


The work presented in this document is the combined work of Stanislav Gurskiy and

Christian Geisler during the course of the Desy Summer Programme 2008. Anyhow

this document is split into three parts. The first part containing the choice of materials

and thicknesses based on the most simple model of attenuation and was created in col-

laboration. The parts two and three deal with higher order corrections and represent

the line of thought of the individual author. Due to limited time it was unfortunately

impossible to thoughtfully compare the two approaches in this document.
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1 Introduction

In this paper we will peresent the work we have done during the Desy Summer Student

Programme 2008 in the team of Oliver Seeck who is the beamline scientist for the high

resolution beamline at the PETRA III source.

The high brilliance synchrotron radiation source PETRA III will go in operation in

2009 with 14 beamlines each of them specialized to an x–ray method. Beamline 8 (BL

8, HighRes) is designed for high resolution diffraction and scattering experiments. It

will deliver x-ray beams of a selected photon energy between 5KeV and 30KeV and a

flux of up to 1015cts/sec in the final stage.

2 The attenuator

The beam will have an intensity up to Imax = 1015 photons per second whereas the

utilized scintillator detector can only withstand up to I = 105 photons per second. This

leads to the need of an attenuator which can reduce the photon flux. The attenuator

device that will be used in the hires beamline is a device that slides 12 foils of different

materials and thicknesses into the beam. In contrast to an attenuator wheel it will

therefore be possible to combine the foils in 212 = 4096 ways which leads to a precise

tuning of the attenuation factor.

3 Attenuation factor

The attenuation factor is defined as the quotient of the intensity of the incident beam

and the transmitted beam:

γ = I/I0 (1)

The optimal attenuator would be in a binary setup, meaning that each foil absorbs twice

as much intensity as the one before. If the foil i has an attenuation factor of γi then the

binary setup corresponds to the recursive form:

γi+1 = γ 2
i (2)

The attenuation will be highest when all 12 foils are pushed into the beam:

γmax =
12

∏
i=1

γi = γ
∑

11
n=0 2n

1 = γ
(212−1)

1

With the highest absorption being equal to I/Imax = 10−10 equation (3) can be solved

for γ1 and with relation (2) every γi can be derived recursively.

γ1 =
4095
√

10−10 ≈ 0.9944 (3)

γi = γ
∑

i−1
n=0 2n

1 (4)

Beer-Lambert law – The Transmittance of radiation through a material can be

approximated through the law of Lambert. This model considers the material as fully
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Figure 2: Absorption length of aluminum as a function of photon energy.

Figure 4: Calculated thicknesses of aluminum foils.

As we cannot use foils with thickness more than 1mm, for 7th – 12th foils we had to

use other materials to gain the same values of γi but thicknesses less than 1mm. For first

seven foils we chose thicknesses of foils according to Goodfellow company products

(cf. figure 5):

Figure 5: Thicknesses of aluminum foils.

Maximal x-ray energy at which we are able to attenuate 10−10 of incoming intensity

with the help of only first seven aluminum foils is 7.273KeV . So in energy range

5.4KeV −7.273KeV we will use only first seven foils made of aluminum.

As absorption edge of titanium is 4.966KeV , it is convenient to use this metal as a
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material for next few foils because when using it for energies more than 7.273KeV one

cannot be afraid to obtain strong fluorescence from titanium foils.

According to Goodfellow company products we took titanium with 99.6% purity

(by mass weight). It contains 300 Al ppm, 20 Ca ppm, 50 Cr ppm, 5 Cu ppm and

1500 Fe ppm, 100 Mn ppm, 50 Ni ppm, 300 Si ppm, 200 Sn ppm, 300 C ppm, 60

H ppm, 150 N ppm and 2000 O ppm (ppm is given in weight ppm). With the help

of special program software we calculated absorption length for real (impure) titanium

foil depending on energy (cf. figure 6).

Figure 6: Absorption length of titanium as a function of photon energy.

According to Goodfellow company products we chose thicknesses of 7th, 8th and

9th titanium foils (cf. figure 7) as follows:

Figure 7: Thicknesses of titanium foils.

To gain value of attenuation 10−10 we can use our 9 foils for energy less or equal

to 15.000KeV .

At last we should choose materials for 11th and 12th foils. It seemed for us that

it will be reasonable to use copper for these foils because it has absorption edge at

8.979KeV which is far away from 15.000KeV , copper is strong to corrosion (for ex-

ample iron has absorption edge 7.112KeV , which is even more desirable than copper,

but iron is well oxidized in oxygen atmosphere), also copper is ecologically safe (for

example in comparison with cobalt) and rather cheap.
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To calculate thicknesses of copper foils we considered first all impurities in real

copper foils and how they influence absorption length. According to Goodfellow com-

pany products we took copper with 99.9% purity (by mass weight). It contains 500 Ag

ppm, less than 10 Bi ppm, less than 50 Pb ppm, 400 O ppm (ppm is given in weight

ppm). So having special program software we calculated absorption length for this

composition depending on energy (cf. figure 8).

