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Abstract. To analyze data taken from high Q? DIS events with the H1
detector at HERA, it is necessary to obtain very accurate information
about the jets in the events. Therefore, the optimal jet algorithm has
to be used.

Both clustering (kr, anti-kr, Cambridge/Aachen) and cone type
(SISCone) algorithms are compared concerning deviations of the most
interesting observables between reconstruction and hadron level on the
one hand and hadron and parton level on the other hand. Also, the op-
timal parameter (jet radius) for the algorithm was searched. For this,
a matching procedure was used, trying to find a corresponding jet at
another level. The efficiency was studied in dependence of the jet ra-

dius.

1. MOTIVATION

Within the MIPM group of H1, the cross section
of ep — jets events is studied to obtain informa-
tion about the proton PDF and the strong coupling
constant as.

From the energy depositions in the H1 calorime-
ters the particle flows (jets) have to be reconstructed
in a right way. So called jet algorithms do this work,
and they should do as precisely as possible. Up to
now the kp algorithm is well established and was
used for the analysis of HERA and LEP data.

But within the last year the SISCone and the anti-
kr algorithm were developed and the older Cam-
bridge/Aachen was rediscovered. So this variety of
usable algorithms let the question rise if the kp al-
gorithm is still state of the art. Currently two PhD
students are working on jet analysis for DIS (Roman
Kogler’) and photoproduction (Aziz Dossanov?).
While the DIS analysis is done in this work, Clemens
Mellein (also a Summer Student) focuses on pho-
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toproduction (1). This work about DIS should be
briefly compared to his work about photoproduction
in chapter 6.3.

2. DIS AT HIGH @Q?

The general basics about electron-proton-
scattering should be introduced first. To describe
the kinematics of an event, only a small set of
observables is needed. The four momentum vectors
of the proton, incoming electron and outgoing
electron will be called k, k¥’ and P. In the limit of
high kinetic energies (neglect of rest masses) the
total energy in the center of mass system is

(2.1) s = (k+ P)* ~ 4E.E,

where E, and E, as the energies of electron and
proton beam are fixed. We can define the negative
four momentum transfer for scattering events with

(22) Q*=—¢* = —(k— k)~ 2E.E. (1 —cos(h))

where 6 is the angle between the beamline and the
scattered electron. The z-axis is aligned in the direc-
tion of the proton.

Scattering processes can be more or less inelas-
tic. To describe the degree of inelasticity we use the
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can be interpreted as the fraction of the proton’s
four momentum which the parton that scatters with
electron carries. To say so, we have to assume that
the parton has neither a transverse momentum nor
a rest mass. Furthermore, the different partons may
not interact with each other during the time of scat-
tering interaction. A suitable reference frame which
fulfills all those conditions is the Breit frame (Fig.
1). Here the photon does not transmit energy. What

(1—az)P

Fic 1. Breit frame

happens is that the four momentum vector x P of the
partons changes its direction but keeps its absolute
value.

Next to the nice interpretation of x the Breit
frame has another interesting property which is the
reason why we boost every event into this frame be-
fore we analyze it. Let us first have a look at what
can happen when the electron scatters on a proton
(Fig. 2). As s is going to be studied, events with
only a born contribution are not of interest. When a
scattered parton hadronizes and forms a jet, it might
be hard to decide if the detected jet originates only
from a parton (Fig. 2 (a)) or if it is an overlap of
hadronization of the original parton and a radiated
gluon (Fig. 2 (b)). To select events in the order of
a5, & boost to the Breit frame is done. Having a look
at Fig. 1, one can see that the scattered parton car-
ries no transverse momentum. So a suitable cut on
P, will provide only jets originating from a O(ay)
process.

3. THE JET ALGORITHMS
3.1 Demands on Jet Algorithms

A collision event can be analyzed at different lev-
els. What we see at the H1 event display is what
should be called the reconstruction level: Data from
the trackers and calorimeters is used to reconstruct
the track of a particle and identify it. At this level,
a jet can be defined as an area with high energy
density.

Who asks for the physical reason for the energy
detections is guided to the hadron level, where one
talks directly about the reconstructed particles and
their interactions. Here, jets can be defined as sprays
of hadrons.

Going one step deeper brings you to the parton
level, where one deals directly with the hadron’s con-
stituents (partons). And here a jet is a formation of
many close-by partons.

Our algorithms should now give the same results
at all levels. To check this, we observe the deviations
of jet properties at the different levels (See Chapter
6.2).

