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1 Introduction

In the �rst part of this work report I like to introduce some aspects of in�ationary
models with scalar �elds and the slow roll approximation that sometimes can be used
to get easy a primordial �uctuation spectra from a potential. With the meassurement
of the cosmic microwave background (CMB) with COBE later with WMAP one got
possibilities to test di�erent models with the data. In the second part of this report
I compare the primordial spectra of three di�erent models that lead to oscillations in
the CMB spectrum and also the resulting CMB spectra of these models with WMAP5
data.

2 In�ation Models with Scalar Fields

In the Big Bang model there is an epoch of fast expansion that is called in�ation.
The idea of in�ation is favored by many authors because it can solves many problems
like the �atness problem, horizon problem and others (see e.g [1], [2],[3] and other
cosmological textbooks). Scalar models are one possibility to describe an in�ationary
phase. The in�ation in the simplest model is caused by a scalar �eld which is rolling
down from an local minimum to an global one. This can be described by an �slow-
roll approximation� (see chapter 2.1). There are di�erent kinds of scalar �eld models,
which are shortly described in section 2.2. Some of the models describe in�ation with
more than one scalar �eld.

2.1 Slow Roll Approximation

In�ation is de�ned as an era of repulsive gravity with ä > 0, where a(t) is the scale
factor. If the total density Ωtot is close to 1, so we have an �at universe, the evolution
of an scalar �eld φ and the scale factor a is given [1]

φ̈ + 3Hφ̇ + V ′ = 0 (1)

3H2 = 3(
ȧ

a
)2 =

1
2
φ̇2 + V (φ) (2)

where an overdotes denotes derivative with respect to the time and an prime with re-
spect to the �eld φ and H is the Hubble parameter. The equation of motion for a spatial
homogeneous scalar �eld can be derived from the action S =

∫
d4x

√
g[ 12∂µφ∂µφ+V (φ)]

and the �eld equations [2].
√

g = a3 and comes from the Friedman-Robertson-Walker
metric.
The scalar �eld is slowly rolling down its potential and herefore the condition is

φ̇2 << V (φ) and also the potential of the scalar�eld should be �at and φ̈ should also
be << V (φ) [2]. The slow roll parameters are de�ned [3], [1]

ε(φ) =
M2

p

2
(
V ′

V
)2 (3)
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η(φ) = M2
p

V ′′

V
(4)

For the slow roll approximation it is necessary to hold these conditions:

ε(φ) << 1 and |η(φ)| << 1.

One can show, if the slow roll approximation is valid, then in�ation is guaranteed [3].

2.2 In�ationary models

There were many di�erent scalar �eld models for an in�ationary scenario discussed in
literature and there are many possibilities to classi�es these models. In this chapter I
will use the characterization by potential form and initial conditions [2] (see also [6])
and the characterization by end of in�ation [4].

2.2.1 Large Field Models

Potentials of this kind are usually used in �chaotic� in�ation scenarios (for futher
information about chaotic in�ation see [5]). In the chaotic in�ation scenario the Uni-
verse evolved from a quantum gravitational state with energy density comparable
to Planck scale. Here are mainly exponentially potentials V (φ) = λ4 exp(φ/µ) and
polynomial potentials V (φ) = λ4(φ/µ)p used. For large �eld models is V ′′(φ) > 0
and −ε < δ = η − ε < ε. The simplest chaotic in�ation model has the potential
V (φ) = m2φ2/2.

2.2.2 Small Field Models

In this class of models are potentials used that arise from spontaneous symmetry
breaking e.g. original models of �new� in�ation and �natural� in�ation. Here have the
potentials the form V (φ) = λ4[1 − (µ/φ)p].This potential form can also be viewed as
a lowest order Taylor expansion of an arbitrary potential about the origin. For this
kind of potentials is V ′′(φ) < 0, η < −ε and ε close to zero. The in�aton �eld in small
�eld models starts from near an unstable equilibrium and rolls down the potential to
a stable minimum.