Figure 8: Absorption length of copper as a function of photon energy.

According to Goodfellow company products we chose thicknesses of 10th, 11th

and 12th copper foils (cf. figure 9) as follows:

Figure 9: Thicknesses of copper foils.

Now when using all chosen foils for energy of incoming x-ray beam 30KeV we can

gain maximal value of γ = 1.510−11, which is even more than we have planned.

5 Computing the combination

To obtain the appropriate combination of foils for a desired attenuation a Java program

has been developed. The major steps in the process are the listed:

1. The program reads the materials, thicknesses and positions of the foils utilized

in the attenuator from a file (”setup.txt”).

7



2. For a given photon energy it interpolates from tabulated values the absorption

length for each material and calculates the absorption factor γi for each foil i.

3. Via comparing the absorption using a different foil combination the combination

and the corresponding absorption which is the closest to the desired attenuation

is the output.

In following the different methods utilized in the program ”absorption.java” are

briefly explained. The full code can be found in the appendix.

– readIn() reads in the first 9 characters of the ith line of the ASCII file ”setup.txt”

as thickness of foil i made out of the material with characters 10 and 11 (e.g.

”1280e-6 Cu”). The setup is stored in a string-array holding the materials and a

double array holding the thickness.

– getLambda(energy,material) returns the interpolated values for the absorption

length in microns for a given energy and material. The tabulated values have to

be in a file named ”material”.

– makeLambdaArray(energy) creates a double a double array holding the absorp-

tion length λi of each foil. It uses the arrays previously created by readIn().

– toBinary() converts an decimal integer 0 ≤ c ≤ 4095 to a binary array. This

makes it possible to convert a number to a combination of inserted and withdrawn

foils. This is done so that c increases with the attenuation of the combo.

– calculateGamma(c) calculates the absorption γc of the combination c.

– getCombo(γ ,energy) compares the gamma for combination c = 0 with the de-

sired combination. If γc of the combo c is larger than γ then c and γc are returned

in a string array. Else the procedure is repeated with c = c+1.

With the use of the Java code the attenuation γ can be calculated for a given photon

energy as a function of the combination c. These calculations are illustrated in figure

10. The deviations from the linear behavior are due to the change in material used to

absorb photons.
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Figure 10: The absorption factor I/I0 depends on the combination of foils slid into the

beam. Displayed here is the course of γ in the low and high energy range.
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A Code ”absorption.java”

1 import java.util.*;

2 import java.math.*;

3 import java.io.*;

4

5 public class absorption{

6 static String OutputFile;

7 static double[] Thickness = new double[12];

8 static String[] Material = new String[12];

9 static double[] Lambda = new double[12];

10 static String setup = "setup.txt";

11

12 static void readIn() throws Exception{

13 FileReader fr = new FileReader(setup);

14 BufferedReader br = new BufferedReader(fr);

15 String line = null;

16 for(int i = 0 ; i<=11 ; i++) {

17 line = br.readLine();

18 Thickness[i] = Double.parseDouble(line.substring(0,8));

19 Material[i] = line.substring(9,11);

20 }

21 fr.close();

22 br.close();

23 }

24

25 static double getLambda(double Energy, String material) throws Exception{

26 FileReader fr = new FileReader(material);

27 BufferedReader br = new BufferedReader(fr);

28 for(int i=0 ; i<5 ; i++) br.readLine();

29 String line2;

30 String line1 = "null";

31 Double E1, E2, L1, L2;

32 while((line2=br.readLine())!="null"){

33 try{

34 if((E2=Double.parseDouble(line2.substring(0,10))) <= Energy){

35 line1=line2;}

36 else{

37 E1=Double.parseDouble(line1.substring(0,10));

38 L1=Double.parseDouble(line1.substring(54,line1.length()));

39 L2=Double.parseDouble(line2.substring(54,line2.length()));

40 return( L1+((L1-L2)/(E1-E2))*(E1-Energy) );}

41 }

42 catch(NumberFormatException e){;}

43 }
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44 return(0.0);

45 }

46

47 static void makeLambdaArray(Double Energy) throws Exception{

48 double l = 0;

49 String m = "";

50 for(int i=11 ; i>=0 ; i--){

51 if (Material[i].compareTo(m)==0) Lambda[i]=l;

