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ABSTRACT: Embeddings of the SM in type II string theory typically contain many additional
U(1) gauge factors. We can imagine that not only one of these bosons, corresponding to weak
hypercharge, is massless. As we know from experiments, the standard model must be neutral
under additional massless U(1)s, therefore the latter must belong to the so-called hidden sector.
However, the exchange of heavy messengers can kinetically mix a photon and this new boson
which is testable with near future experiments. In this report it is shown, how the kinetic mixing
can be derived from the underlying type II compactification. For this purpose we use conformal
field theory techniques and then develop a more general supergravity approach that allows us
to study the phenomenon in more general backgrounds. We also discuss some simple examples
of models with kinetic mixing and speak about phenomenological consequences of experiments
at the low-energy frontier, searching for signatures of light or even massless new U(1) gauge
bosons and minicharged particles.

1. Introduction String theory is one of the most promising theories that could explain many
phenomena in our world. Today we know 5 consistent superstring theories:

*) the type I theory of open and unoriented strings with gauge group SO(32)
*) the type IIA(B) theories of closed oriented strings where the right- and the left-moving

modes, transforming under separate spacetime supersymmetries, have an opposite (the same)
chirality

*) the heterotic string theories with different constraint algebras acting on right- and left-
moving fields; it admits gauge groups E8 × E8 or SO(32).

In the so-called ’second string revolution’ physicists realized that all these theories are linked
through ’dualities’ - for example, the strong coupling limit of one theory corresponds to the
weak coupling limit of another (S-duality) or the big radii of compactification tori of one theory
correspond to the small radii of another (T-duality). For this and some other reasons, scientists
hope that all these theories are in fact just manifestations of one big theory. They call it
M-theory.

To relate all these complicated models to the real world, we must reduce them in low-energy
limit to the standard model, which works very well in the case. We can embed the SM in E8×E8

heterotic closed string theory as well as in type I, IIA or IIB open string theories with branes.
It turns out that many of them for consistency and for proper supersymmetry breaking should
have so-called hidden sectors - additional particle multiplets that we cannot observe directly.
So how one can prove the existing of such hidden sectors?

A unique window there is provided by hidden Abelian gauge bosons. In fact, hidden sectors’
gauge groups often contain additional U(1) factors which mix kinetically with the hypercharge
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Figure 1: D-brane setup with d‖ parallel and d⊥transverse internal directions (from Ref. [20]).
SM-brane, responsible for the visible sector, is grey-colored.

U(1) from the visible sector and give rise to following terms in the low-energy effective Lagrangian:

L ⊃ − 1

4g2
a

F (a)
µν F µν

(a) −
1

4g2
b

F (b)
µν F µν

(b) +
χab

2gagb

F (a)
µν F (b)µν + m2

abA
(a)
µ A(b)µ, (1)

where a(b) labels the visible (hidden) U(1), with field strength F
(a(b))
µν and gauge coupling ga(b).

The dimensionless kinetic mixing parameter χab, appearing in front of the effective renormalizable
operator in (1), can be generated at an arbitrarily high energy scale and does not suffer from
any kind of mass suppression from the mass messengers that induce it. Its measurement could
provide us with clues to physics at energies that we never access with colliders. In present
report we will consider the effect and the generation of this term. Actually, we consider even
more particular question - kinetic mixing in compactifications of type II string models, because
a systematic and rigorous study of the subject is still lacking [1]. Type II string models are
also considered in [2, 3]. However, an exhaustive study of the predicted size of kinetic mixing
in realistic compactifications of heterotic string theory has been performed in [4].

In the type II compactification is usually performed using some special hypersurfaces, D-
branes, that confine some of our particles. Here hidden U(1)s arise as D-branes in the bulk
(see Fig. 1) that have no intersection with the branes responsible for the visible sector. To
obtain the kinetic mixing of the form (1) we must integrate out massive modes coupling to
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different U(1)s. These modes correspond to open strings stretched between the visible and
hidden stacks of branes. In closed string channel this also can be understood as mediation
by light or massless closed string modes. Since in type II string compactifications there are
usually many hidden U(1)s, we can hope that any of them can be non-anomalous and therefore
massless. Furthermore, the Ramond sector on intersecting D-branes always yields the massless
charged matter fermions that could make the kinetic mixing detectable due to the quantum
corrections generated at loop level.

