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The first part of the study performed at DESY deals mainly with the topic of Instantons,
and has been divided into steps, which are next described, following a chronological order:

1 Getting a feeling of what instantons are

1.1 Classical point of view

Starting from the form of the Euclidean action of a gauge theory 1,

SE =

∫

d4x
1

2g2
F µνF µν (1)

We look for non-trivial field-configurations that minimize this action. The lower boundary
of the action is expressed with the help of the dual of the strength-energy tensor, i.e. F̃ µν

a , and it
is straightforward to show that the minimum condition is fulfilled for those field configurations
that solve the so called “self -(anti)dual” equations

F µν = ±F̃ µν (2)

The requirement for the action to be finite, serves as our argument to express the boundary
conditions of this equation, which in terms of the gauge field reads: Aµ(x) → U−1(x)∂µU(x)
for x → ∞ 2, where U(x) is a gauge transformation.

From this asymptotic behaviour results and expression for the minimum action that is
directly linked with the topological Pontryagin index (winding number) q, through the relation:

Smin
E =

8π2

g2
|q| (3)

The winding number is related with the number of times the d-dimensional space-time
boundary Sd−1 is wrapped around the group space of SU(N), being the latter the group to
which the gauge transformation U belongs. It is easy to check that in the case we are dealing
with, this winding number results equal to unity.

The search for a field solution that holds in the entire space-time begins with the proposal
Aµ(x) = f(x)U−1(x)∂µU(x) [3], where f(x) is some function that behaves correctly at the
boundary. Working with the SU(2) group for simplicity, it is not hard to express the transfor-
mations U as linear combinations of the basis of this group, i.e. the 2x2 matrices τµ = (−iσa, 1),
where σa are the Pauli matrices. To obtain the f(x) functions, we use the proposed form for
Aµ to express the F µν . With this, and imposing self-duality results in the final form of f(x).
The field solution can be then expressed [3]:

Aµ(x) =
(xατα)†

x2 + ρ2
τµ (4)

The figure 1 shows a Mathematica-plot of the solution, for different values of ρ.
Being the term x2 a space-time scalar, one sees that this solution is localised in space as

well as in time. That’s why this solution was called “instantons”, accounting for the fact that

1The notation we followed here is the same as in [1]
2Having a finite action means that the strength-energy tensor Fµν must vanish at infinity. Due to the

definition of Fµν for a non-abelian theory, the gauge fields Aµ that obey this condition are the vanishing field,
plus the set of all the others obtained from that one by a gauge transformation, getting what is known as a
“pure gauge”.
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Figure 1: Plot of Aµ(x) vs. x for different values of ρ.

they live just an instant of time. The ρ parameter is called the size of the instanton, since it
determines the “thickness” of this solution.

1.2 Quantum implications

1.2.1 Setting the stage

The instantons come into play in the quantum systems when studying the quantum tunnel-
ing process. Now one sees the reason of why the computation of the instanton solution was
performed in the Euclidean world: It is easier to study a tunneling process occuring in, let’s
say, a double-well potential, if we switch from Minkowski metric to Euclidean metric, through
a Wick rotation to imaginary times t → it. The result of this change is that then we have an
analogous system, but with the potential having opposite sign. So that the study of the tran-
sition via tunneling among two minima now becomes a simpler euclidean transition between
two maxima without tunneling, and only now, the transition-amplitude path integral can be
expanded around classical solutions of the equation of motion.

The study of the effect of instantons on transition amplitudes begins by analysing a system
equipped with a periodic potential [4]. There, one sees that the infinitely degenerate vacuum
energy is now a contiunous energy band, when tunneling is considered. The transition ampli-
tude can be familiarly expanded in terms of intermediate states |φn >, each with energy En.
Then, looking at big times, the dominant part of this expansion comes from the lowest ener-
gies, and we can evaluate the transition-amplitude path integral using the known saddle-point
approximation, leading to [2]:

GE =

∫

DE[q(t′)]e−
1

~
SE(q(t′)) = e−

1

~
S0BE(t)

[

Det

(

− d2

dt′2
+ V ′′(qcl)

)]−1/2

(5)

where BE(t) is the measure of the gaussian integral that appears in the approximation, qcl

is the classical solution -the instanton in this case-, around which the expansion is made, and
S0 is the action evaluated on qcl.
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The fact that the action is invariant under the change of the instanton position t0, causes
the operator inside the determinant to have a zero eigenvalue (called “zero-mode”), and then,
the whole expression appears to be divergent. However a trick can be made to get rid of this
divergence. It consists in replacing the integration over the zero-mode coordinate (namely,
t’) by an integration over the collective-coordinate t0, by means of an identity, first used by
Gildener and Patrasciou 1977. The result is a determinant with the zero-mode been removed,
which makes it finite. In general, this same procedure can be made with all the zero-modes
that appears in the theory as a result of invariance of the action under any transformation
(in addition to translation, Lorentz rotations, dilatation, special conformal transformation and
gauge transformation can be considered).

The last thing to analyze from the 1-instanton contribution to the transition amplitude 3 is
that we can divide the contribution of the determinant in two factors. The first one, let’s called
it K, accounting for the finite region in which the instanton solution lives, and the second one,
accounting for the remaining infinite time region, where the system stands in the vacuum, and
which can be succesfully recognized as the harmonic-oscillator path integral solution (together
with the BE(t) factor), and then, it can be expressed in a rather simple way.

