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Abstract. The following report shows the results of a comparison be-
tween the kt, anti-kt, Cambridge/Aachen and SISCone jet-algorithms,
which were used to analyse direct and resolved dijet photoproduction
Monte Carlo data from the Pythia event generator. For the leading jets
we demanded cuts of 25, 15 and - if a third jet existed - 10 GeV. It was
investigated if the results of each algorithm agree for the comparison
between reconstructed- and hadron- level. To find corresponding jets on
different levels a matching procedure was introduced, which depends
on a goemetrical radius parameter. To optimize this and the radius
parameter of the different jet algorithms is one of our main aims.

1. MOTIVATION

Jetalgorithms are one of the most important tools
in high energy physics data analysis. They provide
an opportunity to reconstruct the initiating partons
and initiating processes of any complex events. But
since the projection of a multiparticle bunch to a
simple jet is fundamentally ambiguous - which re-
flects the variety of existing jetalgorithms - it is im-
portant to understand their characteristcs in defin-
ing the jets. Therefore we use Monte Carlo data from
the Pythia event generator and compare the prop-
erties of the defined jets on hadron level with the
properties of the jets on reconstructed level.

The HERA experiments aim on measuring the
strong coupling αs, proton PDFs and various cross
sections ep → jets. In case of photoproduction reac-
tions, which are at least of O(ααs), one can also
study the PDF of the photon, which exhibits a
hadronic structure in these special reactions. There-
fore it is important to identify the best parameter
settings of the used jetalgorithms for the special re-
quirements of these experiments. Since in the last
years a lot of new jetalgorithms like the anti-kt and
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SISCone emerged, the interest in testing their char-
acteristics is again growing.

2. BASICS OF
ELECTRON-PROTON-SCATTERING

Fig 1. Electron proton scattering process.

In electron proton scattering reactions occur elec-
tromagnetic interactions, mediated by a photon, as
well as weak interactions, mediated by the Z0 (neu-
tral currents) or the W± (charged currents). The
charged current interactions can easily be separeted
by cutting on missing energies and momenta, carried
away by the emerging neutrino. These scattering re-
actions (see figure 2) can be described by several sets
of kinematical variables. Important variables are the
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center of mass energy

(2.1) s = (p + k)2 ≈ 4EeEp,

which is usually fixed at collider experiments. Ee

is the electron energy, Ep the proton energy, this and
all following approximations are valid in the high en-
ergy limes, when electron and proton masses can be
neglected. The (negative) squared momentum trans-
fer

(2.2) Q2 = −q2 = −(k − k′)2 ≈ 2EeE
′
e(1− cos θ)

is used to divide the interactions in further classes,
like deep inelastic scattering (DIS) with high Q2. A
similar work on jet algorithms for DIS data has been
done by B. Lemmer, see (5). In cases of vanishing Q2

one speaks of photoproduction interactions, where a
quasi real photon is exchanged. θ is the angle of the
scattered electron relative to the beam axis, E′

e the
energy of the scattered electron. In reactions ep →
eX with fixed center-of-mass energy the kinematics
can be fully described by two variables,

(2.3) y =
p · q
p · k ≈ 1− E′

e

Ee
sin2 θ

2
,

called the inelasticity of the process, which is in
the proton rest frame equal to the energy loss of the
scattering electron. The second variable is

(2.4) xp =
q · a
q · p ,

which can be interpreted as the momentum frac-
tion of the scattering parton coming from the proton
with four momentum a.

3. PHOTOPRODUCTION

As already mentioned, one speaks of photopro-
duction in cases of Q2 ≈ 0. The photon can either
interact directly with one parton from the proton,
which is called direct photoporduction, or it can fluc-
tuate into quark-antiquark pairs or a vector meson,
which is then interacting with one parton from the
proton, this is called resolved photoproduction. The
longitudinal momentum fraction of the photon-side
parton is then defined by

(3.1) xγ =
p · b
p · q ,

with the parton momentum b, similar to the pro-
ton case (cf. equation 2.4). This means that the pho-
ton exhibits a hadronic structure and one of its par-
tons is then participating in the hard interaction.