2.2.3 Hybrid models

Most models that are used in hybrid in�ation are of the form V (φ) = λ4[1+(φ/µ)p], but
there are also used other potentials e.g V (φ) ∝ ln(φ) in models with Supersymmetry or
V (φ) ∝ φ−p in intermediate in�ation and dynamical supersymmetric in�ation. Here
is V ′′(φ) > 0 and 0 < ε < δ. In typical hybrid in�ation models are more than one
scalar �eld involved.
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2.2.4 Classi�cation by End of In�ation

Another way to classify the di�erent in�ation models is the ending of the in�ation
phase. There are two possibilities: ending of slow roll phase versus phase transitions.
Models, in that the in�ation ends with slow rollover, describe an slow rolling in�aton
�eld which rolls to the minimum and oscillates there. Models, that end with phase-
transition, need at least two �elds. One �eld is the slow rolling in�aton �eld while the
other �eld triggers the end of in�ation, here are also oscillations in the end. There exist
models with Einstein gravity and with extended gravity theories like Supergravitation.

2.3 Spectrum and spectral index

The spectrum of primordial curvature perturbation in the slow-roll approximation is
given by [3]

PR(k) =
1

12π2M6
Pl

V 3

V ′2
=

1
24π2M4

Pl

V

ε
(5)

evaluated at the epoch of horizon exit k = aH. The value of φ at this epoch can be
obtained by [9]

ln(
kend

k
) = N(k) = M−2

P

∫ φ

φend

V

V ′ dφ (6)

The scale dependence of the spectrum is described by the scale-dependent spectral
index n [3]:

ns − 1 = 2η − 6ε (7)

With gauge-invariant computation of the curvature perturbation one can �nd [2]

PR(k) = A2
s(

k

a ·H
)ns−1 (8)

The newest data show (WMAP5 [14]) a spectral index ns = 0.96.

There are also tensor perturbations generated by the quantum oscillations, but the
spectrum of tensor perturbations is much smaller than the scalar spectrum. The ratio
of theses spectrum is Pgrav(k)/PR(k) = ε and is negligible for ε << 1. The scalar to
tensor ratio at low l is also de�ned as [9]

r =
Cgrav

l

CR
l

= 12.4ε (9)

3 Oscillations in the CMB Spectrum

In this chapter I discuss three di�erent primordial spectra with the CMB spectrum,
that was measured by WMAP. Each of these primordial spectra leads to oscillations in
the CMB spectrum and in the COBE and WMAP data there are some evidences for
oscillations at lower l. The physical motivation for looking into the oscillations at low
l is that many of the primordial spectra that causes oscillationsin the CMB spectra
arise from models with more than one �eld.
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3.1 The tanh-Potential

The �rst model is a chaotic in�ationary potential m2φ2 with an added step at φ = b
[10]. In�ationary models with a step can naturally arise in theories with many inter-
acting �eld, e.g. in supergravity models [11]. Each step corresponds to a symmetry-
breaking phase transition in a �eld coupled to the in�aton [10].

V (φ) =
1
2
m2φ2(1 + tanh(

φ− b

d
)) (10)

b and d are in units of the Planck mass Mp. This potential can not be treated in the
slow-roll approximation and the primordial potential P (k) was derived and discussed
e.g. in [11]. In the same publication is also an discussion of the best �t values for the
parameters b, c and d. I approximated the spectrum P (k) for the values m = 7.5·10−6,
b = 14, c = 10−3 and d = 2 · 10−2 with

PR(k) = 1.65 · 10−9

{
kns−1 if k < 0.0008

kns−1 + e−250k sin(1.2− 1500 · k) if k ≤ 0.0008 (11)

with ns = 0.96.

Figure 1: primordial spectrum constructed for the tanh potential

3.2 The sin-Potential

The second model is similar in the form to the tanh-model, because it also contains
the standard chaotic potential m2φ2, but now with additional oscillations:

V (φ) =
1
2
m2φ2(1 + a · sin(

φ

b
+ δ)) (12)

This model is discussed in [12] with δ = 0, a = 5 · 10−4, b = 3 · 10−2 and m =√
8 · π·10−6. In this publication the spectrum of the model was received with numerical

methods. For this work I got spectrum mostly analytically from this potential but with
one approximation.
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This potential can be treated in the slow roll approximation (see chapter 2.3). The
spectrum of the primordial curvature perturbations is given in equation 5. To evaluate
the right-hand side of this equation, one has to solve

55− ln(
k

a0H0
) = N(k) = M−2

P

∫ φ

φend

V

V ′ dφ (13)

where a0 is the scale factor today, i.e a0 = 1 and H0 = (h/3000) Mpc−1 with h = 0.72.
For this potential is an analytically solution of the integral not possible. Numerically
treatment shows an linear connection between integral value and φ for the relevant
scale for in�ation with k = 40 · · · 50. With the linear approximation one can estimate
φ(k) and gets for the spectrum

PR(k) ≈ 1.7 · 10−35·φ(k)6(1+
sin(1.4·10−17φ)

2000 )3

(5.1 · 105 · φ(k)2 · cos(1.4 · 10−17φ(k)) + 1.5 · 1026φ(k)(1 + sin(1.4·10−17φ)
2000 ))2

(14)
with

φ(k) ≈ 3.35 · 1017(1.1 · 102 − log(
k

a0H0
)) (15)

Figure 2: primordial spectrum of the sin potential

An comparison of this primordial spectrum with the primordial spectrum in [12]
shows, that here the frequency of the oscillations is little higher and the amplitude is
less than there. These could be e�ects of the linear approximation, that was made in
the calculations of the spectrum.