52 else{

53 Lambda[i]=getLambda(Energy, Material[i]);

54 l = Lambda[i];

55 m = Material[i];

56 }

57 }

58 }

59

60 public static int[] toBinary(int C){

61 int[] BC = new int[12];

62 int d = 2048;

63 for(int i=11; i>=0 ; i--){

64 if (C >= d) BC[i] = 1;

65 else BC[i] = 0;

66 C=C%d;

67 d=d/2;}

68 return(BC);

69 }

70

71 public static double calculateGamma(int C) throws Exception{

72 int[] BC = toBinary(C);

73 double e = 0;

74 for(int i = 11 ; i>=0 ; i--){

75 e = e+((BC[i]*Thickness[i])/(Lambda[i]*1e-6));

76 }

77 return(Math.exp(-e));

78 }

79

80 public static String[] getCombo(double gamma, double Energy) throws Exception{

81 readIn();

82 makeLambdaArray(Energy);

83 String[] a = new String[2];

84 for(int c=0 ; c<4096 ; c++){

85 if(gamma > calculateGamma(c)){

86 a[0]=Double.toString(calculateGamma(c));

87 a[1]=Integer.toString(c);

88 return(a);

89 }

90 }

91 return(a);

92 }

93

94 public static void main(String[] A) throws Exception{

95 BufferedReader br = new BufferedReader( new InputStreamReader(System.in));

96 System.out.print("Desired absorption: ");

97 double gamma = Double.parseDouble(br.readLine());

98 System.out.print("What is the energy of the beam [eV]: ");

99 Double Energy = Double.parseDouble(br.readLine());

100 String[] a = getCombo(gamma,Energy);
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101 int[] b = toBinary(Integer.valueOf(a[1]));

102 System.out.print(a[0]+"\t");

103 for(int i=0; i<b.length; i++) System.out.print(b[i]);

104 System.out.println();

105 }

106 }
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6. Higher  order  corrections (made by Stanislav Gurskiy) 

When calculating attenuation coefficients (gammas) and consequently thicknesses for 

attenuator foils one should always take in to consideration two factors: x-ray bragg scattering 

from foils due to its grain nature and fluorescence coming from foils. 

In this section we will pay all attention to scattering of intensity and will not consider 

fluorescence because we were short of time to cover both of these two problems. 

So we will consider bragg scattering within foils to know how much intensity we will 

loose after x-ray beam will pass threw foils. 

 

6.1. Bragg scatter ing 

It is commonly known that usually foils of various materials consist of grains [1]. For 

commercial foils mean grain size is varied between 0.2 and 2.5 たm. Distribution of these 

grains in space of foil depends on way to obtain foil and on its thickness but still remains 

practically equiaxed (i.e. random). These grains are small crystals so the whole volume of foil 

is actually a powder which consists of very large number of small crystallites. Consequently 

there will be bragg scattering of incoming x-ray beam on these crystallites. To characterize 

this phenomenon quantitatively we applied x-ray powder diffraction theory. If we are dealing 

with imperfect crystallites (as in our case) than diffraction from these crystallites is well 

described with kinematic theory of diffraction. This is due to real structure of crystallites. 

Such a crystallite represents a mosaic of crystal blocks about 10-7 m in size [2], which are 

more or less misoriented with respect to each other by angles of the order of fraction of 

minute [2]. Such a crystallite is called ideally mosaic. The coherent interactions of scattered 

waves in such a crystallite occurs within a single block. As for scattering by a mosaic 

crystallite as a whole, it is defined by the sum of intensities of scattering by each block. 

To calculate intensity scattered by a foil we should use following approximations. 

Integrated intensity of reflection hkl (Ihkl), scattered from one block is given by 

equation (1) [3]: 

I
hkl

I
0

k
1

© k
2

© p
hkl

© Ls© Ps© As© T
hkl

© E
hkl

© F
hkl* +2© N

2
©<?

    (1) 

where I0 is incoming intensity; k1 = (re)
2, re is classical electron radius (re = 0.28178·10-12 m); 

k2 = (そ3/Vcell), Vcell is volume of elementary cell; phkl is multiplicity factor which equals to 

number of symmetrically equivalent (hkl) planes; LしPし is Lorentz-polarization factor which 

accounts for polarization of incoming beam and geometry of experiment; Aし is absorption of 

intensity inside block; Thkl is factor of preferred orientation of blocks in illuminated volume 
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concerning (hkl) planes; Ehkl is extinction factor; N = Vblock/Vcell is number of elementary cells 

in one block; Fhkl is structure factor: 

F
hkl

j

t
j

f
j

© exp 2ri h x
j

© k y
j

©- l z
j

©-* +©ÇÉ ×Ú©ÇÉ ×ÚÂ<?