The usual approach to calculate photoproduction
cross sections is to factorize them into one part that
is calculable by perturbation theory, like electromag-
netic and hard QCD processes, and a non perturba-
tive part, where all soft QCD processes, for exam-
ple radiation of soft gluons, are parametrized into
so called structure functions, which are to be de-
termined experimentally. Therefore we demand at
least two hard jets to ensure that the parton in-
teraction is on a hard scale, which is then calcu-
lable in pQCD. For the non perturbative processes
in photoproduction we get two structure functions
fp(αs, xp, µR, µF ) and fγ(αs, xγ , µR, µF ), one for the
proton structure and the other one for the hadronic
structure of the photon. In case of direct photopro-
duction the latter is not applicable, instead the elec-
tromagnetic coupling of the photon with the proton-
side parton can be calculated in QED. The two
structure functions depend on the strong coupling
constant αs, the proton-side and photon-side mo-
mentum fractions respectively, the renormalization
scale µR and a factorization scale µF which defines a
boundary for the processes, which are parametrized
in the structure function. This is illustrated in figure
3. For the cross section for resolved events one gets
then:

(3.2)

dσres
ep =

∑

i,j=qq̄g

∫ 1

0
dxpdxγfi,γ(αs, xγ , µR, µF )

×fj,p(αs, xp, µR, µF )dσij(αs, pxp, qxγµR)

For direct envents:

(3.3)

dσdir
ep =

∑

i=qq̄g

∫ 1

0
dxpfi,p(αs, xp, µR, µF )

×dσi(αs, pxp, qµR)
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Fig 2. Schematic view of dijet photoproduction process in ep-scattering. The small grey circle depicts the hard (short scale)
parton-parton interaction.

The leading order interactions of direct dijet pho-
toproduction are QCD compton scattering γq → gq
and the so called photon-gluon-fusion γg → qq̄,
respectively, which are of O(ααs) (cf. figure 3).
There are various LO diagrams for the hard parton-
parton interaction of the resolved photoproduction
(depicted with a small grey circle in figure 3), which
are of O(αα2

s), e.g. processes like qq̄ → qq̄, qq → qq.
For these and NLO diagrams, virtual and real cor-
rections, see (3).

4. JET ALGORITHMS

For all types of jet algorithms, one requires in-
frared and collinear safety, factorizability and a
small renormalization scale dependence. This guar-
antees that the defined jets do not lead to diver-
gent observables. Finally, all algorithms should give
the same results, e.g. the same jet quantities, on
all levels. On detector level one considers all ob-
jects recorded by trackers and calorimeters, which
are later identified by their momenta and energies
as certain particles (reconstructed level). This is the
only known information after conducting an exper-
iment. But what one wants to know, the physical
truth, are the underlying processes between partons
and hadrons (parton and hadron level).

In general, one can discriminate between two
widespread classes of jetalgorithms, the sequential
recombination algorithms (also called clustering al-
gorithms), like kt, anti-kt and Cambridge/Aachen
and the conetype algorithms, such as SISCone. Both

classes of jetalgorithms are sensitive to different
types of non-perturbative QCD corrections, cf. (1)
and (2).

For the clustering algorithms some kind of like an-
gular distance dij between two particles and a dis-
tance diB between a particle and the beam is in-
troduced. The latter distance is used for a stopping
criterion of the clustering process, as described fur-
ther down. The algorithm then proceeds by identi-
fying the minimal dij for a particle i and combining
it with j, as long as dij is smaller than diB. If it is no
longer smaller, i is defined as a jet. The merging of
two particles is done due to the pt-weighted scheme:

pt,ij = pt,i + pt,j ,(4.1)

ηij =
pt,iηi + pt,jηj

pt,ij
,

φij =
pt,iφi + pt,jφj

pt,ij
.

This merging scheme results in massless jets,
which are ordered ascendently in pt. The above de-
scribed procedure is then repeated until no single
entity is left. For the three recombination algorithms
that we consider, the distances are defined by:

(4.2) dij = min
(
p2p

t,i, p
2p
t,j

)∆2
ij

R2

(4.3) diB = p2p
t,i
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Fig 3. Leading order diagrams of direct photoproduction with timelike or spacelike quark propagator.

