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Abstract

We used Dynamic Light Scattering to investigate colloidal FlSiMa- and
SiO2-systems. The dependence of the particles’ radius on the concentration
of KCl was investigated. Furthermore the static structure factor S(q) of
FlSiMa-colloids for several KCl concentrations was determined as well as
the collective diffusion coefficient D0/D(q). From this, the hydrodynamic
function was extracted.
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1 Introduction

Everybody knows colloidal suspensions from the daily life. Paints and inks for
example consist of pigments soluted in water or oil and also soaps, greases and
blood are colloidal systems.
From the point of view of a chemist, the structure of colloids is enormously
complicated but in physics, one can assume the particles to be spherical and
without an inner structure. The investigation of such systems can help us to
understand the processes of phase transitions like melting, freezing and also the
glass transition, which are only rarely known so far.
Dynamic light scattering is besides X-ray photon correlation spectroscopy a very
important and efficient means to investigate colloidal solutions. It gives us the
possibility to gain insight into the structure and the dynamics of the systems.
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2 Colloidal Systems

A colloidal solution consists out of particles in the µm . . . nm – range dispersed
in a molecular liquid. To avoid agglomeration of the particles, a stabilization
of the particles is necessary. This stabilization is usually realised in two ways.
One possibility is the steric stabilization by polymer chains at the surface of the
particles (see fig. 2.1). The overlap of the polymer layers causes an entropic
repulsive force. This stabilization process can be modelled by a hard-sphere-
potential between the particles in the solvent.

Figure 2.1: Stabilization processes: a) Entropic repulsion modelled by a hard-
sphere-potential and b) Coulomb repulsion characterized by a Yukawa potential.

The other stabilization process is realized by surface charges (see fig. 2.1) and
can be described with the screened Coulomb potential, also known as Yukawa

or Debye potential:

V (r) ∝
e−κr

r
, (2.1)

with the inverse screening length κ.
Furthermore, the stabilization can be influenced by the temperature and the
concentration of the colloids in the suspension.
In our experiments we used a FlSiMa system, a methyl methacrylate polymer,
and a suspended silica particle system. Both colloidal suspensions are charge
stabilized.
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2.1 Methyl Methacrylate Particles: FlSiMa

FlSiMa is produced by polymerization of the monomer methyl methacrylate.
During this process different parameters can be tuned to determine the length of
the polymer chains. By using crosslinking molecules these chains create a spher-
ical network.
The Si-atoms are installed in the polymer in order to increase the signal in the
scattering experiment, Fl-atoms are introduced to enlarge the electronegativity
of the particles due to charge stabilization.
The whole molecule acts like a big ion, interacting with its neighbor atoms
through surface charges as mentioned above.
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2.2 Silica Particles: SiO2

The silica particles are produced by the Stöber synthesis. Tetraethoxysilane
(TEOS) serves as a starting substance.

Figure 2.2: Constitution and structural formulae of Tetraethoxysilane (TEOS).

This monomer is converted into siliconhydroxide by a hydrolysis reaction:

Si(C2H5O)4 + 4 H2O −→ Si(OH)4 + 4 C2H5OH (2.2)

This process is followed by a condensation whereby the silica particles are pre-
cipitated:

Si(OH)4 −→ SiO2 ↓ + 2 H2O (2.3)

The silica particles in water also form charge stabilized spherical particles as said
before.
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3 Dynamic Light Scattering

Dynamic light scattering (DLS) is one of the most powerful experimental tools to
investigate the dynamics of colloidal suspensions. The basic principle of such a
scattering experiment is an incident coherent beam that impinges on a colloidal
fluid and is scattered by its mesoscopic structures. The scattered intensity in
the far field is fluctuating in time due to an fluctuating interference pattern at
the place of the detector. The intensity also depends on the scattering angle θ
between the incident beam and the scattered beam (cf. figure 3.3).

Figure 3.3: Sketch of a standard scattering experiment. The incident laser beam
is scattered by the particles of the colloidal suspension. The scattered light is
measured by a detector.