Requirements are furthermore infrared and
collinear (IRC) safety, factorizability and a small
renormalization scale dependence. IRC safety claims
that the algorithm output - namely the jets - does
not contain objects which guide to divergent propa-
gators terms (”soft” particles with small k& and jets
with a very small angle) when making QCD calcu-
lations.

There exist two classes of jet algorithms: cluster-
ing and cone type algorithms. While clustering al-
gorithms are favored in the analysis of dilepton col-
lisions (initial state free of hadrons), cone type al-
gorithms are preferentially used at p/p collisions as
the jet areas calculated with cone type algorithms
are more regular and hadronic background is easier
to subtract. Both typed should briefly be introduced.

3.2 Clustering Algorithms

Clustering algorithms start calculating the dis-
tances d;; of all entities (particles, pseudojets) in
the final state and also the distance for each entity
to the beam (d;g). Within the list of all d;; and d;p
the smallest distance is picked. If it is a d;;, the en-
tities ¢ and j will be merged. If a d;p is smallest,
entity ¢ will be defined as a jet.
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F1c 2. Deep-inelastic lepton-proton scattering at different orders of as: (a) Born contribution O(1),

scattering O (as) and (¢) boson-gluon fusion O (o)

What is needed for this procedure to run is a clear
definition of a distance and the merging process. A
general definition of the distance for all clustering
algorithms is given by

AZ2.
(3.1) dij = min (kkP) =2
J (T T]) R(Q)

(3.2) dip = k¥

with the geometrical distance

(3.3) A= (i —ni)? + (¢ — 85)°

and the transverse momenta k;, the pseudorapidity
7 and the azimuth ¢. Each geometrical distance is
weighted with a powered momentum. The constant p
defines a jet class. Ry is a free parameter for each jet
finder algorithm which defines the radius of the jet.
In the analysis done within this project, an optimal
value for Ry is going to be found.

For p = 1 we have a k; algorithm (41). Here, the
distance is mainly affected by the k; of the soft par-
ticle/jet. p = 0 leads to the Cambridge/Aachen al-
gorithm (5), where we only get a dependence on the
geometrical distance. Finally, for p = —1 we get the
anti-k; algorithm (6), where d;; is dominated by the
hard particle/jet. The different k; dominance mainly
influences the clustering behavior of soft particles:
For the anti-k; algorithm, the soft particles will first
try to attach to a hard jet instead of clustering with
each other. Vice versa for the k; algorithm.

For a merging of two entities the P, weighted
scheme is commonly used. As the name suggests,

(b) QCD Compton

it works the following way:

(34) PT(ij) = PTz' + PTj
Prini + Prjn;
(3.5) i) = —h
Pr; + Pr;
(3.6) b) = —p P
Ti + Ty

3.3 Cone Type Algorithms

Cone type algorithms work on a different, more
geometric way. In a first step, stable cones are found.
After that the cones are split and merged into jets.

Stable cones are defined as the following: Starting
from angular trial cones pointing in a direction of a
more or less arbitrary particle ("seed”), all four mo-
menta within the cone are added and then point in
the direction of the next trial cone. This iteration is
repeated until the cone axis is not changing anymore
and the cone can be defined as stable. All particles
within the stable cone are removed from the list of
particles in the event and iteration goes on.

The split-merge procedure works as the following:
A P; cut for the protojets is performed. Out of the
remaining protojets, the one with highest P; is cho-
sen. If there is no overlap with another protojet, it’s
defined as a final jet. If there is an overlap, the jets
are - depending on the total P; of the overlap - either
merged or split. If they are split, the particles of the
overlap are attached to the jet with the closer axis.

A problem with cone type jets starting with seeds
is that they are not IRC safe. A way out of this prob-
lem is given by the seedless and IRC safe SISCone
algorithm (details in (7)), which will also be used
within this study.



4 BORIS LEMMER, H1

4. SIMULATION AND SETTINGS

To compare data on all levels (reconstruction,
hadron and parton level), a set of generated monte
carlo data is needed. Two generators were used to
provide data: DJANGOH (2) and RAPGAP (3).
They differ mainly in calculating the hadronization
procedure. To take only those events from the sim-
ulation belonging to an neutral current DIS at high
Q? event, the following cuts are applied:

(4.1) 150GeV? < Q? < 15000GeV?
(4.2) 0.2 < y <0.7

(4.3) 45.0GeV < Y E—p, <65GeV
(4.4) Psse <150

Cut 4.1 selects the high Q2. Together with 4.2 the
phase space for further analysis is defined. As a
charged current (CC) event would cause missing Pr,
4.4 is applied to select only NC events. Usually, it is
also claimed that the interaction vertex lies within
z = 0£35cm (0 means the average interaction point)
to reduce contributions from beam-gas interactions
and cosmic muons. But as we are here dealing with
monte carlo data only which contains no such events,
it is not necessary.