    (2) 

where sum is taken over all atoms in elementary cell. In formula (2) tj is Debye-Waller 

temperature factor, fj is atomic scattering factor (in electrons per atom). Debye-Waller 

temperature factor in case of isotropic atomic movements is given by the formula 3: 

t
j

exp B
j

/
sin s* +
n

Ã
Ä
Å

Ô
Õ
Ö

2

©
Ç
È
É

×
Ù
Ú

<?
    (3) 

where Bj = 8ヾ2·(Ux j)
2 and Ux j is root mean square deviation of jth atom from its equilibrium 

position (x,y,z) in x-direction (in Å). 

When (hkl) planes within blocks from different crystallites diffract, they produce 

diffraction circle appropriate to (hkl) series of planes. So we will have whole number of 

allowed (hkl) diffraction circles with certain width. Let’s assume that each of these circles has 

the same width 〉. The variety (w) that a certain grain will hit infinitively thin circle, which 

has opening angle 2し is given by equation (4): 

dw(し) = 0.5·cos(し)dし    (4). 

Number of grains (Ngrains) which will hit the whole diffraction circle with width 〉 will be: 

N
grains

V

V
grain s bragg 0.5F/

s bragg 0.5F-

s0.5 cos s* +©
Ñ
Ò
Ó

d©<?

    (5a) 

which equals to 

N
grains

V

V
grain

0.5© cos s bragg* +© sin F* +©<?

    (5b) 

In equation (5)(a,b) V is illuminated area and Vgrain is volume of single grain. As each grain 

has a mosaic structure which is a normal sharp distribution over しbragg, in range (しbragg – 0.5·〉; 

しbragg + 0.5·〉) will be situated about 95 % of blocks in each grain. So number of blocks Nblocks 

which will diffract and produce diffraction circle is: 

N
blocks

0.95
V

grain

V
block

©
V

V
grain

© 0.5© cos s bragg* +© sin F* +©<?

    (6). 

 

where Vblock is volume of single block. Neglecting preferred orientation and extinction factors 

integrated intensity of (hkl) reflection is given by equation (7): 
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I
hkl

I
0

k
1

© k
2

© p
hkl

© Ls© Ps© As© T
hkl

© E
hkl

© F
hkl* +2©

V
blocks

V
cell

ÃÄ
ÄÅ

ÔÕ
ÕÖ

2

© 0.95©
V

grain

V
block

©
V

V
grain

© 0.5© cos s bragg* +© sin F* +©<?

    

(7) 

 

Total diffracted integrated intensity is sum over all possible Ihkl: 

I

I
0 hkl

I
hkl

I
0

Â<?
    (8) 

In this approximation we calculated dependence of I/I0 on incoming x-ray beam 

energy for aluminum and copper foils. Illuminated volume V for each material (Table 6) was 

taken as area of beam multiplied by thickness of all foils made of this material V = S·d, where 

S is cross-sectional area of incoming beam (which was taken 16 mm2) and d is thickness of all 

attenuator foils made of certain material: 

 

Table 6. Illuminated volume 

Material Al Cu 

Volume, 

m3

2.016·10-8 3.584·10-8

 

We took Vblock = 10-21 m3, Vgrain = 10-18 m3, 〉 = 1.74533·10-5 radian. Values for Vcell 

for aluminum and copper are given in Table 7: 

 

Table 7. Elementary cell volume 

Material Al Cu 

Volume, 

m3

66.381·10-30 47.242·10-30

 

Atomic scattering factor curves for Al and Cu were obtained after approximation of 

data [4] by polynomial of six power: 

f x( )
Al

13 13.39127/( ) x©- 91.5025/( ) x
2

©- 466.83034( ) x
3

©- 915.01777/( ) x
4

©- 807.68356( ) x
5

©- 265.39086/( ) x
6

©-<?

 

f x( )
Cu

29 2.04843/( ) x©- 211.43178/( ) x
2

©- 561.13841( ) x
3

©- 702.67577/( ) x
4

©- 453.47658( ) x
5

©- 120.3481/( ) x
6

©-<?

 

where x is sin(し)/そ. 
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Lambda value for different photon energies is given by equation lambda (m) = 

12.398/Energy(KeV)·10-10. 

