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INTRODUCTION 
 
Frequency map analysis (FMA) was introduced for the demonstration and understanding of 
the chaotic behaviour of the solar system that can be considered as a dynamical system with 
3N degrees of freedom (DOF) where N is the number of planets. The method applies more 
generally to any Hamiltonian system or symplectic map (eventually with some small 
dissipation). It is particularly interesting for systems of DOF larger than 2, when a simple 
surface of section fails to provide a global view of the dynamics of the system. The 
application to particle accelerator dynamics was very natural, as the motion of a single 
particle in a storage ring is usually described in a surface of section of the beam by a 
symplectic map of dimension 4, or eventually of dimension 6 when the synchrotron 
oscillation is also taken into account. FMA has been applied to many machines, providing in 
each case a picture of the dynamics of the beam. Here we consider a FMA for the PETRA III 
storage ring obtained by the particle tracking program “Elegant”. We use the PETRA III bare 
lattice without insertion devises obtained from the MAD-X input file. A finally we compare 
the result obtained by elegant with results obtained with “SIXTRACK”. 
 
 

 
 

FREQUENCY MAP 
 
Frequency map analysis is not a perturbative theory, it is useful to describe its properties of a 
Hamiltonian close to integrable, where a rigorous setting can be derived. Let us thus consider 
a n–DOF Hamiltonian system in the form H(I, θ) = H0(I) + εH1(I, θ), where H is real analytic 
for canonical variables (I, θ) ∈ Bn × Tn, Bn is a domain of Rn and Tn is the n-dimensional 
torus. For ε = 0, the Hamiltonian reduces to H0(I) and is integrable. The equations of motion 
are then for all j = 1. . . n 
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The motion in phase space takes place on tori, products of circles with radii Ij , which are 
described at constant velocity νj(I). If the system is nondegenerate, that is if 
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the frequency map 
F : Bn → Rn 

                         (I) → (ν)                  (3)                      
is a diffeomorphism (one to one smooth map) on its image Ω, and the tori are as well 
described by the action variables (I) ∈ Bn or by the frequency vector (ν) ∈ Ω. For a 
nondegenerate system, the KAM theorem still asserts that for sufficiently small values of ε, 
there exists a Cantor set Ωε of values of (ν), satisfying a Diophantine condition of the form 

|< k,ν >| = |k1ν1 + . . . + knνn| > κε/|k|m        (4)       
for which the perturbed system still possesses smooth invariant tori with linear flow (the 
KAM tori). Moreover, these tori that survive on a totally discontinuous set of initial 
conditions are still properly ordered in some sense as, according to Poschel [22], there exists a 
diffeomorphism 

Ψ : Tn × Ω → Tn × Bn;                             (ϕ, ν) → (θ, I)             (5) 



which is analytic with respect to ϕ, C∞ in ν, and on Tn×Ωε transforms the Hamiltonian 
equations into the trivial system 
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If we fix θ ∈ Tn to some value θ = θ0, we obtain a frequency map on Bn defined as 

Ω→nBF :
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where p2 is the projection on Ω (p2(φ, ν) = ν). For sufficiently small ε, the torsion condition 
(2) ensures that the frequency map  is still a smooth diffeomorphism. 
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The frequency analysis method and algorithms rely heavily on the observation that when a 
quasiperiodic function f(t) in the complex domain C is given numerically, it is possible to 
recover a quasiperiodic approximation of f(t) in a very precise way over a finite time span 
[−T, T ], several orders of magnitude more precisely than by simple Fourier analysis. Indeed, 
let 
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be a KAM quasiperiodic solution of an Hamiltonian system in Bn × Tn, where the frequency 
vector (ν) satisfies a Diophantine condition (3). The frequency analysis algorithm NAFF will 

provide an approximation  of f(t) from its numerical knowledge over a finite 

time span [−T, T] . The frequencies ω′
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k and complex amplitudes a′k are computed through an 
iterative scheme. In order to determine the first frequency ω′1, one searches for the maximum 
amplitude of ( ) ( ) tietf σσφ ,= where the scalar product ( ) ( )tgtf ,  is defined by 
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and where χ(t) is a weight function. Once the first periodic term is found, its complex 
amplitude a′

tie 1ω′

1 is obtained by orthogonal projection, and the process is restarted on the 
remaining part of the function 
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For a KAM quasiperiodic solution (8), the computed frequency T

1ν  converges very rapidly 
towards the true frequency ν1 as 
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where p is the order of the cosine window χp(t) =2p(p!)2(1+cos πt)p/(2p)! used in (9). To 
construct numerically a frequency map, we will fix all initial angles θi =θi0, and for each 
initial action values (I) = (I1, . . . , In), integrate numerically the trajectories over a finite time 
interval of length T . The fundamental frequencies (ν) are computed by the previous (NAFF) 
algorithm, for all initial actions (I), and we thus construct a correspondence : 