The sum in 4.3 runs over all particles in the event
and should be (due to energy and momentum con-
servation) 2E, = 55GeV. For the case of DIS initial
state photon radiation the value of the sum drops
and the event is rejected.

After the events are selected, our program for jet
analysis selects only jets of interest:

(4.5)
(4.6)

5GeV < PI < 50GeV
—1.0< map <25

To ensure that the detected jets lie within the ac-
ceptance of the LAr calorimeter, cut 4.6 is applied,
where 7545 is the pseudorapidity in the laboratory
frame. The pseudorapidity of a particle is defined as

E+P,
n
E_ P,

1

(4.7) n= 51

The detector efficiency for an n out of this range gets
too bad which makes this cut necessary.

No matter how many jets are found within an

event, only the first one is of interest in this study.

When this first (as all jets in our arrays are ordered

by Pp, "first” means ”jet with the largest Pp”) jet
with all its properties like Pr, ¢ and n is compared
within the different levels, one has to make sure that
really the correct jets are compared. An example: A
simulated event contains two jets at hadron level,
one with a Ppr of 13 GeV, the other one with 14
GeV. As detectors and reconstruction methods are
not perfect, the 14 GeV jet might be identified as a
12 GeV jet at detector level (= reconstruction level)
and the 13 GeV correctly as a 13 GeV jet. So the
"first” jets are no longer the same and might point
in different directions.

To make sure that the comparison between the
levels is always made correctly, a matching proce-
dure was done as described in the following chapter.

5. THE MATCHING PROCEDURE

As the hadron level is supposed to be the one be-
ing ”closest to physical reality”, the matching always
starts with the hardest hadron jet. To find a match-
ing jet on the other level, the following procedure
is done (as an example, the reconstruction level is
taken as comparison level):

1. Define a maximal matching distance AR (as in
3.3) that is fixed during the whole analysis and
will be called AR,,q, (which one is optimal will
be discussed later in 6.1).

2. Check, if the distance between Jet[0]ye. (In-
dexing starts with the hardest jet) and Jet[0]pqq
is smaller than AR,,qz.

3. If yes, then the two hardest jets are matched.

4. If no, check if the distance between Jet[1],c.
and Jet[0]pqq is smaller than AR,,q;.

5. If also Jet[2],¢. is close enough and even closer
than Jet[l],ec, chose Jet[2],e. to compare with.

6. Else, compare with Jet[1],cc.

7. If all of the first three jets on the other level
have a distance larger than AR, the event
is rejected and a marker for the jet efficiency is
set (see 6.1).

This matching procedure differs slightly from the
one used in (1), where the jet with the minimal dis-
tance to Jet[0]pqq is chosen. Whereas here, we have
immediately defined 2 jets as matching, when they
are both hardest jets and within the AR. So only if
there is a mismatch between the hardest, the next
closest will be used. A deviation between both pro-
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cedures is not expected.

6. RESULTS

If nothing else is said, all the following results
where obtained by using the MC generator DJAN-
GOH. If there have been any significant differences
between the results from DJANGOH and RAPGAP,
they will be explained in chapter 6.2.3

6.1 Matching efficiency

6.1.1 An optimal AR,,.. As described in the
matching procedure, an optimal AR,,,. has to be
found. If it is chosen too large, chances increase to
make a matching between two different jets which
are just close-by by accident. In contrast, a AR,q.
chosen too small will end in low statics caused by a
smaller matching efficiency.

All further analysis concerning the matching effi-
ciency will be made between hadron and reconstruc-
tions level. To get a first impression of what a good
ARpq: could be, one can have a look at figure 3.
It shows the distance distribution of two matching

[ Distance of matched jets |

# Entries

F1G 3. Distance distribution of two matched jets

jets. In this run AR,,q: was set to 1.0. A change in
the jet radius Ry from 0.7 to 1.0 (please do not get
confused with AR,,4,) has no significant influence.
To make a decision for AR,,.z, a concrete analy-
sis of the matching efficiency has to be done. The
matching efficiency is defined as the fraction of
matching trials where a jet within AR,,., was found
on the other level. To calculate it, the marker for re-
jected events described in chapter 5 was used.