Considering Debye-Waller temperature factor we assumed all atoms in metal crystal 

deviated isotropically form their positions. Values of root mean square deviation Ux of Al and 

Cu atoms in metal were taken from [4] for 290 °K (Table 8): 

 

Table 8. Root mean square 

deviation of atoms in metal 

(290 °K) 

Atom Al Cu 

Ux, Å 0.099 0.085 

 

To calculate values of I/I0 for energies in the range 5.4 – 30 KeV program code was 

created using Mathcad 13.1 software was used. Calculation results for aluminum and copper 

are presented on Figure 1 and 2 correspondingly: 

 

Figure 1. I/I0 for all aluminum foils (thickness = 1.26 mm) 
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As shown on Figure 1 and Figure 2 I/I0 has practically constant value in energy range 

betwee

Figure 2. I/I0 for all copper foils (thickness = 2.24 mm) 

 

n 5.4 KeV and 20 KeV and stars to increase rapidly with energies more than 20 KeV. 

One can explain such behavior because of influence of two factors on I/I0. On the one hand 

with increase of energy number of possible reflections rapidly increases (proportional to 1/そ3) 

and on the other hand influence of this reflections on whole percentage of scattered intensity 

is rapidly decreasing due to scattering factor and Debye-Waller temperature factor. It can be 

so that if energy is lower than 20 KeV these three factors cancel each other and percentage of 

scattered intensity stays practically the same. But when energy is more than 20 KeV number 

of all possible reflections has more strong influence in comparison to scattering factor and 

Debye-Waller temperature factor. 
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6.2. Mathcad program code 

In this section we will am package Mathcad 13.1 to 

calcula

 present code made in progr

te percentage of intensity, scattered from aluminum or copper foils. Presented code is 

written for aluminum which has cubic face centered elementary cell (space group Fm3m) with 

cell parameter 4.049 Å. For any other material with Fm3m symmetry (for example copper) 

the code is similar. 
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E  

n
12.398

E
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10/
©<?  

a 4.049 10
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©<?  
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©- 466.83034( ) x
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4
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5

©- 265.39086/( ) x
6

©-<?  
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6.3. Conclusion 

Based on made calculations one can say that when using all aluminum and copper 

foils incident beam can loose maximum 40% (in case of energy of incident beam 30 KeV) of 

incoming intensity due to scattering on foil grains. However there still should be done 

experiments and qualitative measurements to prove or to dispruve these calculations. 
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Let ~K be the difference between the wave vectors~k′ and~k. The difference in path

for a wave scattered at ~di and ~d j will then be ~K · (~di −
~d j) and the phase will differ

by exp(i~K · (~di −
~d j)). The superposition of the individual rays from each center of

scattering will give an amplitude containing the factor

S~K =
n

∑
j=1

exp(i~K · ~d j) (4)

and the intensity will be proportional to S2
K accordingly.

To calculate the geometrical structure factor of a fcc lattice be consider it a simple

cubic lattice with a four-point-basis consisting of:

~d1 = 0, ~d2 =
a

2
(êx + êy), ~d3 =

a

2
(êy + êz), ~d4 =

a

2
(êz + êx)

The vector of the cubic reciprocal lattice has the form

~K =
2π

a
(hêx + kêy + lêz).

Therefore the geometric structure factor becomes:

S~K = exp(i0)+ exp(iπ(h+ k))+ exp(iπ(k + l))+ exp(iπ(l +h)). (5)

S~K will then will be 4 if h,k and l will all be either even or odd. In every other case it

will equal 0.

Polarization factor – The probability to detect a scattered photon from the sample

at a point on the unit sphere is proportional to the square of electric field amplitude E2

in that point.

Lets consider a dipole in the position O and a Point on the unit sphere P. Let

further be the incident beam identical to the z-axis fully polarized in the direction of

the x-axis. Then the amplitude of the E-field depends only on the angle φ which is the

angle between the zy-plane and the vector OS (cf. figure ??). The apparent amplitude

in any direction depending on φ is:

Ê = Ê0 cosφ

In the following we use a Monte Carlo method to sum the amplitudes squared in all the

points S that full fill the condition that the angle between OS and the z-axis is θ . This

condition corresponds to all S on the unit sphere with:

Sz = cosθ

S is further linked to φ via:

Sx = sinφ

Using three random numbers (Ψ,Θ,Φ) a point S on the sphere is picked, its Cartesian

coordinates are given through:

Sx = cos(Ψ)cos(Φ)− sin(Ψ)cos(Θ)sin(Φ)

Sy = sin(Ψ)cos(Φ)+ cos(Ψ)cos(Θ)sin(Φ)

Sz = sin(Θ)sin(Φ)
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Figure 2: Relative integrated intensity in dependence of the scattering angle obtained

using 107 random points S and n = 180.