We can then subdivide the type II models into two classes, each of which we consider in the
present report. First there are models in which the compact space plays the role of a large quasi-
flat bulk volume. These include the D-brane of singularities models and, due to the simplicity,
models in which intersecting D6-branes wrap 3-cycles on toroidal backgrounds, despite the
volumes in this cases being restricted rather small. Here we will consider both supersymmetric
and non-supersymmetric set-ups and demonstrate by explicit example that kinetic mixing can
occur without Stückelberg mass mixing (i.e. when the last term in (1) vanishes). Here we will
use conformal field theory (CFT) techniques. The second class are those models in which the
compact volume is significantly warped and Randall-Sundrum like. In this class the SM branes
are typically assumed to be located at the bottom of a warped throat. To explore these models
we develop a supergravity approach which allows to examine the kinetic mixing in more general
backgrounds, than the CFT.

How could we find an additional U(1) gauge boson γ′ experimentally? The best way to search
depends primarily on its hitherto undetermined mass. For a mass in the range mZ ≈ 100 GeV .
mγ′ . 1 TeV , precision electroweak tests can be used to set an upper limit χ . few× 10−2,[5],
which will be only mildly improved by future measurements at the LHC and ILC. For smaller
masses, the best limits arise from searches for γ ↔ γ′ oscillations[6] and for deviations from
Coulomb’s law[7]. But if the hidden sector photon is massless, then in the absence of light hidden
matter there is no limit on its mixing with hypercharge, because the effect can be reabsorbed
by the redefinition of hypercharge coupling constant.

Things are different if the hidden sector contains also light matter particles which are charged
under the hidden-sector U(1) gauge symmetry. Thus, if we have such a fermion h with a bare
coupling to A

(b)
µ given by

L ⊃ h̄(γA(b))h, (2)

its electric charge will be proportional to the gauge kinetic mixing parameter (therefore it is
called electrically minicharged particle, MCP). Indeed, upon diagonalizing of the gauge kinetic
term in (1) by the shift

A(b)
µ → Ã(b)

µ + χA(a)
µ , (3)
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the coupling term gives rise to a coupling with visible gauge field A
(a)
µ ,

h̄(γA(b))h → h̄(γÃ(b))h + χh̄(γA(a))h, (4)

corresponding to a possibly small, non-integer charge with respect to the visible sector U(1):

Q
(a)
h = χgb ≡ εe. (5)

For low MCP masses, mε . 0.1 eV , the best current laboratory limit on the electric charge,
ε . few × 10−7, are obtained from laser polarization experiments, where linearly polarized
laser light is sent through a transverse magnetic field, and changes in the polarization state are
searched for[8]. Similar bounds are obtained from a light-shining-through-a-wall experiments[9]
and from the non-observation of an excessive energy loss due to Schwinger pair production of
minicharged particles in the strong electric fields in superconducting accelerator cavities[10]. In
the mass range from eV up to the electron mass, the best laboratory limits, ε . 3× 10−5, arise
from searches for the invisible decay of orthopositronium[11], while in the higher mass range
the accelerator limits dominate - these are however rather loose. Bounds involving cosmology
or astrophysics are much better[12], notably in the sub-electron mass region.

2. CFT computation of kinetic mixing At the beginning we consider the simplest way to
compute kinetic mixing that can be used in flat backgrounds - the CFT approach. Typically we
have several stacks of branes, and anomaly free U(1) is linear combination of the U(1)-factors
(labelled as a, b) coming from different stacks (labelled as i, j). If orientifold planes are present
in our model, we consider the image as different stacks. Vertex operator for U(1)a is:

V a =
∑

i

ca
i V

a
i , (6)

where we choose constants ca
i so that the corresponding U(1) is anomaly free and the individual

vertex operator is
V a

i = λa
i εµ(∂Xµ + 2α′(kψ)ψµ)eikX . (7)

