
Forward Veto MARLIN processor for ILC beam calorimeter ∗

Marc Montull, DESY summer student program

October 18, 2008

Abstract

This report describes the work I did for the FLC group during the eight weeks of my stay at DESY as a
summer student. I wrote a MARLIN processor for the reconstruction of energetic electrons and photons for
the beam calorimeter of the ILC. In this document I explain the motivations for making this processor and
its features, explaining what it does and how does it do it. I also review the checks made to see if things were
right, and I point out a couple of things that should be looked into in order for the processor to be ready to
use. At the end I give some suggestions about simple modifications that could be done to improve it.

1 Introduction

My work as a summer student consisted in writing a MARLIN processor able to determine which electrons or
photons would be detected in the beam calorimeter of the ILC detector assuming the typical radiation background
around the beam pipe caused by Beamsstrahlung.

The forwardveto processor is meant to be a tool for vetoing γγ background when trying to detect SUSY particles
with a small mass difference to the lightest supersymmetric particle from an electron positron collision. That
means that it will try to reproduce the detector behavior for the detection of electrons.

To understand this let’s take a quick look to the physical processes involved. There are for example SUSY models
that under some reasonable assumptions predict that τ̃ leptons could be produced in the ILC and then would
decay like is shown in (1) with a σ ≈ fb.

e+e− → τ̃+τ̃− → τ+τ−χ̃0
1χ̃

0
1 (1)

In this case the signature of this process would be like is shown in (2) since neutralinos can’t be detected.

e+e− → τ+τ− +missing energy (2)

If this process was the only one with this kind of signature there wouldn’t be a problem detecting the τ̃ leptons.
Unfortunately there is a Standard Model process with a much higher cross section (σ ≈ nb) that can give the
same signature if its final electrons are not tagged. This process is what we call γγ background, and it shown in
(3).

e+e− → e+e−τ+τ− (3)

It’s easy to see that if we don’t detect the outgoing electrons we will have the same signature for (1) and (3), and
then we won’t be able to distinguish them. To solve this we are going to try to tag all the outgoing electrons of
(3).

∗Supervisors: Jenny List, Mikael Berggren

1



If we look at the Feynman diagram of the γγ process (figure 1) we see that each electron emits a virtual photon
doing it through a t-channel.

Figure 1: Feynman diagram for the γγ background process.

We know that when we have a t-channel usually the outgoing particle (in our case the electron) acquires very
little transverse momentum. This means that the outgoing electrons will either hit the beam calorimeter or
escape the detector through the beam pipe, and in both cases with a very high energy (Eelectron ≥ 60 GeV
approximately). We can see now that in order to veto the γγ background we need to detect as many of this
energetic electrons as possible, and that’s why we need to make use of the beam calorimeter. To have an idea of
what we mean, in figure 2 we can appreciate the difference between the signal we would get in the detector from
the e+e− → τ+τ−+missing energy process and the signal result of applying different cuts and the electron veto
to it (done with a very simplified simulation program).

Figure 2: Angular distribution of the spectator electrons of e+e− → e+e−τ+τ− expressed in fb/bin. The shaded
shaped show the distributions after applying various cuts, and after applying these cuts and the electron veto.[1]

2 Forwardveto processor

In this section I’ll explain the forwardveto processor works, and how it should be used.

2.1 Forwardveto overview

The forwardveto processor reads a particle collection produced at the interaction point and gives a reconstructed
particle collection with the electrons (or photons) that have been detected in the beam calorimeter. To do so it
uses four different routines that serve different purposes. These are propagating each particle from the interaction
point (IP) to the beam calorimeter, summing the energy density of beamsstrahlung radiation for each point were
the particle goes through in the detector, parametrizing the efficiency of the detector and using a simple Monte

2



Carlo method to see whether the particle is detected or not. Some parameters used by these routines can be
modified through the steering file.
In figure 3 we can see schematically the main steps that this processor follows to see if a particle is detected or
not in the beamCal.

Figure 3: Schematic overview of the forwardveto processor flow.

