson 4 which has to stay fixed since it is required to remain a U(1) gauge boson γ4) is
a consequence of the initial fixing of negative helicities for two gauge bosons and becomes clear
when looking back at the general expression (12) for the MHV amplitude above. The antisym-
metric part of the color factor Q i

4
fabc cancels, since summing over all possible permutations

amounts to a symmetrization of the amplitude, so that one eventually obtains

M(g−1 , g−2 , g+
3 , γ+

4 ) = 8Qdabcg2 〈12〉4
(

µ(s, t, u)

〈12〉 〈23〉 〈34〉 〈41〉 +
µ(s, u, t)

〈12〉 〈24〉 〈13〉 〈34〉
)

, (23)

where we have defined what is essentially the difference between two Veneziano amplitudes

µ(s, t, u) = Γ(1− u)

(
Γ(1− s)

Γ(1 + t)
− Γ(1− t)

Γ(1 + s)

)
= V (s, t, u)− V (t, s, u). (24)

All other non vanishing amplitudes, e.g. M(g−1 , g+
2 , g−3 , γ+

4 ), can be calculated analogously.
In order to work out the total cross-section for the (unpolarized) process gg → γg we take

the squared moduli of all those individual non-vanishing (polarized) amplitudes, sum over final
polarization and color states and average over all possible initial polarization and color states.
The resulting total average squared amplitude is

|M(gg → gγ)|2 = g4Q2 2(N2 − 4)

N(N2 − 1)

{∣∣∣∣
sµ(s, t, u)

u
+

sµ(s, u, t)

t

∣∣∣∣ + (s ↔ t) + (s ↔ u)

}
. (25)

Now the low-energy expansion for the Veneziano form-factor, i.e. for when (s, t, u ¿ 1), is
[10]

V (s, t, u) ≈ 1− π2

6
su− ζ(3)stu + ... (26)

Hence the expression for the total average amplitude squared at low energies becomes

|M(gg → gγ)|2 ≈ g4Q2 2(N2 − 4)

N(N2 − 1)

π4

4
(s4 + t4 + u4), (27)

where the fact that no singularities are present indicates that no exchange of massless particles
contributes to this process. However, close to the string threshold, i.e. s ≈ 1 in the normalized
units we have been using, or s ≈ M2

S when we restore the string scale, the amplitude expression
becomes

|M(gg → gγ)|2 ≈ 4g4Q2 2(N2 − 4)

N(N2 − 1)

M8
S + t4 + u4

M4
S [(s−M2

S)2 + (ΓMS)2]
, (28)
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where we now do have a singularity with the variable Γ parameterizing its smearing to a
Breit-Wigner form due to the finite decay width resonances propagating in the s channel. In
particular, the singularity itself results from the presence of a massive string mode propagating
in the s channel.

In order to fix the value of Q in the above calculations we need to take into account the
mixing effects between the different U(1) boson fields at play. If the process under consideration
was gg → gg or gg → Cg with C a U(1) gauge field directly tied to the color U(3) brane, Q
would be fixed at

√
1/6 due to the normalization condition on the trace of the generators

(20). For gg → γg we need to incorporate two further projections, however. Firstly from
the ”extra” U(1) boson Cµ to the familiar electroweak hypercharge boson Yµ, resulting in an
additional mixing factor κ. And secondly from Yµ to the photon Aµ contributing a Weinberg
factor cos θW . Thus the extra stringy contribution is the C-Y mixing term κ which, however,
turns out to be model-dependent. In the minimal model we are considering here it takes a
value of κ ∼ 0.12, but this value can vary considerably due to e.g. extra U(1) gauge bosons
partnering the SU(2)L electroweak gauge bosons W a

µ on a separate U(2) brane. Here we will
take κ2 = 0.02 which results in the following value for Q

Q2 =
1

6
κ2 cos2 θW ' 2.55× 10−3 (κ2/0.02). (29)