This definition for dij is composed of a relative
power of energy scale, containing the transverse mo-
menta of two jets, each to the power of 2p, and a
geometrical scale, which is governed by the radius
parameter R, which is usually of O(1). The distance
∆ij is defined by:

(4.4) ∆2
ij = (ηi − ηj)2 + (φi − φj)2,

the so called pseudorapidity η is related to the
angle θ of a jet via

(4.5) η = − ln
(

tan
θ

2

)
.

It is in the high energy limes with negligable parti-
cle masses numerically close to the rapidity y defined
in special relativity as

(4.6) y =
1
2

ln
E + Pz

E − Pz
.

It will be one of our main aims to find a good value
for the parameter R for each jetalgorithm. Consid-
ering the parameter p, the case p = 1 corresponds to
the kt algorithm, p = 0 to the Cambridge/Aachen
algorithm and p = −1 to the anti-kt algorithm. The
sign of the parameter p affects the ordering of the
jets, considering a hard particle and a soft particle,
for positive p the dij is dominated by the momentum
of the soft paritcle and the geometrical distance, in
contrast, in the case of negative p dij is dominated
by the momentum of the hard particle and the geo-
metrical distance, for the special case p=0 only the
geometrical distance of the particles is relevant. A

detailed description of the clustering behaviour of
the anti-KT algorithm you can find in (1).

The general idea of conetype algorithms is to de-
fine jets as a cone around certain directions with high
energy flows. Also in this case a geometrical param-
eter R appears, in this case it is the radius of “trial”
cones, which are put around certain seed-particles in
the considered event. Then for each seed the sum of
the four momenta of all particles in the cone is calcu-
lated, which yields a new direction for the trail cone.
If the direction of a trail cone no longer changes after
a certain amount of iteration steps, the cone is ref-
fered to as “stable cone”. Obviously the sum of the
for momenta of all particles in a stable cone then
has to coincide with the cone axis. Unfortunately,
for the algorithms using seeds problems like infrared
and collinear unsafety may occur. A way out of these
problems is provided by seedless cone algorithms,
like the SISCone algorithm. For more details about
this algorithm see (2).

5. THE MONTE CARLO DATA

The Monte Carlo data used for this analysis is
created with the Pythia 6.4 event generator (6) and
contains 5 million direct and resolved photoproduc-
tion events. Multiple interactions between the re-
solved photon and the proton are not included in
this data set, although Pythia allows to generate
such processes. The data is fully simulated and re-
constructed, so that a comparison between jets on
reconstructed and generated jets on hadron level is
possible.

6. PHASESPACE DEFINITIONS

For this work we consider photoproduction events
with at least two hard jets, their transverse momen-
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tum is demanded to be greater than 25 GeV and
15 GeV, respectively. These cuts ensure that the par-
ton parton interaction is on a hard scale so that the
cross section is calculable with the means of pQCD.
If a third jet occurs, also here a cut of 10 GeV is
applied. These pt cuts are equal on hadron and re-
constructed level, see table 1 and 2. The η cuts apply
for all of the first three jets1 and are also the same
on both levels, we demand η to be in the range of
−0.5 < η < 2.75, which is due to the constricted
acceptance of the detector. To remove DIS events
we require that there is no electron candidate found
during the reconstruction, which restricts the pho-
ton virtuality to Q2 <4 GeV, according to the detec-
tor acceptance of HERA II (cf. the relation between
Q2 and the angle θ of the scattered electron in equa-
tion 2.2). An equal cut on Q2 is explicitly applied
on hadron level. The cuts on the jet masses on rec-
level have the purpose to remove any fake jet events,
which occur when an electron is reconstructed as a
jet after the detector simulation. Real jets have usu-
ally masses greater than 2 GeV. Charged currents
are excluded due to a cut on missing pt, which has
to be below 20 GeV. Since E − Pz is related to yJB

via yJB = E−Pz
2Ee

the cuts on these quantities corre-
spond to each other on the rec- and had-level.

A cut on the z-vertex position and the non-ep-
background finding algorithms are usually used to
remove cosmics, but is not necessary in the analysis
of Monte Carlo data, since cosmics are not part of
the simulation. Anyway, for the sake of completeness
we take them in here.