Ω→nT BF :
0θ

                 ( )ν→I               (12) 
that converges towards  as T → +∞. This map will thus be regular on the set of regular 
trajectories, and whenever its appears to be non regular, it will reveal the existence of chaotic 
orbits.In practice, to study the dynamics of a beam, in a given surface of section 
corresponding to a starting location on the lattice, one can fix the two transverse momenta, 
and integrate the trajectories with a tracking code for a network of initial conditions spanning 
both horizontal and vertical directions [1]. 
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We look at a given longitudinal position (typically s = 0) at the return map. The coordinates 
used are the canonical transverse positions (x; y) and momenta ( yx ′′, ). Given a set of initial 



conditions (x0; y0; 000 =′=′ yx ) the particle trajectory is numerically computed over few 
thousands turns. For a surviving particle, we plot it in the configuration space defining the 
dynamic aperture and we compute its transverse tunes with the FMA over the first half turns 
and then again over the last half turns. The logarithmic tune difference gives a diffusion index 
( ( )νdlog ) coded by a colour. 

 
 
 

PETRA III 
 
Petra III is a high brilliance 3rd generation low emittance synchrotron radiation source. The 
storage ring is divided into 8 octants, each consisting of an arc and a long or a short straight 
section on either side. Seven arcs are formed from FODO cells with mirror symmetry in the 
middle of each octants arc and a missing magnet dispersion suppression scheme. One octant, 
NE to E, is currently reconstructed into a DBA lattice (from 1100 to 1400 in fig.2). Figure 2 
shows the optic functions for the bare machine (without insertion devices) calculated bay 
elegant. The design parameters for PETRA III are given in Table 1 [2]. 
 

Parameter Value Unit 
Number of insertion devices 13  
Energy 6 Gev 
Current 100 mA 
Emittance yx εε  1/0.01 nmrad 
Circumference 2304 m 

Table 1.Design parameters of PETRA III (including dumping wigglers) 
 

 
 

Fig.1: PETRA III schematic overview. 
 



 
             

Fig.2: Beta functions and dispersion for PETRA III storage ring computed with elegant. 
 
 
 

 
ELEGANT 

 
Elegant (ELEctron Generation ANd Tracking) is a 6-D accelerator simulation code that does 
tracking with matrices or using sympletic elements, optimization, synchrotron radiation, 
scattering, etc. elegant is SDDS-compliant (Self Describing Data Sets). For all its complexity, 
elegant is not a stand-alone program. For example, most of the output is not human-readable, 
and elegant itself has no graphics capabilities. These tasks are handled by a suite of post-
processing programs that serve both elegant and other physics programs. These programs, 
collectively known as the SDDS Toolkit provide sophisticated data analysis and display 
capabilities. They also serve to prepare input for elegant, supporting multi-stage simulation. 
Elegant, written entirely in the C programming language, uses a variant of the MAD input 
format to describe accelerators, which may be either transport lines, circular machines, or a 
combination thereof. Program execution is driven by commands in a namelist format. 
Elegant tracks in the 6-dimensional phase space (x, x′, y, y′, s, δ), where x (y) is the horizontal 
(vertical) transverse coordinate, primed quantities are slopes, s is the total, equivalent distance 
travelled, and δ is the fractional momentum deviation. The main input file for an elegant run 
consists of a series of namelists, which function as commands. Most of the namelists direct 
elegant to set up to run in a certain way. A few are “action” commands that begin the actual 
simulation. Each namelist has a number of variables associated with it, which are used to 
control details of the run. These variables come in three data types: (1) long, for the C long 
integer type. (2) double, for the C double-precision floating point type. (3) STRING, for a 
character string enclosed in double quotation marks. All variables have default values. 
STRING variables often have a default value listed as NULL, which means no data; this is 
quite different from the value “”, which is a zero-length character string. long variables are 
often used as logical flags, with a zero value indicating false and a non-zero value indicating 
true[3]. 
Our simulation consists of next steps.  

1. run_setup-Define global simulation parameters and output files. 
2. run_control-Set up simulation steps and passes. 
3. bunched_beam- Set up beam generation. 
4. frequency_map-Compute and output frequency map. 

Fig.3 Dynamic aperture and frequency map for PETRA III 



 

 
 

a) Grid size 60*60 number of turn 8000 (dumping time) 
 
 

 
 

b) Grid size 100*100 number of turns 1000(1/8 dumping time) 
 
 

 
Fig. 4 Dynamic aperture and frequency map for PETRA III obtained by “SIXTRACK” 
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