Another feature of this processor is that by default it creates a root tree with the properties of each detected
particle such as momentum, energy or position when hitting the beam calorimeter.

2.2 Processor parameters

Marlin applications are entirely configured through XML steering files. The XML files hold arbitrary named
parameters - defined either for a particular processor, a group of processors or globally and also define the order
in which the processors are called as well as optionally logical conditions assigned to some processors that are
evaluated at runtime.

The forwardveto processor has some default parameters that can be modified from the steering file. These are
shown in table 1.

Parameters Default value Units Description
B 3.5 Tesla B-field (direction along z axis)

EB 250 GeV Energy of each electron beam
zbcal 3000 mm Distance from IP to beamCal

thresholdMin 40 GeV Minimum energy ”processed” particles can have
thresholdMax 10000000 GeV Maximum energy ”processed” particles can have

detectAll (not enabled) - Detect all electrons or photons within selected energy range
that hit the beamCal

Electron/Photon Electron - Detects electrons (if Electrons) or photons (if Photons)

Table 1: Table of the forwardveto parameters.

3



2.3 Methods of the processor

This processor was based on an example processor found at /afs/desy.de/group/it/ilcsoft/v01-03-06-p02/Marlin/v00-
10-03/examples/mymarlin. This means that it uses the standard methods for a MARLIN processor.

virtual void init()
virtual void processRunHeader(LCRunHeader* run)
virtual void processEvent(LCEvent* evt)
virtual void check(LCEvent* evt)
virtual void end()

The only methods I’ve modified from the example are the init(), processRunHeader(LCRunHeader* run), proces-
sEvent(LCEvent* evt) and end(). The processEvent(LCEvent* evt) is the one where all the steps of the processor
are made, so it was extensively modified. In the other three processes I only added what needed to create a root
tree.

2.4 virtual void processEvent(LCEvent* )

We can see the flow diagram of how the processor works in figure 3, and besides the first box all the other ones
happen when the processEvent(LCEvent* ) is called. In order for any potential user to be able to know how
things work the most important steps will be explained in detail.

2.4.1 Propagation of particles from IP to beamCal

bcalhit(pin,q,vin,B,EB,zbcal,pout,vout) is a FORTRAN routine made by Mikael Berggren. This routine tracks
a particle with momentum ~p = (px, py, pz) from an initial point (x, y, z), to the plane surface at the z desired
coordinate. To do this it also uses the initial energy of the particle, the magnetic field in the detector and the
particle’s charge. In tables 2 and 3 we can see the input and output parameters of this routine.

Parameter Units Type Description
pin GeV float[3] Initial particle momentum ~p = (px, py, pz)
q electron charge float Charge of the propagated particle

vin mm float[3] Initial particle position set at (0,0,0) by default
B Tesla float B-field (direction along z axis)

EB GeV float Energy of each electron beam
zbcal mm float Distance from IP to beamCal

Table 2: Table of the bcalhit routine input parameters.

Parameter Units Type Description
pout GeV float[3] Particle momentum at zbcal
vout mm float[3] Particle position at zbcal

Table 3: Table of the bcalhit routine output parameters.

2.4.2 Rotation matrix

At the ILC, the beams will collide under a small crossing angle of 14mrad. The particle trajectories are extrapo-
lated in the coordinate system of the main detector, who’s z axis points in the middle between the incoming and
outgoing beam. The beam calorimeter on the other hand is centered around the outgoing beam. The average
energy density expected from beamstrahlung is given in the local coordinate system with a z axis parallel to the
outgoing beam. In order to go from one coordinate system to another a rotation matrix is used. This matrix
rotates the x and z axis around the y axis a certain angle. In my case I knew that I had to rotate it 7 mrad. I
think that I did it correctly but as I’ll say in a following section this should be double checked just in case.

4



Figure 4: Plot of the distribution of energy density for an unknown layer of the beam calorimeter that was given
as an example with the BcEnergyDensity class.