Here εµ is a polarization vector, ψµ and Xµ are the worldsheet fermions and bosons and λa
i are

the Chan-Paton matrices. Condition that U(1) is anomaly free implies:
∑

i

ca
i tri(λ

a
i ) = 0. (8)
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We can calculate amplitude in the closed string channel as:

〈V a
i V b

j 〉 = 4(α′)2tri(λ
a
i )trj(λ

b
j)εµεν(g

µνk2 − kµkν)

∫ ∞

0

dl

∫ 1

0

dxekµkνGµν×

×
∑

ν

[
θ′′4(x)

θ4(x)
− θ′′4(0)

θ4(0)

]
1

(8π2α′)2

θν(0)

η3(il)
Zij

ν (il), (9)

with Green function on the annulus, given by

Gµν(x) = −2α′gµν log

∣∣∣∣
1

l

θ4(x)

η3(il)

∣∣∣∣ , (10)

where θ and η are the elliptic theta and Dedekind eta functions[2] and Zij
ν is the model-

dependent partition function with spin structure ν. In the open string channel this is a non-
planar diagram.

In the low-energy limit k2 → 0 the amplitude should read as follows:

〈V aV b〉 = m2
abA

a
µA

µ
b +

χab

gagb

k2Aa
µA

µ
b , (11)

and we must sum over all the relevant stacks i, j contributing to the hypercharge Aa
µ and to

the hidden anomaly-free U(1)-boson Ab
µ. Comparing this with (9), we see that the contribution

to the mass comes from the 1/k2 pole of the integral, as the amplitude has the structure
k2gµν − kµkν . To make the pole structure manifest we can do some approximations, namely we
take the large l limit, so that

ekµkνGµν = e−
1
4
2πα′k2l, (12)

and the rest of the integrand one expands as
∑

ν

[
θ′′4(x)

θ4(x)
− θ′′4(0)

θ4(0)

]
1

(8π2α′)2

θν(0)

η3(il)
Zij

ν (il) ∝ 1 +
∑

βij>0

N(βij)e
−πβij l, (13)

with N(β) counting the multiplicity of closed-string models at level β. The first term corresponding
to massless closed string states generates the mass term for the gauge fields and the second
contributes to χab.

As an example take the simple model containing a single D3 brane and single D̄3 brane on
a T 6 factorized into 3 complex 2-tori numbered by κ = 1, 2, 3:

Zij
ν (il) =

1

2
δ′ν

(α′)3(2π)6

8V6

θ3
ν(0)

η9(il)

∏
κ

∑
qκ,pκ

exp

[
− πα′l

2T κ
2 Uκ

2

|qκ + Ūκpκ|2 − 2πi

Uκ
2

Im(zκ
ij(Ū

κpκ + qκ))

]
,

(14)
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where Uκ, T κ are the complex and Kähler moduli and zκ
ij is the distance between the branes i

and j, multiplied by 1
2π

√
Uκ

2

T κ
2
. The amplitude at large l is then:

〈V a
i V b

j 〉 = tri(λ
a
i )trj(λ

b
j)εµεν(g

µνk2 − kµkν)

∫ ∞

0

dl
(2πα′)4

4α′V6

e−
1
4
2πα′k2l

{
1 +

∏
κ

∑

qκ,pκ 6=0

exp

[
− πα′l

2T κ
2 Uκ

2

|qκ + Ūκpκ|2 − 2πi

Uκ
2

Im(zκ
ij(Ū

κpκ + qκ))

]}
(1+string mass terms),

(15)

where we explicitly wrote the massless mode that gives a zij independent contribution and
neglected terms of order the string mass because of exponential damping of massive modes
beyond their wavelength. Performing the integration we obtain the following expression for
kinetic mixing:

χab ≈ gagb
(2πα′)3

V6

∑

qκ,pκ 6=0

exp
[∑

κ−2πi
Uκ

2
Im(zκŪκpκ + qκzκ)

]

α′
T κ
2 Uκ

2
|qκ + Ūκpκ|2 , (16)

where zκ is the displacement between the brane and antibrane in the k’th complex 2-torus. It
is interesting to note that the kinetic-mixing term produced by the string amplitude, χab/gagb,
contains no gauge couplings (because the vertex operators don’t depend on them).