Since we are dealing with visible light, the photon energy is much smaller than the
binding energy of the electrons. For weakly bound electrons, for example valence
electrons, the accelerated electrons can be regarded as Hertz dipoles emitting a
secondary wave with the same wavelength as the stimulating primary wave. In
this regime we can presume elastic light scattering, meaning |~ki| = |~kf | = k and

therefore we have for the scattering vector ~q = ~ki − ~kf :

q =
4πn

λ
· sin (θ/2) , (3.4)

with n as the index of refraction and λ as the wavelength of the incident beam.
DLS measures the fluctuating intensity as a time dependent intensity correlation
function at a given spatial position that is related via eq. 3.4 to the scattering
vector ~q and to the momentum transfer ~pq = h̄~q. From this, the structure and
the dynamics of the colloidal system can be determined. For example, from
the temporal decay of the intensity correlation function, the collective diffusion
coefficient of the colloids can be obtained. However, this only holds as long as
the light is not multiply scattered within the sample. That has to be taken into
account for the experimental setup.
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3.1 Scattering Theory

3.1.1 First Born Approximation

In the standard scattering experiment (figure 3.3) the incoming beam is regarded
as a planar wave ϕ0(r). In the scattering center the scattered wave ϕs(r) is
produced and can be regarded as a spherical wave in the far-field-approximation.
That means:

ϕs(r)
r→∞
−−−→ f(ϑ, φ)

ei~kf ·~r

r
,

where f(ϑ, φ) is the scattering amplitude. With these boundary conditions the
time-independent Schrödinger equation

(

~p2

2m
+ V (r)

)

ϕ(r) = E ϕ(r) (3.5)

for
ϕ(r) = ϕ0(r) + ϕs(r) (3.6)

with V (r) as the scattering potential has to be solved. From this point, it is
possible to rewrite ϕ(r) as an integral equation that is equivalent to eq. 3.5
including the boundary conditions:

ϕ(r) = eikz −
m

2πh̄2 ·

∫

d3r′ V (r′)
eik|~r−~r′|

|~r − ~r′|
ϕ(r′)

In the far-field-approximation (r → ∞) this leads to

ϕ(r) → eikz −
eikr

r

m

2πh̄2 ·

∫

d3r′ V (r′)e−ik(~er·~r′)ϕ(r′).

Comparing this result with eq. 3.6 one obtains for the scattering amplitude

f(ϑ, φ) = −
m

2πh̄2 ·

∫

d3r′ V (r′)e−ik(~er·~r′)ϕ(r′).

Applying Born’s first approximation that holds for single scattering one finally
gets the result

f (1)(ϑ, φ) = −
m

2πh̄2 ·

∫

d3r′ V (r′)e−i~q·~r′ . (3.7)
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3.1.2 Statistical Access to the Intensity: Static Structure Factor

Assuming that the potential V (r) can be written as the sum of the potentials
∑

i

Vatom(~r − ~Ri) for atomic scattering centers placed at ~Ri, it is now possible to

calculate the intensity I(q) within the first Born approximation (eq. 3.7):

I(q) ∝
∣

∣f (1)(ϑ, φ)
∣

∣

2
=

(

m

2πh̄2

)2

· |V (~q)|2 ·
∑

i,j

e−i~q(~Ri−~Rj) (3.8)

where the Fourier transform of the potential V (~r) was introduced:

V (~q) =

∫

d3r ei~q·~r · V (~r) (3.9)

Further, it makes sense to look at eq. 3.8 from the statistical point of view. It is
possible to introduce the static structure factor that is defined as the spacelike
Fourier transform of the radial distribution function g(r):

S(q) =

∫

d3r ei~q·~r · g(r) , (3.10)

whereas g(r) is defined as

g(r) =
1

n

〈

1

N

N
∑

i,j

δ
(

~r −
[

~Ri − ~Rj

])

〉

, (3.11)

with the particle number N and the particle density n. The brackets 〈·〉 indicate
an ensemble average. The static structure factor describes in general the ensemble
correlations of the examined system. Figure 3.4 shows a typical behaviour of the
structure factor S(q) for a concentrated colloidal system. The exact functional
form of the structure factor depends on the nature of the interaction, described by
the potential, the temperature of the colloidal suspension and the concentration
of the colloids. For example, a strong interaction would cause the particles to
form some kind of regularly structure and the static structure factor would display
a maximum at qmax. This value is related to the mean interparticle distance d
via

d =
2π

qmax

. (3.12)

Furthermore, the full width at half maximum (FWHM) of the first peak of the
structure factor is connected to the correlation length in the examined system.
The larger the FWHM the smaller the correlation length.
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Figure 3.4: Typical static structure factor of a concentrated colloidal suspension.

