
Development of a visualisation processor in the core software
framework for International Linear Collider (ILC) detector

Szymon Daraszewicz1, ∗ and project supervisor: Dr. Frank Gaede2

1
The University of Edinburgh

†

2
IT Group, Deutsches Elektronen Synchrotron (DESY), Hamburg, Germany

September 17, 2008

The project primarily aims to develop a Marlin1 processor (DTSViewer) for viewing Monte Carlo
generated high energy physics event files, which have no hit information stored; the so-called
DST files. The introduction outlines the International Linear Collider (ILC) software chain
setting the background for the project. The second section briefly remarks on the usefulness of
the DST file format and identifies the need for DTSViewer development. Later, a flowchart for
DTSViewer processor is presented and modifications to the core framework tools such as CED
and MarlinCED are succinctly summarised. Methods for drawing of particle tracks, clusters,
jest hypotheses and particle momenta representations are described in great detail. The report
concludes with a few suggestions for further improvements as well as reviews the potential virtues
of the new viewer.

1. INTRODUCTION - THE NAME OF THE GAME

The software framework for International Linear Col-
lider (ILC) is at the stage of research and development.
A typical chain of processing in any high energy physics
framework consists of the following steps: generation,
simulation, digitisation, reconstruction and analysis; this
is schematically shown in Fig. 1. In this report we will
only be dealing with visualisation at the reconstruction
stage. Throughout, we will be using Marlin, which is
an application used for further processing of the data at
digitisation, reconstruction and analysis level(1). In the
following, I would like to describe a new processor, which
uses the data obtained from Marlin to display the recon-
structed particles from the so-called DST files.

FIG. 1: Software framework tools for high energy
physics data - an overview.

∗Electronic address: S.Daraszewicz@physics.org
†DESY Summer School 2008
1Modular Analysis Reconstruction for Linear Collider - modular
C++ application framework for the analysis of Linear Collider I/O
(LCIO) data

2. MOTIVATION AND AIMS

DST is a file format defined at Zeuthen (DESY) for
storage of particle collision (i.e. event) information. It
stores the following particle collections (i.e. data types):
Tracks, Clusters, ReconstructedParticles, DurhamJets,
MCParticleSkim (reconstructed particles & parents,
decays in flight & conversions) and finally LCFIVertex
flavour tag in ParticleID objects (i.e. hypothetical
particle ID).

Previous Marlin processors such as CEDViewer dealt
mainly with full-reconstruction files, abbreviated usually
as REC. Average size of such files per event is 1800kB.
However, if the hit information is removed the files be-
come of a typical size of 23kB/evt. This is the key rea-
son behind the removal of this collection; smaller files
mean quicker processing time. In particular, Marlin jobs
performed on DST files are two orders of magnitude in
time quicker than jobs done on REC files, see Tab. I.
Therefore, the next natural step would be the develop-

type kB/evt νI/O [Hz]

SIM 950 10

REC 1800 3

DST 23 250

TABLE I: Average file size and Marlin job processing
time for different file types.

ment of a processor, which would deal with DST files in
an efficient and a user friendly way. The key requirements
of such a processor would be to display ReconstructedPar-
ticle tracks (lines and helices), particle clusters, Durham
jet hypotheses and optionally to visualise the momenta
of the particles. The viewer developed in the course of

mailto:S.Daraszewicz@physics.org


DESY Summer School 2008 2

this project - DSTViewer - meets all of these require-
ments; the algorithms, which were implemented in it are
outlined in section 3.

FIG. 2: Rear-view of a fully reconstructed file REC.
Surplus of information is apparent.

3. DSTVIEWER - A PROCESSOR FOR DST FILES

Briefly remarking on the overall structure of the code;
flowchart view of the DSTViewer processor is presented
in Fig. 3.

FIG. 3: Key functions flowchart for DSTViewer.

The outline of core code of the viewer is as follows.

virtual void init()

virtual void process RunHeader (LCRunHeader* hdr)
virtual void processEvent (LCEvent *evt)
\\ code of the DSTViewer goes here...
virtual void check (LCEvent *evt)
virtual void end ()

This is in consistency with other processors developed for
Marlin.