3. Supersymmetric models In order to confirm that kinetic mixing can occur between
anomaly free and massless U(1)s we will now examine self-consistent global configurations that
have non-vanishing kinetic mixing between mutually supersymmetric branes. A convenient
framework in which to construct supersymmetric models consists of a simple orientifold with
D6 branes and O6 planes in type IIA string theory, as reviewed in [13]. We will construct
the N = 2 supersymmetric model, because typically the D6 branes wrap all the internal
cycles and therefore almost always intersect - so it is difficult to construct N = 1 models
with any hidden sector. In any case, on a very symmetric toroidal orientifold that we will use
preserving of N = 1 supersymmetry would imply that kinetic mixing have no dependence on
the separation (therefore we couldn’t separate mass mixing from the kinetic mixing) and in
the case of preserving of N = 4 supersymmetry the amplitude would cancel. So, dealing with
D6-branes it is much more convenient to build models with N = 2 SUSY.

The configuration is as follows: our space-time will be R3,1 × T 2 × (T 2 × T 2)/Z2, where the
tori are taken to be rectangular. Denoting the complex coordinates on the compact space as
zi ∈ T 2

i , the orbifold involution acts as θ : (z2, z3) → (−z2,−z3). The orientifold involution

6



Figure 2: Supersymmetric configuration corresponding to our simple model. Solid lines denote
A stacks and dashed-dotted lines represent B stacks. Each of these stacks is separated into
A1, A2 and B1, B2 in the first torus only. The orientifold planes are represented by the dashed
lines with arrows. In the first torus, the two sets of orientifold planes are coincident. Finally the
dots on each of the last two tori show the orbifold fixed points (to be more precise - planes).
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consists then of world sheet parity transformation Ω coupled with a non-holomorphic reflection
R in the internal complex coordinates, R : zk → z̄k. The projections leave 4 × 4 = 16 fixed
points of the Z2 orbifold, and 16 orientifold fixed planes (O6-planes), 8 for each of the orientifold
actions, ΩR, ΩRθ.

In the orbifold case we may derive rather general expression for kinetic mixing. The only
assumption we need is that the two massless gauge groups U(1)a and U(1)b come from two
parallel stacks of branes each, labelled A1, A2 and B1, B2 (see Fig. 2). In order not to intersect
they must be parallel to the orientifold plane in torus 1, but not lie upon it. We denote
separations from the O6-plane in the torus 1 yAi

, and write δij ≡ yAi
− yBj

. The charges for
the massless combinations are given by Qa = 1

NA1
QA1 − 1

NA2
QA2 =

∑
i

ca
i

NAi
QAi

, and similarly
for Qb, where NAi

is the number of branes in stack Ai and QAi
, QBi

= ±1. The kinetic mixing
then is

χ =
∑
ij

ca
i c

b
jQAi

QBj
χij = χ11 − χ12 − χ21 + χ22, (17)

where

χij =
gagb

4π2
IAB


log

∣∣∣∣∣
θ1(

iδijL1

2π2α′ ,
iT 2

1

α′ )

η(
iT 2

1

α′ )

∣∣∣∣∣

2

− δ2
ij

2π3α′
(L1)

2

T 1
2


 . (18)

Here χij is the kinetic mixing between Ai and Bj, IAB is the number of intersections between
the branes in the non-parallel directions, L1 is the length of both branes on the torus 1, in
which they are parallel, and T 1

2 is the Kähler modulus of torus 1, in case of rectangular tori it
is proportional to the product of radii. It is interesting that the above result can be calculated
exactly by the effective supergravity techniques that we consider in the next section, since
supersymmetry ensures that all of the string mass excitations don’t contribute.

To verify that such model will be consistent, one must impose conditions of supersymmetry
preserving and of R-R tadpole cancellation (supersymmetry then ensures the cancellation of
NS-NS tadpoles automatically). It is shown in article that for two explicit models we can satisfy
these conditions by selecting matching wrapping numbers. So we can see that kinetic mixing
between massless anomaly-free gauge bosons can exist in consistent models.