Inserting eq. 3.13 into eq. 3.10 one obtains

S(q) =
1

nN

〈

N
∑

i,j

e−i~q(~Ri−~Rj)

〉

. (3.13)

Applying ensemble averaging of the intensity 〈I(q)〉 eq. 3.8 leads to

〈I(q)〉 ∝ |V (~q)|2 · S(q). (3.14)



3 DYNAMIC LIGHT SCATTERING 11

3.1.3 Form Factor

It is often more common to characterize an atomic system by the electron density
ρ(r) instead of the scattering potential V (r). These two quantities are connected
by the Poisson-equation

△~rV (r) = −
ρ(r)

ǫ0
. (3.15)

Applying Green’s second identity

∫

U

dV (ψ △~r Ψ − Ψ △~r ψ) =

∮

∂U

dS

(

ψ
∂Ψ

∂n
− Ψ

∂ψ

∂n

)

(3.16)

with ψ = V (r) and Ψ = − ei~q·~r

|~q|2
, the surface term on the right hand side of

eq. 3.16 vanishes for adequate scatter potentials V (r) (for example the Coulomb

potential) and the Fourier transform of the potential V (q) can be identified with
the Fourier transform of the electron density ρ(q) called the form factor F (q):

F (q) =

∫

d3r ei~q·~r · ρ(r) (3.17)

leading to

V (q) ∝
F (q)

q2
. (3.18)

For example, the form factor for a pointlike particle results in F (q) = 1 whereas
a homogenous sphere with radius R leads to

F (q) ∝
sin(qR) − qR · cos(qR)

(qR)3
. (3.19)

The form factor for a homogenous sphere is shown in figure 3.5.
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Figure 3.5: Form factor of a homogenous sphere.
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3.2 Static Measurements

Going back to eq. 3.14 and applying the result from eq. 3.18 one finally has

〈I(q)〉 ∝
F (q)2 · S(q)

q4
. (3.20)

From this, one can extract the static structure factor experimentally by assuming
the ergodic hypothesis saying that the average over time of the intensity 〈I〉t
equals the average over the statistical ensemble 〈I〉. Since only the time average
over the intensity is accessible in experiments, one has to postulate this theorem.
By doing so, one can extract information about the structure of the colloidal
suspension and the particles from static measurements.
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3.3 Dynamic Measurements

To gain insight into the dynamics of the colloids it is necessary to look from
another point of view on the intensity measurement. As mentioned before, the
detector measures the fluctuating intensity caused by the spatially inhomogeneous
refractive index or electron density in the colloidal suspension that results in an
intensity distribution of dark and bright regions in the far field, also known as
speckle pattern. This pattern changes in time due to the dynamics in the sample
and therefore the measured intensity at this point fluctuates in time.
By applying photon correlation spectroscopy (PCS) the intensity autocorrelation
function (IAF) is introduced:

〈I(q, t+ τ)I(q, t)〉t = lim
T→∞

1

T

T
∫

0

dt I(q, t)I(q, t+ τ) (3.21)

With I(q, t) as the time-dependent scattered intensity, it is possible to determine
the dynamics of the colloidal system. The IAF and its relation to the temporal
fluctuations in intensity is shown in figure 3.6. The correlation starts with a max-
imum value of 〈I2〉 and decreases in time to 〈I〉2 with the characteristic decay
time τc.

Figure 3.6: Fluctuations in the scattered intensity and the intensity autocorrela-
tion function.

For example, if the time compared to the typical time scale of configurational
changes of the colloids is small, the intensity will be correlated with the initial
intensity. In contrast to that, no correlation will be measured at large times.