3.1. Particle tracks drawing

The following methods were implemented for parti-
cle track drawing: drawHelix() and drawLine(), which
take care of the charged and uncharged particle draw-
ing respectively1. Both methods take on the following
variables from GEAR:2 float bField (magnetic field in-
side the detector in T), the geometry of the detector in
the form of float rmin, rmax, zmax, which define the
tracking chamber geometry (rmin may take into account
the vertex tracker if set to nonzero value) and the begin-
ning and the end of the TCP3. This information allows
the particle tracks to be drawn in such a way that they
stop at the face of the calorimeter nicely.
drawHelix() method currently uses a cheap adaptive-

step algorithm, so to draw least possible number of line
segments for a reasonably approximated helix. An im-
provement to use a versine(θ) function might further
reduce the number of line segments drawn per helix at
a given ‘coarseness’. Limiting the number of line seg-
ments drawn per helix is of utmost importance, as a large
number of line segments displayed simultaneously may
result in ‘WARNING:CED: can’t send event (...)’ er-
ror. Methods int color = returnTrackColor(type)
and int size = returnTrackSize(type) assign color
and size of tracks from the hypothetical particle ID ob-
tained by ReconstructedParticle part->getType().

3.2. Clusters - energy representation

Clusters carry information about the energy and the
average position of the constituent calorimeter hits of
particles. Hence a correct and intuitive graphical repre-
sentation of these properties is of cardinal importance.

In DSTViewer the clusters are represented as cylinders
with their direction indicated by a needle inside these;
cluster centre is visualised by a star. In the actual code,
this is taken care by the ced geocylinder r(), ced hit
and ced line functions implemented in CED.

1 drawHelix() still can take uncharged particles as arguments and
perform as drawLine() due to compatibility problems, which will
be resolved in the future.

2 Geometry API for Reconstruction
3 Time Projection Chamber



DESY Summer School 2008 3

FIG. 4: Particle tracks (both helices and lines) drawn in
DSTViewer. Front view of the detector.

(a) Cylinder (b) 3 Ellipses

FIG. 5: Different cluster representations compared.

Alternatively one can choose (this is coded on dif-
ferent CED layers4) the clusters to be represented by
3 orthogonal ellipses. This approach has an advantage
that the height and base of the ellipses may represent
some additional variables of our choice; see Fig. 5.

It was decided that the cluster size should represent
the Etot of the cluster and scale as ∼ log(Etot). It
is the most suitable choice as there is a high spread

4 CED layers can be toggled on or off at run-time

in the energies of the clusters and hence a linear
representation would be ineffective. The following
function DSTViewer::returnClusterSize() computes
the size of the cluster based on its energy, float
eneCluster. Minimum and maximum energy cut-offs
(float cutoff min, float cutoff max) are the other
input variables in this function and set the energy scale.
Furthermore, energy is coded not only in the size of the
clusters, but also in the colour of these. A DSTViewer
method returnRGBClusterColor() takes the cluster
energy and the cut-offs as arguments as well as int
color steps, which defines the number of colours we
would like to use (this is usually set to 256 or 128)
and char scale, which allows to switch between a
linear and a logarithmic energy color-map. Finally,
int colorMap defines the color-mapping one would
like to use. Possibilities include: Jet, Cold and Gray
color-maps; see Fig. 7.

Two-dimensional energy colour-map legend
showLegendSpectrum() with a logarithmic or a linear
scale has also been implemented in DSTViewer, see Fig. 7

Interestingly, usage of cluster visualisation on REC
files may very nicely indicate areas where the clustering
algorithm has failed, see Fig. 6.

FIG. 6: With the new representation of clusters rare
errors in the clustering algorithm are now clearly

visible. Note the biggest cluster in the middle; it clearly
consists of 3 distinct showers.

3.3. Durham jets hypotheses

Different Durham jets hypotheses were visualised
in the code using semi-transparent cones with their
apexes at the origin. Transparency was achieved us-
ing openGL libraries, namely the following functions:
glEnable(GL BLEND) and glBlendFunc(GL SRC ALPHA,



DESY Summer School 2008 4

(a) Hot (b) Gray (c) Cold (d) Jet

FIG. 7: Legends for different colour-maps. Notice that
the Jet colour-map uses a different (log) scale.