4. The supergravity calculation of kinetic mixing Let’s see how one can obtain CFT
results of section 2 using only the effective field theory. Take the action of the brane and the
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supergravity fields in the following form [14, 15]. Define the Dirac-Born-Infeld action:

SDBI = µp

∫
dp+1x e−Φ

√
−det g + 2πα′F + B

≈
∫

dp+1xµp e−Φ
√−g − 1

4
µpe

−Φ
√−g

(
(2πα′)2FµνF

µν + 2(2πα′)FµνB
µν + BµνB

µν
)
, (19)

the D-brane action:

SWZ = µp

∫

Dp

∑
q

Cq ∧ tr exp(2πα′F + B) ∧
√

Â(4π2α′RT )

Â(4π2α′RN)
, (20)

and the usual actions of low-energy type IIB supergravity:

SR = − 1

4κ2
10

∫
d10x(−detG)1/2

(
|F1|2 + |F̃3|2 +

1

2
|F̃5|2

)
, (21)

SNS = − 1

4κ2
10

∫
d10x(−detG)1/2e−2Φ|H3|2, (22)

where Aµ is a gauge field, Cq are the R-R forms, B2 is the NS-NS 2-form. The latter terms
mean that if one makes a mode decomposition of those forms, their right- and left-moving parts
turn to be fermionic in the R-R case and bosonic in the NS-NS case.

The field-strengths are defined as
F = dA,

Fq+1 = dCq,

H3 = dB2,

F̃3 = F3 − C0 ∧H3,

F̃5 = F5 − 1

2
C2 ∧H3 +

1

2
B2 ∧ F3

∗10F̃5 = F̃5.

Also µp =
√

2π(4π2α′)−
1+p
2 is the brane tension, and 2κ2

10 = (α′)4(2π)7.
We are now going to obtain the results of previous paragraph using supergravity approach

based on Dirac-Born-Infeld action. As we could see from the actions, mediator of kinetic mixing
is the B-field. Additionally, for Dp-branes, a p− 1-form Cp−1 couples to the gauge fields, which
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can mediate too, but only between the branes of the same dimensionality. From the DBI-action
we read vertex for the antisymmetric Bµν and Aρ:

1

2
2πα′µpg

−1
s (kµgνρ − kνgµρ)δ(Σp), (23)

on a p-brane of worldvolume Σp and a propagator (we need only diagonal part) for Bµν :

Gµν;ρσ(k4, y0, y1) = δµρδνσ
2g2

sκ
2
10

V6

∑

k6

exp[ik6(y1 − y0)]

|k4|2 + |k6|2 . (24)

Here µ, ν ∈ {0, 1, 2, 3}, k4 and k6 are the 4-dimensional and the transverse 6-dimensional
momenta, and y1 − y0 is the 6D distance vector in the transverse space.

The B-field contribution to the 2-point function of gauge fields is:

〈Aa1
µ1

Ab1
ν1
〉B =

δ

δAa1
µ1

δ

δAb1
ν1

tr1λatr2λb
1

2

1

α′
(2πα′)3

V6

(4π2α′)
3−pa

2 (4π2α′)
3−pb

2 ×

×
[
Aa

µA
µ
b VDpaVDpb

+ (k2
4A

a
µA

µ
b − k4 · Aak4 · Ab)

∫
dpa−3yad

pb−3yb

∑

k6

exp[ik6 · (yb − ya)]

|k6|2
]

.

(25)

On the torus there will be a contribution from Cp−1-forms, but only if pa = pb. Firstly,
consider rectangular untwisted tori. In this case one can show that for brane-brane mixing the
C-form contribution cancels the B-term, while for brane-antibrane mixing the B-contribution
just multiplies by factor 2. Also, in Neumann-Dirichlet directions for brane-antibrane case the
integrals in the above become delta-functions, and for p 6= q we obtain

χab = gagbtr1λatr2λb
1

2π

l6s
V6

VaVb

lpa+pb−6
s

∑
ni

∏NDD

i=1 exp
[
2πi ni

Ri
(yi

b − yi
a)

]

∑NDD

i=1 n2
i l

2
s/R

2
i

, (26)

where l2s = 2πα′, and NDD is the number of Dirichlet-Dirichlet directions. For p = q = 3
this agrees with our earlier CFT-derived mixing (in the context of an untwisted toroidal
background).