In theory, the fluctuating amplitude of the electric field can be expressed by
the quantity g1:

g1(q, τ) =
〈E∗(q, τ)E(q, 0)〉

〈

|E(q, τ)|2
〉 (3.22)
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In a DLS experiment the IAF of the intensity is measured as the so called g2-
function

g2(q, τ) =
〈I(q, τ)I(q, 0)〉

〈I(q, τ)〉2
(3.23)

where also the ergodic hypothesis is assumed. Further, the relation I(q, τ) =
E∗(q, τ)E(q, τ) connects g1 and g2. For a Gaussian distribution of the field am-
plitude E(q, τ) of zero mean this relation can be specified since Gaussian variables
of zero mean are completely described by their second moment:

〈I(q, τ)I(q, 0)〉 = 〈E∗(q, 0)E(q, 0)E∗(q, τ)E(q, τ)〉

= 〈E∗(q, 0)E(q, 0)〉 〈E∗(q, τ)E(q, τ)〉

+ |〈E(q, 0)E(q, τ)〉|2

+ |〈E(q, 0)E∗(q, τ)〉|2

= 〈I(q, 0)〉 〈I(q, τ)〉 + |〈E(q, 0)E∗(q, τ)〉|2

whereas the second term in the second step can be neglected due to time-averaging
over the Gaussian field amplitude. Applying this result one can therefore write
with eq. 3.22 and eq. 3.23

g2(q, τ) = 1 + β2 · |g1(q, τ)|
2 (3.24)

which is known as the Siegert relation. The parameter β describes the contrast
that is usually close to β = 1 in standard DLS experiments. In case of cross-
correlation this reduces to β = 0,25.

In case of monodisperse spherical particles, g1 can be written as follows:

g1(q, τ) = S(q, τ)
H(q)

S(q)
(3.25)

with S(q, τ) as the dynamic structure factor, S(q) as the static structure factor
known from section 3.1.2 and the hydrodynamic function H(q) that describes the
hydrodynamic interactions in the suspension.

For colloidal systems with negligible interactions, for example highly diluted col-
loidal suspensions, a relationship between the g1-function and the collective free
diffusion coefficient D0 can be derived:

g1(q, τ) ∝ e−D0q2τ . (3.26)

Together with the Siegert relation (eq. 3.24) it follows that

g2(q, τ) − 1 ∝ e−2D0q2τ , (3.27)

meaning that the dynamics of the examined system (represented by D0) can be
characterized by measuring g2.



3 DYNAMIC LIGHT SCATTERING 16

10
−5

10
−4

10
−3

10
−2

10
−1

−0.05

0

0.05

0.1

0.15

0.2

τ [s]

g 2 −
 1

Figure 3.7: Example of a measured g2 − 1 function for a colloidal system plotted
on logarithmic time scale. The exponential decay represents the data quite well.

Figure 3.7 shows a typical measurement of g2(q, τ) − 1.

Using the Einstein-Stokes equation D = µkBT with µ = 1/f as the mobility
of the particles and f = 6πηRH as the friction coefficient, following equation for
D0 can be obtained:

D0 =
kBT

6πηRH

, (3.28)

where RH describes the hydrodynamic radius of the particles and η the viscosity
of the suspending medium. For highly diluted samples the hydrodynamic radius
RH equals the geometrical particle radiusR. By determiningD0 it is then possible
to calculate the radius of the solved particles.

In the presence of particle interaction one usually analyses g1 in terms of a cu-
mulant expression:

g1(q, τ) = e−Γ1(q)τ+Γ2(q)τ2+...

