Test beam data analysis for the CMS CASTOR calorimeter at the LHC

Agni Bethani^a, Andrea Knue^b

^a Technical University of Athens ^b Georg-August University of Goettingen

15th September, 2008

Introduction

- The CMS experiment
- The CASTOR forward calorimeter

The test beam analysis 2

- The test beam setup
- Pedestal analysis
- The electron scans
- The LED runs
- Intercalibration factors
- Out efficiency
- Linearity and Resolution

The CMS experiment

The CMS experiment at the LHC

- CMS $\stackrel{_{\frown}}{_{=}}$ Compact Muon Solenoid
- onion shell structure
- length: 21 m radius: 7.5 m
- weight: 12500 t
- high magnetic field (4 T solenoid)

Figure: Slice of the CMS experiment

< <p>> < <p>> < <p>> <</p>

The CASTOR forward calorimeter

- CASTOR ≙ "Centauro And STrange Object Reasearch"
- detector based on the Cherenkov effect
- used for pp and heavy ion collisions (Pb-Pb)
- η coverage: 5.2 < |η| < 6.6</p>
- installed 14.4 m from CMS interaction point

Why do we need CASTOR?

We need it ...

- to measure the PDFs at low momentum fractions x
- to improve the understanding of the strong interaction
- to support the Higgs measurements (higher acceptance of the CMS detector)
- to watch the shower development and investigate the nature of exotic objects like "Centauros"
- and many further applications

Centauros are rare cosmic events with a very high hadronic fraction.

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

What is CASTOR made of?

- sampling calorimeter:
 - active material: quartz plates (Q)
 - absorber material: tungsten plates (W)
- 16 semi-octants around the beam pipe
- each semi-octant:
 - 2 em and 12 hadronic channels (Readout Units (RU))
- each RU has several Sampling Units (SU)
- SUs are made out of Q and W plates

How can we measure the particles with CASTOR?

- relativistic particles hit the detector
- they cause a cone of light (due to the Cherenkov effect)
- light is collected and transported via light guides
- the signal is amplified with photomultipliers

The CASTOR forward calorimeter prototype

DESY Summerstudent programme 2008

Introduction

Conclusions

The CASTOR forward calorimeter

The CASTOR forward calorimeter prototype

The test beam setup

The test beam setup

- protons are accelerated with the SPS
- protons hit a target \Rightarrow secondary particles
- magnets and collimators select particle mass and energy
- readout is triggered by coincidence of signals from scintillators
- wire chambers measure position of beam particles
- large scintillator behind CASTOR can veto muon particles

The test beam setup

The test beam setup II

- prototype for the test beam consists of two semi octants
- semi octants are called "Saleve" and "Jura"
- particles enter the detector on Saleve side

< □ ▶ < 17

< Ξ

-

Beam profile

DESY Summerstudent programme 2008

Pedestal analysis

Pedestal amplitudes

- electronic noise: each signal as a certain offset \Rightarrow Pedestal
- get the "'real signal": subtract this offset
- check first: Is the pedestal stable in each channel?
- \Rightarrow Plot the mean pedestal of one channel for each electron run.

Pedestal amplitudes

Figure: Pedestal pulse shape

- pedestal \rightarrow offset
- width of pedestal: noise of electronics
- amplitudes are shown in the histogram

Pedestal analysis

Pedestal mean stability

- errors of means are very small
- mean of the pedestal is stable

DESY Summerstudent programme 2008

Pedestal analysis

Pedestal RMS stability

- RMS values are stable as well
- electronics is ok

DESY Summerstudent programme 2008

The electron scans

Further cross checks

- Electron energy scans: Check if the beam changes its profile
 - require a single wire chamber hits in x and y direction
 - calculate difference between the position of different wire chambers
- Scintillator counters checked: worked as expected
- Check the stability of the LED runs

The electron scans

Difference of wire chamber C and E

DESY Summerstudent programme 2008

(日)、

< ≣⇒

-2

The electron scans

Difference of wire chamber E and B

19/ 33

DESY Summerstudent programme 2008

(日)、

<.≣

-

The LED runs

The LED run

-

æ

Figure: LED pulse

DESY Summerstudent programme 2008

• • • • • • • • •

The LED runs

The LED run

Figure: LED amplitudes

DESY Summerstudent programme 2008

(日)、

Э

-

LED runs: mean value and rms

Figure: Mean stability of LEDs

Figure: RMS stability of LEDs

< □ ▶ < 17

DESY Summerstudent programme 2008

Intercalibration factors

Intercalibration factors

- each channel has another response to particles with the same energy
 - \Rightarrow We have to find the relation between the channels.
- Muons can fly through all channels without being absorbed.

 \Rightarrow Use muons with a certain energy to gauge the channels.

Intercalibration factors

Intercalibration with muons

Figure: Channel 0 (em)

- fit function: sum of three Gaussians
- fit the pedestal peak first

< D > < B

- fix mean and rms of the pedestal peak
- fit distribution

Cut efficiency

How do we get the signal?

- signal for each channel: sum of time bins 3-6 without pedestal
- in this run: electrons are used

 \Rightarrow we expect most of the signal in the two em channels and the first hadronic channel (ch 0-2)

• sum of channel 0-2 while using the intercalibration factors

Signal without cuts

Require only beam trigger and single hit in wire chamber E

Figure: Electrons with E = 180 GeV

DESY Summerstudent programme 2008

< A

Cut efficiency

Comparison of different cuts

Figure: Result of different cuts

DESY Summerstudent programme 2008

Cut efficiency

Resulting signal after cuts

Applied cuts

- hadron cut
- muon cut
- beam cut: accept only events which hit the wire chambers in a circle of 2 mm around the beam center

Figure: Result after 3 different cuts

< □ ▶ < 17

-

-

Linearity and Resolution

Linearity of detector response

Figure: Linearity

DESY Summerstudent programme 2008

• • • • • • • • •

Linearity and Resolution

Resolution of the detector

Figure: Resolution

DESY Summerstudent programme 2008

(日)、

< ≣ >

-

Conclusion and outlook

Conclusion

- Pedestal mean and RMS are stable and can be used
- long term stability of the LED amplitude at a level of 10 %
- LED intensity should be decreased for other studies
- Linearity of the detector is not satisfactory (beam stability)
- Resolution as expected

Outlook

one has to check the sensitivity of the intercalibration factors

further studies of the linearity are necessary

• • • • • • • • •

Conclusion and outlook

Conclusion

- Pedestal mean and RMS are stable and can be used
- long term stability of the LED amplitude at a level of 10 %
- LED intensity should be decreased for other studies
- Linearity of the detector is not satisfactory (beam stability)
- Resolution as expected

Outlook

- one has to check the sensitivity of the intercalibration factors
- further studies of the linearity are necessary

We want to thank...

- ... our supervisors:
 - Alan Campbell
 - Igor Katkov
 - Zuzana Rurikova
- the Summerstudent Programmme organization team
- Ingrid Gregor
- all Summerstudents!!!