The matching efficiency depending on AR,q: is
shown in figure 4 as an example for the anti-kp al-
gorithm.

JetEfficiency

[ Matching Efficiency, depending onA R (Djangoh) ] otics 2322078
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Fi1G 4. Matching efficiency depending on AR

An overview for all algorithms is given in figure
11. The results for the other algorithms differ only
slightly except for SISCone, which has in general a
lower matching efficiency. If one wants a winner in
the competition of efficiency, anti-k7 can be pointed
out.

For smaller jet radii the efficiency is in general
better. The idea for this is pretty clear: The more a
jet can spread geometrically, the more its boundaries
can be smeared out with a given uncertainty.

With the results from this AR, .. dependance of
the efficiency, I decided to set it to ARyqe = 0.2
as efficiency does not increase that strong anymore
above 0.2.

6.1.2 Matching efficiency dependances It
should be checked how the matching efficiency varies
depending on different observables like Pr, 7, ¢, the
squared invariant mass of the two hardest jets ME,
and Q2. One remark about M#Z,: For this observable,
no matching procedure has been made. The only
question was if there were two jets on both level. If
so, they were compared according their indexing in
the jet array, namely in the order of Pp.

e Pr: Efficiency increases for higher Pr what will
be analyzed later in chapter 6.3 (see figure 12).
It is intuitive that a jet with higher Pr is de-
fined clearer and thereby easier to match in its
properties on all levels.
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e 1: Figure 13 shows the n dependance of the
efficiency. It decreases for large |n|. This effect
is caused by inefficiencies in the detector which
are also a reason for the global 7 cuts.

e ¢: This is one of the most interesting effects
observed during my work (Figure 14). Unfor-
tunately it is also the one least understood. It
might be an effect of the boost to the Breit
frame. Figure 5 shows how a uniform ¢ distri-
bution changes after such a boost.

e M?,: The effect is similar and comparable to
the Pr dependance (Figure 15).

e Q%: Large Q% end up in a worse efficiency (Fig-
ure 16).

S

=
o
o
o

— lab frame

# Entrie
o
=}
S

TTITTTTTT]THT

— breit frame

(2]

o

o
“TH“HW

e b b b e b b L
-150 -100 -50 0 50 100 150

o

F1G 5. ¢ distribution in laboratory rest frame and Breit frame

One might ask what the reason for the mismatches
were. A closer look at the mismatched events showed
that in almost all cases the jet which should be
matched did not fulfill the necessary cuts.

6.2 Level Deviations

If one sets the hadronic level as the one being clos-
est to the physical truth, it is important to interpret
the data at reconstruction level in that way that
the deviations between reconstruction and hadronic
level are as small as possible. This is also a claim
to our jet algorithm. So we will now first compare
the deviations of Pr, i, ¢ and M%, on both levels
first under a general aspect (”Can we understand
them?”) and then find a jet algorithm which fits best
for each purpose. In the next step, the free parame-
ter of the algorithm - the jet radius Ry - is checked
for its best setting.

What the analyzing program did was the follow-
ing: The differences of the jet properties were calcu-
lated for each event and stored in a two dimensional
histogram (an example is given in 6 depending on ¢).
Later on the differences will also be analyzed under
the aspect of 1, ¢, MZ, and Q? dependance.
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F1G 6. Pr deviation between reconstruction and hadron level
depending on ¢

The best thing next to a delta function at zero
would be a gaussian like distribution around zero.
The mean value (wanted to be zero) and the o of all
those distributions (wanted to be as small as pos-
sible) is then projected on a one dimensional his-
togram and interpreted.

Later on the same checks will be done for a com-
parison of hadron with parton level.

6.2.1 REC vs. HAD Level First about the de-
viations in general (all histograms according to the
following analysis can be found in figures 17 - 28):

o APr: The reconstructed Pr is calculated
slightly too high (Ryp = 1.0 or Ry = 1.3). The
effect increases for small Pr. The bad results for
small Pr were already mentioned. For Ry = 0.7,
Py is even too low for Pr > 10 GeV. The shape
of the distribution is the same but gets shifted
to lower values.

e An: nis both constantly and only slightly too
small at the reconstruction level.

e A¢: The deviation of ¢ is something which is
not at all obvious. An example is given is figure
7. The larger Pr gets, to larger the deviation
becomes (where the reconstructed data is too
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large). The origin for that might be a problem of
the track reconstruction in the event generator,
but a further investigation has not been made
yet.