The initial decay of g1 can be regarded as the collective short time diffusion
coefficient D(q) of the colloidal suspension whereas Γ1(q) = D(q) · q2. Thus, one
gets for the short time behaviour of g1:

g1(q, τ) = e−D(q)q2τ (3.29)
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and for the short time behaviour of g2:

g2(q, τ) − 1 ∝ e−2D(q)q2τ (3.30)

It can be shown that the short time diffusion coefficient D(q) is given by

D(q) = D0 ·
H(q)

S(q)
, (3.31)

with the hydrodynamic function H(q) and the static structure factor S(q) as
mentioned above.
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4 Experimental Setup

As a light source for the dynamic light scattering experiment, a 633 nm HeNe-
laser is used. To adjust the intensity of the incoming laser beam, there are two
rotatable wheels with several absorption filters of different optical densities. After
the beam has passed these filters, its intensity is measured by a photo diode and
it gets split-up into two beams. This splitting-up process is necessary to make a
later cross-correlation possible, to suppress the contribution of multiple scattered
light to the measured data as mentioned before.
A lens system is used to focus the two laser beams onto the sample. The sample
itself is filled into a quartz-capillary which is then placed into a decaline chamber
whose temperature can be adjusted by the use of a chiller. Since we did not
investigate any temperature dependency of the behaviour of the colloidal systems
on the temperature, we always set the temperature to 20◦C. The beams are
diffracted from the sample and their intensities are measured by a detector which
is attached to a goniometer. By the use of this goniometer, it is possible to
measure the intensities in an angular range of θ = 30◦ to θ = 150◦.
A hardware auto-correlator is calculating the auto-correlation function g2(q, τ)−1
of the signal measured by the detector.
The intensity I(q, t) measured by the detector and the auto-correlation function
g2(q, τ) − 1 calculated by the auto-correlator is now the starting point for all of
our further data analysis.
The experimental setup is illustrated in figure 4.8.

Figure 4.8: Picture of the experimental setup.
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5 Measurements and Results

5.1 Determination of the Radius

The first part of our work consisted of the determination of the radius of the col-
loids in different samples. We used two different FlSiMa-systems, FlSiMa020507
and FlSiMa110708, and SiO2280708, the SiO2-system that we prepared on our
own. The aim of the measurements was to investigate if there is any connection
between the dynamic radius of the colloids and the concentration of salt in the
solvent.

First we investigated the FlSiMa020507 -system. To make sure that there are
no particle interactions so that the diffusion constant is independent of the scat-
tering vector ~q, the system was diluted 1:100 in water. Now we prepared samples
with concentrations of KCl in the range between 1µM − 2000µM.
From the auto-correlation function calculated by the hardware auto-correlator,
we were able to identify the characteristic time τc(q) for each sample as a function
of q, that we could derive from the scattering angle θ by the relation given via
equation 3.4.

Now we plotted Γ(q2) = D(q) · q2 which is the inverse of the characteristic time
τc. The slope of this graph is equal to the diffusion constant D0. Figure 5.9 shows
the result that we obtained for a KCl-concentration of 200µM.
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Figure 5.9: Γ(q2) plotted for the FliSiMa020507-system diluted 1:100 in water
with a KCl-concentration of 200µM.
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The slope and thereby also the diffusion constant for this sample is 2.43·10−12 m2

s .
The Einstein diffusion equation 3.28 yields a radius of the particles of (88.38±

0.88)nm, assuming the viscosity of water to be 1.0 · 10−3 Ns
m2 for a temperature of

20◦C.

After determining the radius of the colloids in the different samples, we were able
to plot the radius as a function of the concentration of KCl. The result is shown
in figure 5.10.
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Figure 5.10: The radius of the colloids in the FlSiMa020507-system, plotted as a
function of the KCl-concentration.

As one can see from the plot, the radius of the colloids is decreasing with the
increasing concentration of KCl, starting at a concentration of about 20µM.

We did the same kind of measurement and analysis for a second FlSiMa-system:
FlSiMa110708. The result is shown in figure 5.11.

The plot illustrates, that this FlSiMa-system shows pretty much the same be-
haviour as the FlSiMa-system we investigated before. The radius is again de-
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Figure 5.11: The radius of the colloids in the FlSiMa110708-system, plotted as a
function of the KCl-concentration.

creasing with the increasing concentration of salt, starting at a concentration of
about 10µM.