Now we can generalize this to models with any compact manifold, not necessarily rectangular
torus. Consider the action for the single component of Bµν which we denote φ and neglect the
transverse modes:

S =
1

2κ2
10

∫
d4x

(2π)4

∫

M6

e−2Φ(
1

2
k2

4φ
2 +

1

2
d(6)φ ∧∗6 d(6)φ). (27)

10



For a constant dilaton eΦ is just a coupling constant gs, and the Green functions therefore obey
an usual free equation

(k2
4 + ∆6)Gµν;ρσ(y0, y1) = δµρδνσ2κ2

10g
2
sδ(y1 − y0), (28)

where the 6D Laplacian is ∆6 = d∗6d + (dd∗6). If our 6-manifold admits Hermitian metric,
Laplacian is Hermitian operator, and therefore we can write the general solution of the above
equation in terms of orthonormal eigenfunctions basis {φn} with eigenvalues αn:

Gµν;ρσ = δµρδνσ2κ2
10g

2
s

∑
n

bn(y1)φ
∗
n(y1)

αn + k2
4

φn(y0), (29)

where bn(y1) is the weight function. From the pole structure it is obvious that a contribution
to the mass term occurs only when αn = 0, and in all the other contributions to obtain the
mixing one can imply k2

4 = 0 in the denominator.
Before we give an explicit example of the warped model with background fluxes we must

solve the last problem. As far as we know, in type IIB model compactifications it is usually
required to include vacuum expectation values for the three-form fluxes in order to stabilize the
moduli. So we need to take this into account in our calculation of kinetic mixing.

The effect of the fluxes in some of the most popular models [16, 17] is that the metric is
warped near the SM-branes:

ds2 = e2A(y)ηµνdxµdxν + e−2A(y)gmndymdyn. (30)

If we would consider the D3-branes (antibranes) then we see from our actions that the coupling
of the gauge fields to the antisymmetric tensor and the R-R two-form is classically conformal.
Therefore kinetic mixing cannot depend upon the warp factor and all the modification of our
method must affect only Green function.

The idea is that we split both two-forms into B2 = B
(4)
2 +B

(6)
2 +B

(46)
2 and similarly for the C2,

where the superscripts denote spacetime-spacetime, compact-compact and spacetime-compact
indices correspondingly. We would like to give vevs to components B

(6)
2 , C

(6)
2 , that can’t mediate

kinetic mixing. The role of these components is that their vevs give masses to the two-form
fields B

(4)
2 , C

(4)
2 . It can be easily seen, if we just write explicitly actions for these fields[1]. Thus,

fluxes generate masses for the two-form fields; from the string point of view we have stabilized
the moduli. Ignoring the non-compact dimensions’ kinetic terms, for a component φ of Cµν we
have

L =
e−2A√g

2κ2
10

[
gmn∂mφ∂nφ +

1

8
|B(6)

2 ∧ d(6)φ|2 +
1

8
|H(6)

3 |2φ2

]
, (31)

where the last term is a mass of φ.
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To estimate the effective φ-mass consider that H3 and F3 are defined as fluxes threading
three-cycles[17],

1

(2π)2α′

∫

AK

H3 = mK , (32)

1

(2π)2α′

∫

BK

F3 = eK , (33)

where mK , eK are integers and K = 1, . . . h3. Thus we can estimate that

H3, F3 ∼ nl2s/V3, (34)

for some integer n and different three-cycle volumes V3. Provided that the cycles threaded by
the flux are larger than the string scale, we could neglect the second term in φ-Lagrangian and
see that φ should behave as a massive scalar with characteristic length L ∼ V3/(nl2s). It implies
that the Green function for two-form fields behaves like

Gµν;ρσ(y) ∝ δµρδνσe
−ynl2s/V3 . (35)

Obviously, it is a ’Yukawa type’ - interaction - exponential form is because of the massive
mediating scalar.