2.4.3 Get energy density in the beam calorimeter

BcEnergyDensity is a C++ class made by A. Sopranov. This class includes the method bool GetEnergyDen-
sity(layer,radius,phi,en dens,en dens err) that given the polar coordinates on the beam calorimeter and the layer
it gives the energy density and its error in that location. GetEnergyDensity gets the energy density in the beam
calorimeter from a root file called bg aver.root, and using this estimates the energy density in any location of
the beam calorimeter. If this operation is successful the value of GetEnergyDensity is 1, if it isn’t, the value is
0 which usually means that the particle didn’t hit the beam calorimeter. This class is meant to be used for an
LDC magnetic field map.

The way this method is used in the processor is giving it the coordinates of each studied particle after being
propagated from the IP with the bcalhit routine (and after changing the system of coordinates with the rotation
matrix), and then getting the energy density in each layer at this coordinates and adding each of them up. This
method supposes that the beam calorimeter has 30 layers but there’s no shower in the first one. The method
differentiates between the beam cal in the positive z direction and the one in the negative, and the way to tell
it is assigning positive integers to the layers in the positive z direction and negative integers to the layers in the
negative z direction.
In tables 4 and 5 we can see the input and output parameters of this method.

Parameter Units Type Description
layer - int Layer were the energy density is calculated ([1,30] or [-1,-30])

radius mm double Radial position of the particle
phi rad double Angular position of the particle [0,2φ]

Table 4: Table of the GetEnergyDensity method input parameters.

Parameter Units Type Description
en dens GeV/mm3 double Energy density at given location in beamCal

en dens err GeV/mm3 double Error of en dens

Table 5: Table of the GetEnergyDensity method output parameters.

5



2.5 Electron recognition efficiency

float HBEER(Ebg,Eel) is a C function made by A. Drugakov and E. Kousnetzova. This function returns the
efficiency of electron recognition of the beam calorimeter of the ILC given the total energy background in every
layer the electron has gone through and the energy of this electron when first hit the beam calorimeter.

Parameter Units Type Description
Ebg GeV/mm3 double Energy density at given location in beamCal

(summed over all layers)
Eel GeV float Energy of the electron when hitting the beamCal

Table 6: Table of the GetEnergyDensity method output paremeters.

2.6 Determination of detection

In order to see if an electron (or a photon) has been detected we use a simple Monte Carlo method.
The HBEER function gives us a parametrization between 0 and 1 of the efficiency of electron recognition for each
electron that goes through the beam calorimeter. This means that we can use a random generator to generate
numbers between 0 and 1 every time an electron goes through the beam calorimeter to see if it is detected. The
way to do this is comparing the value of number given by the random generator and the efficiency given by the
HBEER function, and taking an electron as detected if the number given by the random generator is smaller
than the one given by the HBBER function.

The random generator used has been the one given by the TRandom3() class of root. This class has a method
called double t Rndm(int t i=0) and it produces uniformly distributed floating points in (0,1]. In order for this
number to be different every time it’s used we give it a random seed as well. We’ve chosen to give as seed the
number created by the fourth to the eight digits of the energy of each electron.

2.7 Root trees

In order to know how the processor behaves I thought it would be a good idea that every time the processor runs
it creates a tree to a root file. The processor creates two trees one called Treename (for electrons) and the other
Treename2 (for photons). In these trees all the interesting to analyse the processor are stored. The values are
shown in tables 7 and 8.

Name of variable Units Description
renergy GeV Energy of the electron when hitting the beamCal
rposx mm Position of the electron in x axis when hitting the beamCal
rposy mm Position of the electron in y axis when hitting the beamCal
rpos mm Position of the electron in z axis when hitting the beamCal

rRadius mm Radial position of the electron when hitting the beamCal
rPhi radians Angular position of the electron when hitting the beamCal

angles from [−π,π]
rEfficiency - Electron efficiency parametrization of the HBEER function

from [0,1]
rMC - Value of the TRandom3() method Rndm()

from (0,1]

Table 7: Table of values stored in the root tree Treename (tree for electrons).