e AM?): The shape of the M3, deviation stays
the same but is shifted for different jet radii.
This means that for small Pr it is always recon-
structed too high and for larger Pr (> 10GeV')
it is either reconstructed too low (Ry = 0.7,
Ry = 1.0) or too high (Ry = 1.3). In all cases,
the width of the distributions is much higher
than it was for the other observables as there
were now even two jets involved and no match-
ing was done.
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Fi1G 7. Shift of ¢ between reconstruction and hadron level

Now the question is: Which algorithm is best for
which purpose? First of all, I should mention some-
thing about the SISCone. All used jet algorithms
except SISCone are of the clustering type. The split-
merge procedure used in the SISCone leads to a
smaller effective jet radius than used as input for
the algorithm. This means: If we use SISCone with
Ry = 1.0, it should also be compared to a clustering
algorithm at a smaller radius; in our case R = 0.7. So
the discussion about the optimal Ry will be skipped
for SISCone. Figure 8 is used to visualize this effect.
Expected is a peak for the jet area A = 7R3 at the
A belonging to each Ry. One can see that for SIS-
Cone, the jet radius given as parameter is not the
one obtained from the jet area.

Back to the question which algorithm to use:

e SISCone gives smaller (so in some case "bet-

[ Jet Area (Djangoh) ]
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Fic 8. Comparison of the jet areas

ter”) values for Pp. But the effect can be ex-
plained with the different radius behavior.

e For the ¢ deviations, all algorithms behave sim-
ilar.

e anti-k7 is closest to zero concerning the n devi-
ations.

e For M%, SISCone is again lower (so sometimes
better) due to the radius effect. Anti-kp slightly
worse than the rest concerning the mean value
of deviations, but best concerning o.

e As o for the M3, is very radius sensitive, SIS-
Cone is worst in this part.

Now we look for a "good” Ry for the jet algo-
rithms depending on the demand of analysis:

e APp: Ry = 1.0 leads to results closest to zero.
Only for small Pp, where it is always given too
high on reconstruction level, one might wish a
smaller Ry to low the deviations.

e An: The higher, the better.

e A¢: Same behavior for all radii.

e AM?,: Exactly the same argument as for Pr.

As mentioned before, these deviations of Pr, n, ¢
and M3, were stored in 2D diagrams depending on
different observables. As they were up to now only
shown for a Pr dependance, I will now also show
how they depend on other observables. But as the
algorithms them self do not differ that much, the
results will only be discussed for the anti-kr algo-
rithm. The corresponding plots are found at figures
37 - 44. For all deviations of observables the most
significant dependances are summarized:
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e APr: n > 1.0 gives main contribution for the
Pr deviations. The effect gets eased by a smaller
Ry.

e Ap: The main contribution for the too low 7 on
reconstruction level can definitely be assigned
to low Q? events.

e A¢: Again (as for APr), n > 1.0 gives main
contribution. The higher 7, the worse.

o AM?,: Low Q? (Q? < 600CGeV?) events cause
largest deviations. There are also strong effects
for both angles, but unfortunately I have no
idea how to interpret them.

6.2.2 HAD vs. PAR Level As there are now
no more detector effects, one expects that the devi-
ations between hadron and parton level are small.
And so they were. In general, the same analysis as
for reconstruction and hadron level was done again.
But we will focus only on the first part with the Pp
dependance of the deviations. First about the devi-
ations in general (corresponding plots can be found
in figures 45 - 56):

e APr: Small Pr (< 10 GeV) are calculated too
low at the hadron level. The rest is very close
to zero.

e Apn: Independent of Pr, n is constantly about
4-5% too high on hadron level.

e A¢: Constantly no deviation.

e AM?: Very interesting observations were
made. The smaller Pr gets, the more drastic
M%, gets too small on the hadron level. This ef-
fect depends very much on the jet finder radius.
But all this holds only for the clustering algo-
rithms. For SISCone, M%, is always too high on
the hadron level. And the best radius setting for
SISCone is the worst for the clustering ones.

Now about the advantages of each algorithm:

e All clustering algorithms behave similar. kr is
slightly better in the Pr matching sector. SIS-
Cone still behaves in the way that its actual
radius in smaller than the one from the setting.

e An exception is the ME, comparison. SISCone is
quite good for Ry = 0.7. About the same quality
one can reach with the clustering algorithms for
Ry = 1.3. To make a decision, one has to take
a look at o: The SISCone distribution is much
broader than those of the clustering algorithms.

The question about the optimal jet finder radius Ry
can be answered the following;:

APpr: Ry = 1.0 leads to best results.