Figure 1: The QCD (dot dashed line) and QCD + string (solid lines) cross sections for two
values of MS
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3.3 Discovery contours : Cross-sections and Signal-to-Noise ratios

Having calculated the relevant amplitudes and employing the already known parton distribution
functions [11] it is now possible to extract integrated cross-sections for gg → γg and for other
QCD background processes which also give rise to pp → γ +jet. Employing the minimal model
sketched in 3.1, we will consider interactions on a color U(3) stack of D-branes and hence take
N = 3. g is taken to be the QCD coupling constant and hence g2/4π = 0.1. Furthermore,
Γ ' (g2/16π) (2j + 1)−1 MS where j = 2.

A particularly well suited signal in looking for gg → γg contributions to pp → γ +
jet are high k⊥ isolated γ or Z. One can therefore calculate the integrated cross sections
σ(pp → γ + jet)|k⊥(γ) > k⊥,min

. The results for different string scales are shown in Fig 1. Clearly
larger values of k⊥,min give the best signal, as the background is reduced significantly in these
regions. When imposing a 300 GeV cut on the transverse momentum the QCD background
cross section is approx. 8 × 103fb which equates to about 8 × 105 events for a luminosity of
100fb−1.

Figure 2: Signal-to-noise ratios for different values of the mixing parameter k and an integrated
luminosity of 100fb−1

Fig. 2 shows the signal-to-noise ratio
(
signal/

√
SM background

)
for different values of κ

and for an integrated luminosity of 100fb−1. We can see that a 5σ discovery is possible in
principle for MS 6 4TeV . One should also note that isolation cuts need to be imposed on the
photon to minimize misidentification with e.g. high-k⊥ neutral pions.
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Unfortunately this reach is lowered slightly when treating the resonance region more care-
fully than we have here e.g. by computing the decay widths for J = 0 and J = 2 Regge
recurrences of the gluon octet [12]. The fact that these resonances are slightly wider than
expected has a lowering effect on the cross section thus leading to a reduced discovery reach.

Figure 3: 5σ discovery contours for different integrated luminosities in the (MS,β) plane

Let us now define the following parameter:

β =
background due to misidentified π0 after isolation cuts

QCD background from direct photon production
+ 1. (30)

The noise from direct photon QCD production is therefore increased by a factor of
√

β. Taking
into account the refined cross-sections and different integrated luminosities we can now plot the
5σ discovery contours in the (string scale, β) plane. As can be seen in Fig. 3, the expected LHC
discovery reach should now run up to 2.3 TeV. The 100pb−1 luminosity is plotted to compare
the discovery reach in detectors like CMS and ATLAS to that of detectors observing e.g. Pb-Pb
collisions like ALICE, where, however, the relevant luminosities are presently estimated to lie
significantly below 100pb−1 [13].
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4 Conclusion

The emergence of TeV scale string theories has given rise to the possibility of a number of
string-related experimental signals at the LHC. The gg → γg process, the dominant underlying
parton process for the excitation of string resonances in pp → γ + jet, provides a particularly
promising signal in the search for Regge excitations of fundamental strings, as it is both not
present at tree-level in the standard model and also model-independent except for the precise
value of the mixing parameter κ. It consequently provides us with the opportunity to decisively
test the validity of low mass string theories up to a certain scale. One should keep in mind,
however, what it takes for these signals to be observable at the LHC. In short one needs a
low string scale, large extra dimensions and a weak string coupling. If such searches for low
mass string signatures do indeed turn out to be successful, analogous processes such as four-
fermion interactions (e.g. quark-antiquark scattering) can also be used as precision tests on
low mass string models, as such processes depend on compactification details via the exchange
of heavy Kaluza-Klein and winding states. Finally one should note that the above estimates
do therefore not include compactification-dependent effects of string-related corrections to SM
processes. Nevertheless such contributions might in fact almost double the LHC’s reach in
searching for low mass strings and should therefore certainly not be neglected.
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