Thinking about an explanation for this behaviour, one has to bear in mind that
the viscosity of the solvent, which appears in the Einstein diffusion equation
as well, was assumed to be constant when calculating the radius of the parti-
cles. Probably this assumption is not realistic and the seeming change of the
radius is just resulting from a change in the viscosity that occurs when salt is
added to the system. Unfortunately, we did not have the possibility to measure
the viscosity of our samples, what might have been a way to figure out whether
the results of the calculation of the radius are only arising from a change in vis-
cosity. Another alternative would have been to determine the radius by static
means, investigating the form factor of the colloidal systems, which is not possi-
ble with the used experimental setup since the wavelength of the laser is too long.
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After investigating the radius of the colloids in the FlSiMa-systems, we turned
to the SiO2-system. This time, we varied the concentration of KCl in a range
of 0.001µM − 3000µM. Figure 5.12 shows the results of the calculations for that
system.
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Figure 5.12: The radius of the colloids in the SiO2-system, plotted as a function
of the KCl-concentration.

As one can see from the plot, we weren’t able to figure out any kind of dependency
of the particle radius on the concentration of salt.
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5.2 Analysis of the Structure Factor and the Hydrody-

namics

5.2.1 Structure Factor

As shown before, for the mean intensity measured in the DLS-experiment and the
structure- and form-factor, there is the relation given in equation 3.20. If we now
want to determine the structure factor of our sample, we can make use of this
relation in the following way: Additional to the sample whose structure factor
we want to determine, we prepare a second sample from the same sample system
but with a very high concentration of salt. In such a sample, we can assume the
structure factor to be one as the Coulomb potential between the colloids gets
screened by the ions, so that there are no more particle interactions. Furthermore,
we can assume that the form factor of the sample we are investigating and the
form factor of the sample with the high concentration of salt are identical.
If we now divide the mean intensity 〈I(q)〉t that we measured for our sample by
the mean intensity 〈I0(q)〉t measured for the sample with the high concentration
of salt, we get the following simple relation:

S(q) =
〈I(q)〉t
〈I0(q)〉t

. (5.32)

In this way, we determine the structure factor of our samples.

In our work, we investigated the structure factor of the FlSiMa070507 -system.
This time, we used a concentrated solution. We prepared samples with concen-
trations of KCl between 5µM − 200µM. In each case, we measured the mean
intensity and divided it by the mean intensity that we measured for the 200µM-
sample. Figure 5.13 shows the data that we got for the mean intensities of the
5µM- and the 200µM-sample.
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Figure 5.13: The mean intensities measured for the 5µM- and the 200µM-sample
as a function of q.

As one can see, there is a very pronounced peak in the mean intensity measured
for the 5µM-sample. For the 200µM-sample, there is no more peak in the mean
intensity observable. The mean intensity is constant as a function of q. This
assures us in our assumption, that there are no more particle interactions in this
sample but only Brownian motion.

In the next step we divided the mean intensity measured for each of our samples
by the mean intensity of the 200µM-sample. Figure 5.14 shows the result of these
calculations.
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Figure 5.14: The calculated structure factors for the 5µM-200µM-samples of the
FlSiMa070507-system plotted as a function of q.

In the theory of colloidal systems, the value of S(qmax) serves as an indicator for
the phase. The phase transition between the liquid and the glassy state takes
place at about S(qmax) ≈ 2.6. Thus we can see from the plot, that even in the
case of the 5µM-sample, we are still dealing with a liquid system.

We can also see from the plot, that qmax rises with the increase of the concen-
tration of KCl. This means that the mean interparticle distance decreases. By
adding salt, the Coulomb potential between the particles gets screened, whereby
the repulsive force between them decreases. As a result, the equilibrium distance
between the colloids gets smaller and qmax increases accordingly.

The next result we can see from the plot is that the FWHM of S(q) increases
when adding salt to the system. As already mentioned, the Coulomb potential
between the particles gets screened by the ions which means that the Van-der-

Waals interaction comes to the fore. As the Coulomb interaction is propor-
tional to 1

r
while the Van-der-Waals interaction is proportional to 1

r6 , the
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long-distance effect of the interactions disappears. As a consequence, the cor-
relation length of the system decreases what explains the enhancement of the
FWHM.
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5.2.2 Hydrodynamics

The last part of our work was the investigation of the hydrodynamic function
H(q). The hydrodynamic function is defined as

H(q) =
S(q)

D0/D(q)
(5.33)

and gives us information about the interactions between the particles that are
transmitted over the solvent, which is in our case water. The more H(q) ap-
proaches one, the less interactions are transmitted over the solvent.