For more details on photoproduction cuts and the
above mentioned non-ep-background finders see (4).

Table 1
Phasespace definition. Cuts on reconstructed level.

parameter Cut

z-vertex pos. −35 cm< z <35 cm
pt,miss <20 GeV
E − Pz 5.52 GeV< E − Pz <49.68 GeV
no scattered electron

pt,1 >25 GeV
pt,2 >15 GeV
pt,3 >10 GeV
ηall jets −0.5 < η < 2.75
Mjet,1 >2 GeV
Mjet,2 >2 GeV

1The labels 1st, 2nd and 3rd are due to the transverse
momentum ordering of the jets.

Table 2
Phasespace definition. Cuts on hadron level.

parameter Cut

Q2 <4 GeV2

yJB 0.1 < y < 0.9

pt,1 >25 GeV
pt,2 >15 GeV
pt,3 >10 GeV
ηall jets −0.5 < η < 2.75

7. RESULTS

7.1 Jet Matching

To compare jets at reconstructed and hadron
level, we had to introduce some matching procedure,
which yields a pair of jets that is reasonable to com-
pare. To this end, we yust calculated the geometrical
distance ∆R2 = (∆η)2 +(∆φ)2 for the three hardest
had-jets to each of the five hardest rec-jets, the min-
imal distance was taken as matching criterion. We
also introduced a boundary parameter ∆R2, which
excludes all rec-jets as a matching partner that have
a greater distance to a certain had-jet than the given
value. We calculated the matching efficiency, the ra-
tio of the number of all matched jets to all matching
trails, for different values of ∆R to find a parame-
ter region, where the matching effienciency is better
than 90% and the sensititvity of the efficiency with
respect to the radius parameter of the jetalgorithms
is low. A too large ∆R would lead to accidental mis-
matchings, so that a comparison between the dif-
ferent levels would be impossible. A too small ∆R
would lead to a small matching efficiency and low
statistics in all further analysis. We chose ∆R = 0.1
to make a compromise.

Figures B,B and B show the matching efficiency
for a fixed value of ∆R = 0.1 plotted versus pt and
the angles η and φ. In the φ plot should no structure
be recognizable, which is obviously confirmed by fig-
ure B. But the latter also reflects very clearly the
stronger dependency of the kt algorithm on R0 com-
pared to the anti-kt. The other two algorithms do
not show any peculiar behaviour in terms of the jet
matching. In figure B one can recognize that the effi-
ciency falls off for bigger values of η. Due to the lower
detector precision in the forward direction there may
be some weird mergings of jets or particles, so that

2Dont confuse it with the radius parameter R0 of the je-
talgorithms.
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the resulting jets on rec-level can not match with
them on had-level, whereby the matching efficiency
finally decreases. In B one can see that the efficiency
is increasing with increasing pt, which is due to the
better defined jets at high pt, they then form a nar-
rower bunch. This is also reflected in figures B, B
and B, where the matching efficiency is plotted for
each of the first three jets versus ∆R. The efficiency
considerably decreases for the 2nd and 3rd had-jet.

7.2 Comparison between reconstructed and
hadron level jet quantities

To compare reconstructed and hadron level we
use the above described matching procedure for each
had-jet. Then, for example, for every 1st had-jet the
difference in pt, η and φ between this jet and its
matching jet on rec-level is plotted in a Root TH2D
(see 7.2) versus its pt, η, φ or the invariant mass
of the first two had-jets M2

12 on the x-axis. After-
wards, we calculate for each x-Bin the mean value
and sigma of the particular difference distribution
and fill them into new histograms. By this means
one gets a clear view on the differences between the
hadron level and reconstructed level jet definitions of
each algorithm and for different radius parameters.
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Fig 4. Shown is, as an example, the 2dim distribution of the
difference in pt between the 1st had-jet and its matching jet
on rec-level on the y-axis versus the 1st had-jets pt on the x-
axis. For each x-Bin we calculated then the mean value and the
sigma of this distribution and filled it into separated histograms
(shown on the next pages) to get a clear view on the differences
between the hadron level and reconstructed level jet definitions
of each algorithm. Used algorithm: kt with R0 = 1.0