3.3 The spiky primordial spectrum

Another primordial spectrum that also leads to oscillations in the CMB spectrum was
discussed in [13], that contains an spike and an dip. They assume an initial power
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spectrum with spiky corrections:

P (k) = As · kn−1(1 +
∑

i

αi exp(− (k − kci)2

2σ2
i

)) (16)

where As is the amplitude of primordial �uctuations and n is the spectral index.
Both values one can get from COBE or WMAP data. I choose the same parameters
like in [13] to get an dip and an spike: α1 = 3.0, kc1 = 4.3 · 10−3h Mpc−1, σ1 =
7.5 · 10−5h Mpc−1 and α2 = −0.9, kc2 = 2.5 · 10−3h Mpc−1, σ2 = 1.4 · 10−4h Mpc−1.

Figure 3: primordial spectrum with dip and spike

3.4 CMB Spectra of the Di�erent Primordial Spectra

The primordial spectra, that are discussed above are very di�erent, but each of them
leads to some oscillations in the resulting CMB spectra. The CMB spectra were created
with CMBFAST version 4.5.1.

3.4.1 CMB spectra with WMAP5 data

In �gure 4 are showed the resulting CMB spectra for the di�erent primordial spectra
that were introduced above. For a better comparison there is also the CMB spectrum
of the primordial powerlaw spectrum ∝ kns−1. I used the WMAP 5 data [14] with
h = 0.705, ΩΛ = 0.726, Ωb = 0.046, ΩCDM = 0.228, τ = 0.084 and zreion = 10.9. For
reionization I used the RECFAST routine in CMBFAST.

In table 1 are the postitions of the �rst three peaks of the CMB spectra for the
di�erent models and in table 2 are the amplitude ratios for these peaks. There are
strong deviation for the sin model at the peak positions and amplitude ratios to the
power law model, that describes the peak positions and amplitude ratios of the data
very good.
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Figure 4: CMB spectra of the di�erent primordialspectra

Peak Position Peak 1 Peak 2 Peak 3
ns = 0.96 220 538 815
spiky 220 538 813
sin 189 536 807
tanh 221 537 814

Table 1: peak positions of in the di�erent CMB spectra

Amplitude Ratio Peak 1 Peak 2 Peak 3
ns = 0.96 1 0.44665 0.439028
spiky 1 0.450836 0.444468
sin 1 0.546465 0.436223
tanh 1 0.450217 0.442508

Table 2: peak amplitude ratios in the di�erent CMB spectra

In �gure 5 are plotted the di�erent CMB Spectra with the WMAP5 binned data, but
without the sin CMB spectrum, because it does not describe the peak positions and
amplitude of the data verry well. One can see in this �gure that at high l > 60 there are
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Figure 5: CMB spectra with the WMAP 5 binned data
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almost no di�erences in the resulting CMB spectra of the di�erent primordial spectra.
At small l are di�erences between the di�erent models, but none of the di�erent CMB
spectra matches all data points within the errorbars.

3.5 Conclusion

For the comparison of the di�erent CMB spectra I used for each model the parameters
from the cited publications. The choosen parameters in these publications were from
�ts of the model to the data with Markov Chain Monte Carlo (MCMC) simulations.
But not all of the parameters I used were �tted to WMAP5 data but also to WMAP3
data (tanh model) or WMAP1 data (spiky model) and I used these parameters to
get the CMB spectrum with some cosmological parameters from the WMAP5 data.I
also used for the tanh model not the numerically achieved primordial spectrum, but
made an approximation with an piecewise function and with the sin model I made an
linear approximation during the calculation of the primordial spectrum and got so not
exactly the same primordial spectrum like [12]. I would have to make my own MCMC
simulations to get the best �t parameters to the WMAP5 data and only after this I
can get a signi�cant comparison between the CMB spectra of these models.
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