An: A Ry as low as possible is preferred.

A¢: No preference.

AMZ,: If one neglects low Pr jets, Ry = 1.0
fits best, but only for the clustering algorithms
(see discussion above).

6.2.3 Differences Between the MC Sets We
should now have a look at the differences of the two
used MC generators, DJANGOH and RAPGAP. Of
course there are a lot of differences of the kind ”here
a little more, here a litte less”. So I will focus only
on systematic differences between both.

e The problem of 1 which was constantly too low
on the reconstruction level (compared to hadron
level) is "mirrored” for RAPGAP. Now 7 is con-
stantly too high, the absolute value of the devi-
ation stays almost the same (0.005 — 0.01).

e Remember that ¢ deviated in that way that it
was too large on reconstruction level. The effect
got more intensive for higher Pr. Now for RAP-
GAP the effect is lowered and even disappears
for Ry = 1.3.

e For the MZ comparison between hadron and
parton level, SISCone and the clustering algo-
rithms behave more similar. Especially o is no
longer so horrible for the SISCone with RAP-
GAP.

So especially the big ¢ deviation mystery could be
solved when having a closer look at the differences
between RAPGAP and DJANGOH. Unfortunately,
this goes beyond the scope of this study.

6.3 Comparing DIS with Photoproduction

To compare the results of this study with the pho-
toproduction study done by C. Mellein (1), I have
to mention first that in my case many significant ef-
fects were obtained for either low Pr or high Q2.
Both cases cannot be compared to (1) (low Q?, Pr
cut for 25 GeV). Also, one has to keep in mind that
in (1) no boost was made. So we have to focus on
something independent. This is a comparison of our
results:

e We both observed the ¢ shift mystery. As it was
weakened with the RAPGAP dataset, one could
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compare PYTHIA which was used in (1) with
DJANGOH (same behavior) and RAPGAP.

e We both got worse efficiencies and larger devia-
tions at a high 7, which then has to be allocated
to the bad detector efficiency in this region.

e Where in (1) the matching efficiency had no ¢
dependance, 1 observed a strong variation with
¢. 1 already mentioned that there might be a
connection to the boost. This theory now seems
to be supported.

e Both of us came to the conclusion that the kp
and anti-kr are always slightly better than the
rest.

One last remark about the matching efficiency.
Where in this study we get values between 60 and
70%, in (1) values of more than 90% were quite com-
mon. In chapter 6.1.2 the observation was made that
the efficiency increased for higher Pr. This is nicely
shown in figure 9 or more detailled in figures 57 and
58. As I also studied high Q? events and efficiency

[ Jet Efficiency depending on A R, R10 AntiKt ]
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decreased for higher 2, we get the other big contri-
bution for the lower efficiency.

6.4 Final Conclusion and Outlook

Unfortunately, there is no conclusion saying ” You
get perfect results if you just use the algorithm x
with the radius y. What can be said in general: SIS-
Cone is very hard to compare with the others and
has in general a worse behavior, especially concern-
ing 0. SISCone’s advantages to other algorithms are
usually no real ones and originate only from the dif-
ferent radius handling. Cambridge/Aachen has no

special strengths, but anti-kr and kr do: anti-kr
has in general the best (smallest) o and the best
matching efficiency, which is also somehow related.
The kr behaves similar but its strengths are not as
distinct. Also, runtime was not considered.

The jet radius should be treated a little more spe-
cific. A small radius (Rp = 0.7) is most effective for
a high efficiency. When the distribution is not con-
stantly shifted away from zero (as for Pr), Ry = 1.0
is always the best choice for the average of all jets.
If looks at a specific range for Pr, one of the ”ex-
treme” radii should be the choice. For An, which
is constant, Ry = 1.0 is again best choice as each
extreme which guides to better results at one level
makes it worse on the other (see level comparison).

To sum up: If anti-k7 is not much slower than kr,
I would prefer it. For an overall analysis, Ry = 1.0
is best.

An extension of the deviation dependency analy-
sis to other algorithms than anti-k7 seems not to be
necessary.