We used the same FlSiMa-system as for the calculations of the structure factor
and took the measuring data from the same samples as before with KCl concen-
trations of 5µM − 200µM.
We obtained the structure factor of the samples as shown in chapter 5.2.1 and
the diffusion function D(q) as shown in chapter 5.1 with the difference that it is
now depending on q and is not a constant anymore.

Figure 5.15 shows the Γ(q2) function that we obtained for the 5µM-sample. The
slope of this graph is equal to D(q).
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Figure 5.15: Γ(q2) for the 5µM FlSiMa070507 sample. From the slope of the
function we can obtain the diffusion function D(q).
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D0 is the diffusion constant that we calculated for the 200µM-sample. The Γ(q2)
function for this sample is shown in figure 5.16.
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Figure 5.16: Γ(q2) for the 200µM FlSiMa070507 sample. From the slope of the
function we can obtain the diffusion constant D0.

Figure 5.17 shows S(q) and D0/D(q) that we then obtained for the 5µM-sample.
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Figure 5.17: S(q) and D0/D(q) of the 5µM-sample.
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Now we can obtain the hydrodynamic function H(q) simply by dividing these
two functions by each other. The result is shown in figure 5.18.
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Figure 5.18: The hydrodynamic function H(q) for the 5µM-sample.

As one can see from the plot, the interactions transmitted over the solvent dis-
appear for high values of q.

The figures 5.19-5.22 show S(q) and D0/D(q) that we obtained for the 20 −
100µM-samples.
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Figure 5.19: S(q) and D0/D(q) of the 20µM-sample.
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Figure 5.20: S(q) and D0/D(q) of the 50µM-sample.
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Figure 5.21: S(q) and D0/D(q) of the 75µM-sample.
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Figure 5.22: S(q) and D0/D(q) of the 100µM-sample.
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Figure 5.23 shows an overview of the hydrodynamic functions we obtained for
samples with different concentrations of KCl.
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Figure 5.23: The hydrodynamic functions H(q) for the FlSiMa-samples with con-
centrations of KCl in the range of 5µM − 200µM.

Considering the measuring accuracy one can say that there is no dependency of
the hydrodynamic function H(q) on the salt concentration. A way to improve the
results would be to extend the measuring time and to shorten the step between
the measured angles. Fitting the Γ(q2)-function before calculating D(q) from it
is another possibility to improve the result for H(q).
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6 Conclusion

In our work, we used dynamic light scattering to gain insight into the structure
and the dynamics of colloidal FlSiMa- and SiO2-systems.

We investigated the influence of ions in the solvent on the radius of the particles by
preparing samples with different concentrations of KCl. For the FlSiMa-systems,
we found out that the radius of the particles is decreasing with the increasing
concentration of salt. Since we didn’t have the possibility to measure the viscos-
ity of our samples, we weren’t able to figure out if our calculations were just a
result of a change in the viscosity. For the SiO2-system, we couldn’t find out any
connection between the concentration of salt and the radius of the particles.

The investigation of the structure factor showed us that we were always dealing
with liquid systems. From the value of qmax we were able to figure out that the
equilibrium distance between the colloidal particles decreases when one increases
the concentration of salt in the sample. We ascribed this to the attentuation
of the Coulomb potential that the particles feel when it gets screened by the
ions. We were also able to figure out a lower correlation length for the samples
with higher salt concentrations. Again, we considered the screened Coulomb

potential to be responsible for this phenomenon since the long-distance effect of
the particle interactions is very likely to disappear for high salt concentrations
and the Van-der-Waals interaction comes to the fore.

Concerning the hydrodynamic interactions in the samples, we found out that
they disappear for high values of q. When regarding samples with different con-
centrations of salt, we couldn’t find out any difference in the behaviour of the
hydrodynamic function.

We acknowledge Agnes Duri, Christian Gutt and Fabian Westermeier for their
support and collaboration during our work at Hasylab. We had a very nice and
informative time and enjoyed the time in the workgroup.
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