5. Randall-Sundrum model Randall-Sundrum models[18, 19] deal with branes embedded
in a slice of AdS5. We consider a string-inspired scenario, in which matter fields are confined
to branes, and introduce a string-inspired mediating B-field. The metric is taken to be:

ds2 = e−2k|y|ηµνdxµdxν + dy2, (36)

with k a parameter of the order of the Planck scale.
We consider the SM-brane to be a D3-brane at a position y = 0 in the fifth dimension, and

a hidden brane - at some position y1 = πR. The Lagrangian will have a form:

L = Lbulk + LD3 + LD̄3,

Lbulk =
M3

5

2g4

∫ −1

2
dB ∧ ∗5 dB +

1

2
m2B ∧ ∗5 B,

LD3 =
1

4g2

∫

D3

1

2πα′
F ∧ ∗4 B +

1

(2πα′)2
B ∧ ∗4 B,

LD̄3 = −LD3. (37)
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The coupling of the B-field to the gauge field is specified by the DBI action, but we need
to introduce in this model 3 parameters: the coupling of the kinetic term M5, the mass-like
parameter m and the string mass. If we imagine our model to be derived from an underlying
string theory, we could expect M5 to be related to Planck’s constant and the volume of the
compactification, and m to be determined by the fluxes; the string scale however generally
exists as a free parameter to be determined by experiment.

To calculate the mixing, we require the Green function, and thus we derive the simple
equation of motion: [

e2k|y|ηαβ∂α∂β + ∂5∂5 −m2
]
B(4)

µν = 0. (38)

From the above action we also find boundary conditions for the B-field at the brane:

∂yB
(4)
µν −

M4
2

M3
5

B(4)
µν |y=0,πR = 0. (39)

The idea of finding the Green function in fifth dimension in this case (the residual of Green
function is usual), defined as

∆G(y, y′) = δ(y − y′), (40)

is to decompose it into ’advanced’ and ’retarded’ components that satisfy the homogenous
equations and to impose matching conditions at y = y′.Then for each component we separate
the variables and obtain the result (in case of massive RS-action the equations can be solved
exactly):

G(y0, y1) =
4g2

M3
5 m

1

sinhmπR

1

(1− M8
s

M6
5 m2 )

, (41)

where y0, y1 are coordinates of the branes. This gives mixing:

χ = gagb
32M4

s

M3
5 m

1

sinhmπR

1

(1− M8
s

M6
5
m2)

. (42)

To estimate χ one could try to identify M5 with M , composed from the existing RS
parameters, where e−kπR = MSUSY /MPL, (so πkR ∼ 37), M2

Pl ≈ M3/k. We also assume
the quantity M8

s /(M6
5 m2) to be small and take an intermediate string mass of

√
MSUSY MPl.

This gives

χ ≈ gagb × M2
SUSY πR

m

1

sinhπmR
.

In the limit mR ¿ 1, one has

χ ∼ gagb × M2
SUSY

m2
. (43)
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We see that for gauge couplings of order unity values of m ∼ 104MSUSY leads to a mixing that
can be observable in the near future.

In the opposite limit, mR À 1 one gets the expected exponential suppression because of
non-zero mass:

χ ∼ gagb × M2
SUSY

m2
(mπR)e−mπR. (44)

Thus, in RS-backgrounds the kinetic mixing can take any value between zero and the experimental
limits, depending on the configuration. In more realistic warped models with background fluxes,
for example Klebanov-Tseytlin throat or some different Calabi-Yau manifolds with explicitly
known metric, the kinetic mixing demonstrates analogous behavior [1], being rather large in the
mR ¿ 1 limit and being exponentially damped due to the backreaction of fluxes in opposite
limit .

6. Conclusion It was shown that models with massless hidden U(1)s can be found by
compactifications of string theory, and that they are natural for certain classes of backgrounds.
Nevertheless, this hidden sector can have observable experimental effects because they will
typically mix with photon via so-called kinetic mixing term. These effects were calculated by
using conformal field theory and supergravity techniques. The latter method is rather general
and can be used even when fluxes are included to stabilize the moduli on the compactification
manifolds. Also it was demonstrated that in general kinetic mixing is non-zero even if all the
U(1)s involved are anomaly free. This provides extremely sensitive tests in many low-energy
experiments. The size of kinetic mixing is model-dependent. Yet, for wide range of parameter
values it is often within reach of the current and near future experiments. The discovery of such
effects could become the first indirect confirmation of the existing of extra-dimensions.
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