The ¢ shifting mystery needs clarification. An
analysis of the MC generators the their differences
might help.
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Fic 18. Deviation of M?, between reconstruction and hadron level, DJANGOH data, Ry = 0.7
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Fic 22. Deviation of M?, between reconstruction and hadron level, DJANGOH data, Ry = 1.3
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FIG 24. Deviation of Miy between reconstruction and hadron level, RAPGAP data, Ry = 0.7
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FIG 26. Deviation of Mi, between reconstruction and hadron level, RAPGAP data, Ro = 1.0
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FiG 32. Deviation of M7y between reconstruction and hadron level, DJANGOH data, Cambridge/Aachen
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FIG 34. Deviation of M7, between reconstruction and hadron level, DJANGOH data, kr
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FIG 36. Deviation of Mi, between reconstruction and hadron level, DJANGOH data, SISCone
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Fic 37. Deviations of Pr, n and ¢ between reconstruction and hadron level, DJANGOH data, n dependance
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BORIS LEMMER, H1

56

(=]
™
[Te]
Y
o
«
n
I
o
—
o

20

jera]

€0

Se0

1
debdey/eTy *joad UO Buipuadap Aane‘um;

6)> 40 0

[ne9]*d

S0°0-

0°0-

€0°0-

20°0-

T0°0-

200

€00

0°0

S0°0

debdey/eTy ,a“n_ uo Buipuadap <(

sed

O-pey®)>

20

G20

€0

SE'0

1
deBded/eTy *,,yd U0 BUIPURTEP <(pqli-,|

u)> j00

[heo]*d

80°0-

90°0-

700~

20°0-

(o]

200

700

90°0

80°0

T0

debdey/eTyd ..m“n_ uo Buipuadap <( W

" pe:

J)>

[ne9]*d

sl
0
=
[S)

deBdex/ETy *,dl uo Buipuadep <(

ed

d)>jo00

[ne9]d

BUO0DSIS -----
uayoeywed

M —

My ——

[4Y

debdex/sTy Aaw_n_ uo Buipuadap Aaw_u\rhn‘sfvv

F1c 55. Deviations of Pr, n and ¢ between reconstruction and hadron level, RAPGAP data, Ro



57

COMPARING DIFFERENT JET ALGORITHMS FOR DIS AT HIGH Q?

(auou :g) ,018C Buryorew A| 231 Je 1or
§S6 § Sv v §¢€ € S¢ ¢ ST T mm

000T

0002

000€

0001

000S

0009

000L

0008

0006

debdey/eTy ,Eouwn Buryorew A| 93l e 1ar

[rneo]*d
og [+4 0z ST 01 S
T T T T ]
Jso0
Jro
Jsto
Jeo
Jszo
............. —luﬂo
|_ ”
Jge:
deBded/ETy ', 1 U0 BUIpUBGaP < (ZI)I(,,,(ZW)-py, EW)> 40 ©
[ne9]*d
R S S| S N5 S
QUODSIS ----- 1
uayoeywed I..n.o.
— .
iy —— 5
=so0-
Jo
Jso0
......... Jro
Jst0

deBdey/eT 1o U0 BuIpUadap < (ZN)I(,,(ZN), N>

FIG 56. Deviation of Mi, between reconstruction and hadron level, RAPGAP data, Ro = 1.3



58

Fic 57.

|Jet Efficiency depending onA R, R13 AntiKt |

|Jet Efficiency depending onA R, R10 AntiKt |

|Jet Efficiency depending onA R, RO7 AntiKt |

Pr

BORIS LEMMER, H1

AR

0.05 0.1 015 0.2 025 03 035 04

M FEETI FETEY FARTY PR PNTEY STaT P
~N © ;0 % M

S o o

| Jet Efficiency depending on A R, R13 CamAachen |

o o o o
Kouaioiye Buiyorew

AR

P T>11

0.05 0.1 015 02 025 03 035 04

o] -1l PR IR R FRETE FEETY FEET SETE

bl
o o o ©

| Jet Efficiency depending on A R, R10 CamAachen |

o o o o
Aouaionyge Buryorew

AR

P T>11

0.05 01 015 02 025 03 035 04

3] -1l I IR RERTE FRETE STETE PEET FrEd i

PRI FERE1 SURE FEUTE FRRTY IRUE FUwd Arani § F
(=] © ~ © n < ™ —

o o o o

| Jet Efficiency depending on A R, RO7 CamAachen |

o o o o
Koualolya Buiyorew

dependance of the matching efficiency for

], &
q1s <
)
=49
Jo
=
o
I 1
qw0
=]
Jo
o
Jo
Ju
4
Jo
d=
40
o)
-1
PEETE ARRE1 SURT FEET1 FRRTY INATE PRl FRAT | ©
@ © N~ © 1 ¥ o N < o
o o o o o o o ©
Koualoiys Buiyorew
Iv'x
15 <
<35
i Bl
N 1o
}—I'-o‘
o|qw
=
Jo
Jo
Jo
Jw
1=
Jo
3=
Jo
Jw
42
M PR PR R P PRI PR PN (0 1 I R
< o
o o o o o ©o o ©
Aouaionyge Buiyorew
Iqﬁf
q1s <
7o)
9192
Jo
AN 1o
Il—l_.o'
[a Ty B 1Y
=1
Jo
o
Jo
7
1=
Jo
L
Jo
)
b
FRRTY PRI PRETE RURT FEUT PRUTE FRUTE PETE | e e
o © ~ © I 8 M o« < o