• pt histograms (figures in appendix C): in
terms of the pt difference between rec- and had-
level, bigger radii seem to improve the match-
ing between the two levels, at least for high pt of
the first had-jet. In this field, the SIScone shows
the worst performance, kt and anti-kt should be
preferred here, as they show the smallest differ-
ences between rec- and had-level pt. In terms of
the η difference, Cambridge/Aachen and anti-kt

are a little more sensitive to changes in R0 than
the other two algorithms. All algorithms show
here a positive offset, which gets smaller with
decreasing R0, except for SISCone. Also notice-
able is the negative offset in the φ difference,
which one would not expect. It means that the
jetalgorithms repeatedly find the jets on had-
level at higher φ values. All algorithms with all
radii show this anomaly in a similar way, one
will find it also in all following plots in a similar
order of magnitude (≈ −0.005). So far, there is
no explanation for it.

• η histograms (figures in appendix D): in
terms of the pt difference, again bigger radii
seem to improve the matching between the two
levels. The peculiar behaviour of all algorithms
in the range of η = 1.5 is due to the transition
between central and forward tracking detector.
kt and anti-kt exhibit a slightly better behaviour
than the other algorithms. In terms of the η
difference, SIScone seems to have the best char-
acteristics, as it shows the smallest deviation
form 0 (especially for high η) and smaller de-
pendencies on changes in R0. In contrast, kt,
anti-kt and Cam/Ac show higher dependencies
on changes in R0 and bigger deviations from
0, especially for high η. All algorithms exhibit a
bigger η on had-level than on rec-level, but here
only in the range of η > 1. This may also be re-
lated to the transition between central and for-
ward tracking detector, which was already men-
tioned. This could explain the offset in η in the
pt histograms. The offset in φ is very similar for
all algorithms, but not constant like in the pt

histograms. Instead, it is growing bigger from
η ≈ 1 on.

• φ histograms (figures in appendix E): as
for the pt difference, a radius of R0 = 1.0 seems
to be the best choice for all algorithms. The
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kt shows here and for the η difference the best
performance. For the η differences, small radii
improve the performance of all algorithms. The
offset in φ is again very similar for all algorithms
and radii.

• M2
12 histograms (figures in appendix F):

the behaviour seems to be very similar to the
pt plots. For M2

12 less than 3000 GeV2 the dif-
ference between hadron level and reconstructed
level pt is less than 0. In this region, smaller R0

should be preferred for all jetfinders. In the re-
gion M2

12 >3000 GeV2 bigger radii yield better
results. The first bin with lowest M2

12 should not
be considered too important in all plots, due to
low statistics. In terms of the η difference, SIS-
Cone again seems to be slightly less dependent
on changes in R0.

7.3 Comparison with the results of the DIS
analysis

Comparing this work with B. Lemmers analy-
sis on DIS data (4), one first recognizes the lower
matching efficiencies. This is due to the lower pt cuts
(first jet pt >7 GeV) compared to the cuts in pho-
toproduction. Since lower pt jets are less precise de-
fined, also the efficiency decreases. The behaviour of
the matching efficiency versus pt and η seems to be
similar. The φ plots differ because of the boost into
Breit frame apllied in B. Lemmers work. The offset
in φ in the difference plots is also present in the DIS
work, which means that also there the φ on rec-level
is bigger than the φ on had-level. Interestingly, the
offset is smaller for Rapgap data. The other results
are hard to compare because of the different cuts
on pt and different Q2 range. But in general, also in
the DIS work kt and anti-kt seem to have a slightly
better performance.

8. FINAL CONCLUSION AND OUTLOOK

The analysis shows that especially for kt and anti-
kt R0 = 1.0 is in most cases a good choice. SIS-
Cone in contrast works better with bigger radii.
Cambridge/Aachen shows in most cases a slightly
worse performance than the other algorithms. The
behaviour of anti-kt in terms of the jet matching is
noticeable, here it shows the best efficiency, kt in
contrast shows the worst. One can conclude from
that, that kt and anti-kt are the preferable algo-

rithms, but all in all the differences between the
jetfinders are rather small.

The mysterious offset in all φ difference his-
tograms needs further investigations, a correction in
the detector simulation and reconstruction process
might be necessary.