6



Name of variable Units Description
rpenergy GeV Energy of the electron when hitting the beamCal
rpposx mm Position of the electron in x axis when hitting the beamCal
rpposy mm Position of the electron in y axis when hitting the beamCal
rppos mm Position of the electron in z axis when hitting the beamCal

rpRadius mm Radial position of the electron when hitting the beamCal
rpPhi radians Angular position of the electron when hitting the beamCal

angles from [−π,π]
rpEfficiency - Electron efficiency parametrization of the HBEER function

from [0,1]
rpMC - Value of the TRandom3() method Rndm()

from (0,1]

Table 8: Table of values stored in the root tree Treename2 (tree for photons).

3 Checks made

To see if the processor worked properly I made three checks to it, one of them was successful, one showed some
problems, and the third one should be redone.

3.1 Output collection

I created a new MARLIN processor that would read the reconstructed particle collection from the forwardveto
processor to see that the output collection it was giving could be read wihtout problems. This check worked
properly.

3.2 Detector efficiency distribution

To see that the processor was doing things properly I plotted the efficiency of the detector against the radial
position for particles with different energy ranges. I did this because the efficiency of a the beamCal has to go
somehow as shown in figure 5.

Figure 5: Scheme of how should approximately the efficiency of the detector vary for different radius and ener-
gies.[2]

When I performed this check I got that the efficiency for all the particles was around 0.98 no matter of its position
or energy. This meant that there was something wrong either with the GetEnergyDensity (or the way I used
it) or with the parametrization done by the HBBER function. No serious further checks were done to this, but
just to see if the problem came from the energy density background given to the HBBER function I plotted the

7



efficiency against the radius for the case where the energy density given to the HBBER was multiplied by 10 and
also for the case it was multiplied by 100. At first sight the plot where the energy density was multiplied by 100
looked as it should for different energies. Even though some serious checks should be done to this. It could be
that the a problem with the units of the energy background density.

3.3 Check change of coordinates

To see if the change of coordinates was done properly I tried to plot all the electrons hitting the beam calorimeter
on the xy plane to see if they somehow would appear drawn in some ”forbidden” region (like in the beam pipe).
The problem with this check is that I didn’t see any point close enough to the beam pipe to tell weather the
change of coordinates was done properly or not. Another problem I had when doing this check is that I was
trying to see this ”forbidden” regions from a slice of the beam calorimeter (see figure 4) that was given in the
same folder I received the BcEnergyDensity, but the problem was that I wansn’t 100% sure that it was from the
beamCal situated in the positive part of the z axis. That’s why even though I think that the change of variables
I used with the rotation matrix (section 2.4.2) was alright it’d be wise to double check it.

3.4 Problems to be solved

There are two main problems that need to be solved in order for this processor to be ready. The first one is
concerning the problem I mentioned in section 3.2 concerning the detector efficiency distribution.
The second problem or thing that should be checked is if the HBBER function also applies to photons, so to be
sure that it is can be used in the case the processor works detecting photons.

4 Suggestions

I think that after fixing these two problems the processor will be ready to be used. The only thing that could be
changed is some variable names to be consistent with the coding conventions followed in MARLIN.

When creating this processor I linked it to many different libraries, and I don’t know if all of them are needed.
In order to make the processor ”efficient” in this sense I’d recommend to check in the CMakeLists.txt file which
of the are needed, and I’d modify it so when downloaded to use it doesn’t complain about needing something
unneeded.

5 Conclusions

The overall result of this project was positive even though I finished with some unsolved problems that I have
to leave to my supervisors to fix. Even though I think that these won’t require almost any further coding, and
will only require the understanding of some of the routines involved. That’s why I hope that without too much
effort this processor will be able to run and help do some physics.

Aside from the job done I would like to thank my supervisors and all the people in the group that helped me when
I had troubles with my work and helped me. I think this was a positive experience and I learned many valuable
things. I’m very grateful to everybody in the FLC group and I hope for them the best luck with everything !!!
Best wishes !!

6 References

[1] P. Bambade, M. Berggren, F. Richard, Z. Zhang. arXiv:hep-ph/0406010v

[2] Bozovic-Zelisavcic, The Forward Calorimetry at ILC talk

8