S o o o c o o o
Koauaioiye Buryosrew

the anti-kr and Cambridge/Aachen algorithm



| Jet Efficiency depending onA R, R13 Kt |

| Jet Efficiency depending onA R, R10 Kt |

| Jet Efficiency depending onA R, RO7 Kt |

COMPARING DIFFERENT JET ALGORITHMS FOR DIS AT HIGH Q?

I#ﬂ: Iﬁ_
a1s < s
Jw Juw
s 248
o — sl
1 AN,
Jm @ 4«
1s < [l e P
I 1 Q 1| 1
Jw a O] qdw
3 @ 38
Jo it Jo
- 4 4
qo @ qo
Jo < Jo
] = ]
] 5 ]
40 o 410
= b £ 4=
Jjo 2 Jo
] 3 ]
2
q= g 1<
Jo > Jo
] 3 ]
] 2 ]
40 2 40
—1° £ =
AR NI FRETE FERTE FRRTY PRUTY PRUTE Fewe pevad | e i FRETY FERTE PRETE RUTT FERTY PRUTE PRUTE PRUTE P 1 e
) ) y 2 ) G g @ @ ~ © 1w < ®o « < o
o o o o o o o o ~ o o o o o o o o
Kouaolyya Buiyorew Aoauaioiye Buiyosrew
Iv'x :v
1s < 15
Juo Jw
b 3 -1
jo — jo
< ® 4«
4o s 4o
Il 1 8 I 1
{0 2 {0
—qN n -
Jo S Jo
4 o 4
i @ qo
Jo < Jo
] = ]
] 5 ]
4w =3 4w
q= £ J-
Jjo 2 jo
- o -
- g g
Jjo > o
] 3 ]
] 2 ]
Jw k3 Jw
= £ e
AP PR R PRI P PR P PO R F e o M PR PR RS PR PRI PR PRI L 1| e R
49 o ~ © 1 I o o o9 o 3l o @ ~ © 1 ¥ o o < o
o o o o o o o = ~ o o o o o o o =
Aouaionyge Buryorew Aousioiye Buryorew
Iqﬂf Iq
15 < 1s
Ju Juw
a4 18
Jo — Jo
A :!\’) :O‘)
Jo ® 4«
Ll B 1S < o
O
Il 1 Il 1
[a T I 1) 2 1L
—N " —N
Jo 5 Jo
- o 4
Jo 3 o
4o < 40
] c ]
] s ]
4w o 4w
- = -1
Jjo 2 Jo
- o -
s g =
Jo 2 Jjo
] 3 ]
] g ]
Jw g Jw
= E -2
AR N PRETE FERTE PERT PRUTY PRUT Peewl 11 e o FPRTY PERTE PRETE RUTT FERTY PRUTE IRUTI PRATA T ¢ I
@ @ N~ © 1y ¥ O N < o 3 @ © ~ © 1 ¥ o o o
o o o o o o o o =] - o o o o o o o o
Koauaioiye Buryorew

Fic 58. Pr dependance of the matching efficiency for the kr and SISCone

AR

AR

AR

59



	Motivation
	DIS at High Q2
	The Jet Algorithms
	Demands on Jet Algorithms
	Clustering Algorithms
	Cone Type Algorithms

	Simulation and Settings
	The Matching Procedure
	Results
	Matching efficiency
	An optimal Rmax
	Matching efficiency dependances

	Level Deviations
	REC vs. HAD Level
	HAD vs. PAR Level
	Differences Between the MC Sets

	Comparing DIS with Photoproduction
	Final Conclusion and Outlook

	Acknowledgements
	References
	Matching Efficiency Plots
	Deviations Between Reconstruction and Hadron Level, comparing algorithms
	Deviations Between Reconstruction and Hadron Level depending on PT, Comparing Radii
	Deviations Between Reconstruction and Hadron Level depending on , , M212 and Q2, Comparing Radii
	Deviations Between Hadron and Parton Level, comparing algorithms