GL ONE MINUS SRC ALPHA). Different hypotheses are
put on different CED layers and can be - due to the
transparency - switched on and viewed simultaneously.

Furthermore, jets in their visualisation encode the
following information; the length of the jet cones scales
linearly with energy, Lcone ∼ Ejet

tot . The base of the jet
cone represents the total transverse momentum relative
to the principal jet axis, Bcone ∼ a+

∑
particles

~pt, where
a is an arbitrary constant to off-set the size of the base.

Note that the choice of colours for jets was arbitrary,
but can be used for representation of another variable in
the future (for instance the goodness of the jet algorithm
fit).

FIG. 8: 6-jet and 4-jet hypotheses visualisation, based
on Durham Jet reconstruction algorithm. Note useful

information encoded in the colours of the clusters.

3.4. Momenta visualisation

Another useful tool, particularly for jet analysis, which
was implemented in the code was particle momenta vi-
sualisation. The 3-momenta of the particles are repre-
sented as scaled straight lines pointing from the ip5. In
addition, these are colour coded, according to the particle
3-momentum magnitude.

FIG. 9: Particle momenta visualisation; note a large
number of particles with insignificantly small momenta.
Momentum magnitude of a particle is mapped with a

Cold colour-map.

FIG. 10: DSTViewer has the potential to become a
very powerful tool for the analysis of DST files. The

particle momenta drawing in conjecture with jets
visualisation provide an excellent and intuitive tool for
different jet hypothesis checking. The image presents,

clearly, a 4-jet event.

5 interaction point



DESY Summer School 2008 5

4. DOCUMENTATION

Both paper and electronic documentation of the soft-
ware is of great importance for an end-user, as well as
other developers, who would like to re-use the code.
Fairly complete documentation was automatically gen-
erated from the header files using doxygen. In case of
any doubts regarding the code functionality please con-
tact the author.

5. SUMMARY AND FUTURE DEVELOPMENTS

In summary DSTViewer might become a powerful
tool for visualisation and analysis of the DST files for
the future ILC related data. The software framework
is at a stage of continuous development and will be
subsequently improved based on high energy physics
community feedback.

There are many areas of potential development in or-
der to improve the code functionality, reusability and
package user-friendliness. As said, the current version of
DSTViewer, which this report refers to, is not the final
one. Potential changes may be expected, for example, in
the area of particle tracks drawing. Once the medium of
the detector and other variables are known drawHelix()
method could be improved by a Bethe-Bloch correction.
Furthermore, on the user-friendliness side, particle pick-
ing (once a particle is selected from the DSTViewer its
properties would be displayed in the shell) remains a fea-
sible option. Finally, a text-based GUI would greatly
enhance the end-user experience with the software.

Acknowledgments

First of all, I should like to thank DESY Summer
School 2008 organisers, mainly Prof. Dr. J. Meyer, who
made it possible for me to carry-out this research at
DESY. Undoubtedly, this opportunity maintained my
enthusiasm to explore particle physics and perhaps it
may open me the door for further academic opportuni-
ties.

I am also grateful to my supervisor Dr. F. Gaede for
his patience, while making crucial comments regarding
the code. I truly appreciate the time and effort he put
into the project and inspiration he gave me for further
study. I shall also thank Dr S. Aplin and J. Engels for
the valuable discussion time and technical support.

Finally, I am enormously grateful to my friends here
at DESY, especially ‘the container IT group’ for putting
up with me for all this time.

References

[1] F. Gaede and J. Engels, A software framework for ILC
detector R&D, DESY, 2007

[3] F. Gaede ILD software, towards the LOI and beyond, ILD
Meeting Cambridge, September 11-13, 2008

[3] F. Gaede Computing in High Energy Physics, an introduc-
tory overview, Summer Student Lecture, August 20, 2008


	Introduction - the name of the game
	Motivation and aims
	DSTViewer - a processor for DST files
	Particle tracks drawing
	Clusters - energy representation
	Durham jets hypotheses
	Momenta visualisation

	Documentation
	Summary and future developments
	Acknowledgments
	References