Further studies of the differences between hadron
and parton level and the separate consideration of
direct and resolved photoproduction events might be
interesting.
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APPENDIX B: JET MATCHING PLOTS
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Fig 6. 1st jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
kt algorithm seems to be more sensitive to changes in R0 than the anti-kt algorithm. The errors are calculated according to a
binomial distribution of Nmatch
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Fig 7. 2nd jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
errors are calculated according to a binomial distribution of Nmatch
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Fig 8. 3rd jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
errors are calculated according to a binomial distribution of Nmatch
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Fig 9. 1st jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
parameter ∆R = 0.1 is here fixed, the matching efficiency is plotted versus the pt of the 1st had-jet. The errors are calculated
according to a binomial distribution of Nmatch
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Fig 10. 1st jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
parameter ∆R = 0.1 is here fixed, the matching efficiency is plotted versus the η of the 1st had-jet. The errors are calculated
according to a binomial distribution of Nmatch
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Fig 11. 1st jet on hadron level: matching efficiency for all jetalgorithms with different radius parameters (colored lines). The
parameter ∆R = 0.1 is here fixed, the matching efficiency is plotted versus the φ of the 1st had-jet. The errors are calculated
according to a binomial distribution of Nmatch
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APPENDIX C: REC-HAD-LEVEL
DIFFERENCES VERSUS PT,HAD,1
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Fig 12. In the first row, the mean values of the difference distributions between had- and rec-level are shown versus pt of
the first jet. The second row shows the associated sigmas of the difference distributions. The first column shows the difference
in pt, the second one the difference in η and the third one the difference in φ. Note that for the two angular quantities the
absolute differences between had- and rec-level were calculate, whereas the pt difference is calculated relative to the had-level
pt of the jet. Used jetalgorithm is kt.
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Fig 13. Used jetalgorithm is anti-kt.
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Fig 14. Used jetalgorithm is Cambridge/Aachen.
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Fig 15. Used jetalgorithm is SISCone.
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APPENDIX D: REC-HAD-LEVEL
DIFFERENCES VERSUS ηHAD,1
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Fig 16. In the first row, the mean values of the difference distributions between had- and rec-level are shown versus η of the
first jet. The second row shows the associated sigmas of the difference distributions. The first column shows the difference
in pt, the second one the difference in η and the third one the difference in φ. Note that for the two angular quantities the
absolute differences between had- and rec-level were calculate, whereas the pt difference is calculated relative to the had-level
pt of the jet. Used jetalgorithm is kt.
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Fig 17. Used jetalgorithm is anti-kt.
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Fig 18. Used jetalgorithm is Cambridge/Aachen.
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Fig 19. Used jetalgorithm is SISCone.
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APPENDIX E: REC-HAD-LEVEL
DIFFERENCES VERSUS φHAD,1
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Fig 20. In the first row, the mean values of the difference distributions between had- and rec-level are shown versus φ of the
first jet. The second row shows the associated sigmas of the difference distributions. The first column shows the difference
in pt, the second one the difference in η and the third one the difference in φ. Note that for the two angular quantities the
absolute differences between had- and rec-level were calculate, whereas the pt difference is calculated relative to the had-level
pt of the jet. Used jetalgorithm is kt.
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Fig 21. Used jetalgorithm is anti-kt.
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Fig 22. Used jetalgorithm is Cambridge/Aachen.
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Fig 23. Used jetalgorithm is SISCone.
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APPENDIX F: REC-HAD-LEVEL
DIFFERENCES VERSUS M2

HAD,12
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Fig 24. In the first row, the mean values of the difference distributions between had- and rec-level are shown versus M2
12 of

the first jet. The second row shows the associated sigmas of the difference distributions. The first column shows the difference
in pt, the second one the difference in η and the third one the difference in φ. Note that for the two angular quantities the
absolute differences between had- and rec-level were calculate, whereas the pt difference is calculated relative to the had-level
pt of the jet. Used jetalgorithm is kt.
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Fig 25. Used jetalgorithm is anti-kt.
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Fig 26. Used jetalgorithm is Cambridge/Aachen.
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Fig 27. Used jetalgorithm is SISCone.