The range of θ is divided into n bins with width ∆ = (π/n). Linked to each point S

there is an angle θ which is assigned to bin i if θ is in [(i− 1)∆, i∆). After creating

a large number of S the Ê2 for every S in the each bin is summed up and divided by

the number of S in the bin. This value then represents the averaged integrated intensity

for the averaged θ = (i−1/2)∆ in bin i. The result obtained is plotted in figure 2 and

corresponds to the analytical solution of [Warren]:

P =
1+ cos2 θ

2
(6)

Probability to scatter a photon – The probability W that a photon is scattered at

a grain with a random and isotropic orientation the following formula is used:

W = ∑
h

∑
k

∑
l

p(θ(hkl))×S(hkl)×P(θ(hkl))× exp(−σphotol)×E(hkl) (7)

The first three factors are explained in the corresponding sections above. exp(σphotol) is

the factor that plugs the photo-ionic absorption into the balance. The factor E accounts

for the fact that the cross-section of the symmetric Bragg-diffraction differs with inter

planar distance of the deflecting planes.

Extinction – The extinction term holds the Bragg-cross-section in the form of:

E(hkl) = exp(−l σelasticρ) = exp(−2l /τ(hkl))

where τ is the extinction length of the plane hkl and l the length of the crystallites in

êz.

The extinction length is the distance in a perfect crystal, after which the amplitude

of the photon is reduced by 1/e and the intensity by 1/e2 accordingly. This value can be
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Figure 5: The attenuation factor γ of a 1mm Al foil due to elastic scattering in the

”semi” dynamic model. The attenuation increases in with the energy of the photon

beam since more planes are accessible to bragg diffraction.

attached in the appendix. The γ calculated for a Al foil with thickness 1mm represents

solely the attenuation due to the bragg scattering. It turns out that in this calculation

the attenuation due to scattering at high energies (30KeV ) is in the same order like the

absorption due to photo ionization (γ ≈ 1/10).
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Figure 6: Scattering factor of Al

6.2 Approach via kinematic theory

Thompson scattering – The model for scattering on free electrons can be used in a

bound system if the exiting radiations energy is higher than the energy of the absorption

edge. This is true for the selected materials and energy ranges in the attenuator-device.

The scattering of photon can then be described by a number, which is commonly called

the scattering factor f . It expresses the scattering of an atom by scattering on the elec-

tron density associated with each atom. In ”International Tables of Crystallography”

values for f are calculated using a spherically averaged electron-density distributions.

The values therefore only depend on the scattering angle θ as well as on the wavelength

λ and is not a complex value.

In the following the derivation of the scattering factor will be retraced and applied

to calculate the intensity of elastic scattered photons from a small crystal.

Scattering by a free electron – For a highly polarized beam the amplitude squared

of the electric field on the unit sphere (R = 1) scattered by a single electron is given by:

I = I0
e4

m2c4
P (10)

Where the quantity e4

m2c4 = 7.94 ·10−30m2 and P is the polarization factor.

Scattering by an atom – To obtain the amplitude of elastic scattering f from an

atom. The scattering of all the electrons n in the shell or their density ρ(r) distribution

respectively have to be summed:

f = ∑
n

∫ ∞

0
4πr2ρ(r)

sin(kr)

kr
dr

Herein the abbreviation

k =
4π sin(θ)

λ
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N3a3. Considering these conditions equation (11) can be written:

εP =
E0e2

mc2R
exp(2πi(νt −R/λ )) F

N1−1

∑
m1=0

exp((2πi/λ )(~s−~s0) ·m1~a1))

×

N2−1

∑
m2=0

exp((2πi/λ )(~s−~s0) ·m2~a2))
N3−1

∑
m3=0

exp((2πi/λ )(~s−~s0) ·m3~a1))

Herein F is the structure factor of the material. And represent the influence of the

atoms in the unit cell on the scattering process.

F = ∑
n

fn exp((2πi/λ )(~s−~s0) ·~rn)

Taking the product εPε∗P multiplied with the polarization factor will give the intensity

scattered on the unit sphere (R = 1):

IP = I0P
e4

m2c4
F2 sin2(π/λ )(~s−~s0) ·N1~a1

sin2(π/λ )(~s−~s0) · ~a1

×
sin2(π/λ )(~s−~s0) ·N2~a2

sin2(π/λ )(~s−~s0) · ~a2

sin2(π/λ )(~s−~s0) ·N3~a3

sin2(π/λ )(~s−~s0) · ~a3

Power scattered from a powder sample – The scattered intensity of one grain

integrated over the unit sphere (β ,γ), over all possible orientations of the grain and

over all reflecting planes hkl gives the power scattered from the single grain. Summing

all grains M in the powder sample yields the scattered power by the sample.

IA = ∑
hkl

∫ ∫ ∫

IP

M

2
cos(θ(hkl))dβdγ

The triple integration can be expressed as a volume integration in reciprocal space. It

can be show that:

IA = I0

(

e4

m2c4

)

V λ 3F2

4v2
a

P (11)

Herein V = MNva represents the effective volume of the crystalline material in the

powder sample with the volume of the unit cell being va and the number of unit cells

in a grain being N.

Calculations – With the help of formula (11), found ie. by B.E. Warren in [Warren],

the attenuation caused by elastic scattering from a thin metal foil can be calculated. γ
is given in dependence of the thickness of the foil l, the wavelength of the radiation λ
by:

γkin = ∑
hkl

(

e4

m2c4

)

lλ 3F2

4v2
a

1+ cos2 θ

2
(12)

Which is the sum over all possible (some of which are equivalent) combinations of hkl.

The calculations (cf. figure 8) have also been done using Java code (”kins.java” and

”bragg.java”) for a aluminium foil of thickness 1mm in the energy range from 5KeV to

30KeV

8



Figure 8: The attenuation factor γ of a 1mm Al foil due to elastic scattering in the

kinematic model. The attenuation decreases with the photon energy since the decrease

in volume λ 3 dominates over the increase of diffracting planes.
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6.3 Comparison of results

The dependence on energy is very different depending on what theory is utilized to

obtain attenuation due to elastic scattering.

The approach using the extinction length of a perfect crystal gives a rise of γ with

increasing energy possibly to a satuation point or to infinity. The attenuation in the

high energy regime also seems unlikely since the calculation predicts that a 1mm thin

aluminium foil would stop 50% of the photons passing with at an energy of 30KeV .

The kinematic theory gives a result that approaches zero for high energies but is

only applicable for thin foils. This limit of the theoretical approximation to small

samples explains why γkin can be proportional to the thickness of the foil.

l → ∞ ⇒ γkin → ∞ (13)

The thickness has to be limited otherwise the attenuationr would amplify the beam.

On the other hand are the grains of the foils in this size limit which makes this theory

probably better suited than the perfect crystal one.

To refine the results of the kinematic approach one could further take temperature

effects into consideration. Also subdividing the illuminated material of the foil into

smaller parts (cf. principle of figure 4) and calculating the attenuations seperatly would

solve the problem with γ ∝ l.
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B Code

B.1 bragg.java

1 import java.util.*;

2 import java.math.*;

3 import java.io.*;

4

5 public class bragg{

6 static double a = 4.049e-10;

7 static double h = 6.62606896e-34;

8 static double e = 1.602176487e-19;

9 static double c = 2.99792458e8;

10

11 public static double getLambda(double energy){

12 return(h*c/(energy*e));

13 }

14

15 public static double distance(int h, int k, int l){

16 return(Math.sqrt(a*a/(h*h+k*k+l*l)));

17 }

18

19 public static int geometricStructureFactor(int h, int k, int l){

20 return((int)(1+ Math.pow(-1,h+k) + Math.pow(-1,k+l) + Math.pow(-1,l+h)));

21 }

22

23 public static double angle(int h, int k, int l, double lambda){

24 return(Math.asin(lambda/(2*distance(h, k ,l))));

25 }

26

27 public static double polarisation(double theta){

28 return((1+Math.pow(Math.cos(theta),2))/2);

29 }

30

31 public static Vector planes(double energy){

32 int h,k,l;

33 double lambda = getLambda(energy);

34 Vector planesAdv = new Vector();

35 Vector planes = new Vector();

36 h=0;

37 while((2*distance(h,k=0,l=0))>lambda){

38 k=0;

39 while((2*distance(h,k,l=0))>lambda){

40 l=0;

41 while((2*distance(h,k,l))>lambda) planes.add(new int[]

42 {Math.abs(h),Math.abs(k),Math.abs(l++)});

43 l=-1;

44 while((2*distance(h,k,l))>lambda) planes.add(new int[]

45 {Math.abs(h),Math.abs(k),Math.abs(l--)});

46 k++;

47 }

48 k=-1;

49 while((2*distance(h,k,l=0))>lambda){

50 l=0;

51 while((2*distance(h,k,l))>lambda) planes.add(new int[]

52 {Math.abs(h),Math.abs(k),Math.abs(l++)});

53 l=-1;
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54 while((2*distance(h,k,l))>lambda) planes.add(new int[]

55 {Math.abs(h),Math.abs(k),Math.abs(l--)});

56 k--;

57 }

58 h++;

59 }

60 h=-1;

61 while((2*distance(h,k=0,l=0))>lambda){

62 k=0;

63 while((2*distance(h,k,l=0))>lambda){

64 l=0;

65 while((2*distance(h,k,l))>lambda) planes.add(new int[]

66 {Math.abs(h),Math.abs(k),Math.abs(l++)});

67 l=-1;

68 while((2*distance(h,k,l))>lambda) planes.add(new int[]

69 {Math.abs(h),Math.abs(k),Math.abs(l--)});

70 k++;

71 }

72 k=-1;

73 while((2*distance(h,k,l=0))>lambda){

74 l=0;

75 while((2*distance(h,k,l))>lambda) planes.add(new int[]

76 {Math.abs(h),Math.abs(k),Math.abs(l++)});

77 l=-1;

78 while((2*distance(h,k,l))>lambda) planes.add(new int[]

79 {Math.abs(h),Math.abs(k),Math.abs(l--)});

80 k--;

81 }

82 h--;

83 }

84 planes.removeElementAt(0);

85 for (int i = 0; i<planes.size(); i++){

86 int[] plane = (int[]) planes.get(i);

87 if(((int)geometricStructureFactor(plane[0],plane[1],plane[2]))==0) {

88 planes.removeElementAt(i);

89 i--;

90 }

91 }

92 return(planes);

93 }

94 }
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B.2 kins.java

1 import java.util.*;

2 import java.math.*;

3 import java.io.*;

4

5 public class kins{

6 static double cer = 2.8178e-15; //m

7 static double v = Math.pow(bragg.a,3);

8

9 public static double F(int h, int k, int l){

10 return(scatteringFactor(h, k, l)*bragg.geometricStructureFactor(h, k, l));

11 }

12

13 public static double scatteringFactor(int h, int k, int l){

14 return(13.1319*Math.exp(-1.68985/(2e10*bragg.distance(h, k, l))));

15 }

16

17 public static double scatteredIntensity(double energy , double thickness){

18 double lambda = bragg.getLambda(energy);

19 Vector planes = bragg.planes(energy);

20 int size = planes.size();

21 double R = 0;

22 double lambda3 = Math.pow(lambda,3);

23 double cer2 = Math.pow(cer,2);

24 double v2 = Math.pow(v,-2);

25 for(int i=0; i<size; i++){

26 int[] plane = (int[]) planes.get(i);

27 double F2 = Math.pow(F(plane[0],plane[1],plane[2]),2);

28 double P = bragg.polarisation(bragg.angle(plane[0],plane[1],plane[2], lambda));

29 R = R + cer2 * thickness * lambda3 * F2 * 0.25 * v2 * P;

30 }

31 return(R);

32 }

33

34 public static void main(String[] A) throws Exception{

35 FileWriter out = new FileWriter("kinout.dat");

36 double energy;

37 for(int i=0; i<101; i++){

38 energy = ((double) i)*25000/100 + 25000;

39 out.write(((i*5000/100)+5000) + "\t" + scatteredIntensity(energy,1e-3) + "\n");

40 }

41 out.close();

42 }

43 }
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B.3 dyns.java

1 import java.util.*;

2 import java.math.*;

3 import java.io.*;

4

5 public class dyns{

6 static double delta = 1.75e-5;

7

8 public static double probOrientation(double theta){

9 return((delta/2)*Math.cos(theta));

10 }

11

12 public static double dynamicExtinction(int h, int k, int l, double length){

13 double sl = 1/(2*bragg.distance(h,k,l)*1e10);

14 double a = 21.49;

15 double b = 2.45;

16 double c = 0.61;

17 double L = a*Math.pow(sl,b)+c;

18 return(1-(Math.exp(- length * 1e6 / (L/2)) ));

19 }

20

21 public static double photoT(double energy, double length) throws Exception{

22 return(Math.exp(-(length*1e6/attenuation.getLambda(energy, "Al"))));

23 }

24

25 public static double scatteredIntensity(double energy, double thickness, double length){

26 double lambda = bragg.getLambda(energy);

27 Vector planes = bragg.planes(energy);

28 int size = planes.size();

29 double R = 0;

30 for(int i=0; i<size; i++){

31 int[] plane = (int[]) planes.get(i);

32 double theta = bragg.angle(plane[0],plane[1],plane[2],lambda);

33 R = R + probOrientation(theta) * bragg.polarisation(theta) *

34 dynamicExtinction(plane[0],plane[1],plane[2], length);

35 }

36 double T = 1-R;

37 return(1-Math.pow(T,(thickness/length)));

38 }

39

40 public static void main(String[] A) throws Exception{

41 FileWriter out = new FileWriter("dynout.dat");

42 double energy;

43 for(int i=0; i<101; i++){

44 energy = ((double) i)*25000/100 + 5000;

45 out.write(((i*25000/100)+5000) + "\t" + scatteredIntensity(energy,1e-3,1e-6) + "\n");

46 }

47 out.close();

48 }

49 }
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