In order to correctly describe the energy band that appears as a result of tunneling, we need
now to consider the multiinstanton contribution, in which intantons as well as antiinstantons
are taken into account 4. There are however two important restrictions for this multiinstanton
configuration: 1) in order to obey the boundary condition (i.e. that the system at t = −∞ to be
in one vacuum and at t = +∞ to be in the other), we need that the number of instantons (n1)
and the number of antiinstantons (n2) obey the relation n1 − n2 = 1. 2) the (anti)instantons
must be far apart from each other. The reason of this is that we must avoid overlapping of
(anti)instantons, because otherwise, when evaluating the action on each overlapped solution, it
would clearly not be minimized. A simpler way to say it is that if we alter the solutions that
correctly minimize the action, then when evaluating the action on those, it would of course
not get minimized. So, if condition 2) is obeyed, we have what has been called as the “dilute
instanton-gas approximation”. The contribution of n1 instanton together with n2 antiinstanton
can be now computed easily from the 1-instanton result, because most of the terms are obtained
by a (n1 + n2)-repetition of themselves, now including a correction factor that accounts for
over-counting configurations where (anti)instantons merely exchange positions. The last step
is to sum over the number of instantons and antiinstantons, taking into account all possible
configurations that correctly give the total transition amplitude. The result, in the limit t → ∞,
is the following:

GE =

∫ 2π

0

dθ

2π
eiθ

( w

π~

)1/2

exp(e−S0/~2JKtcosθ − 1

2
ωt) (6)

where J is the Jacobian of the change of variables (made to get rid of the zero-mode), and
ω ≡ V ′′|(vac1,vac2)

5. The energy band levels are therefore [2]

3Up to now we have considered only the contribution of one instanton. This can be seen in another way: the
transition from one vacuum to another, which we consider to happen in a big time t → ∞, has been computed
taking into account only one instanton living in a small region around t0

4We need also antiinstantons because they account for transitions in the opposite direction
5The factor of the form exp(e−S0/~) arises when considering the (n1 + n2)-repetition of the e−S0/~ term

under the double sum through n1 and n2, that eventually will has the form of a Taylor expansion of a common
ex function.
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Eθ =
1

2
~ω − ~(2JKe−S0/~cosθ) (7)

which is the correct result, accounting for a correction to the free energy E0 = 1
2
~ω due to

the quantum tunneling, as expected.

1.2.2 Analysing Yang-Mills theory

The obtained results allow us to study in a similar way the effect of instantons on the vacuum
structure of the Yang-Mills theory, defined through the following Lagrangian:

L =
1

2g2
Tr(GµνGµν) (8)

However some important constraint appears now because of the characteristics of this sys-
tem: one of the Euler-Lagrange equations makes the system to be constrained to transform
only on “small gauges” (i.e. U(x) → 1 when x → ∞). This implies that, as the field is not,
in general, invariant under small gauges, then it can not be considered a physical one. In that
sense, the correct physical field can be built as a linear combination of different non-physical
ones. Each coefficient of the linear combination belongs to a different class (or “small” U), and
it can be demonstrated [2] that this class classification can be related to an homotopy classifi-
cation, in a way that each U(x) correspond to a certain topological index N . The non-physical
fields, that within the frame of the topological classification are called “topological vacua”,
tunnel each other. The physical field as the form

|θ >=
∞

∑

N=−∞

eiNθ|N > (9)

which is the so called “θ-vacuum”. The θ parameter comes into play because of the following:
grouping all the space coordinates into one, we have, together with the time coordinate, a kind of
2-dimensional space-time, in whose perimeter leaves the boundary condition. These perimeter
is topologically equivalent to a circle and can be parametrised by some angle θ. So, as the
boundary conditions of the problem are θ-dependent, then the solution of that problem, i.e.
the correct physical states that come out, must shown also this dependence. The form of the
coefficients (i.e. the exponents) comes naturally from the theory, which is in agreement with
the approach of the Bloch’s theorem to the same problem. It is also worth mentioning that
from this formulation comes the result that no topological states belonging to different θ-vacua
can be related by any gauge-invariant operator, i.e. the transition between them is completely
forbidden. So, taking this into account, the transition amplitude from a topological vacuum M
to another N is expressed in the following way:

GQ =

∫

(DAµ)Qe−SE (10)

where Q = N − M . Here is explicit the fact that the transition depends of the difference
between the topological vacua, being independent of the vacua themselves. So, in order to
obtain the energy Eθ, a summation over all possible values of Q must be made, which as the
form

∑

Q eiθQGQ. Working with this expression, putting inside the GQ-integral the exponential
factor, we have a new way of defining the transition amplitude, which now is θ-dependent, and
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this dependence can be seen as been inside the definition of a new action Sθ, which therefore
implies a redefinition of the lagrangian, that acquires a θ-dependent term of the form:

∆Lθ =
θ

16π2
Tr[GµνGµν ] (11)

1.3 Additional topics

In addition to all what have been discussed within this section, some other problems were
studied. The reason of not discussing about them in the same way as before is because these are
old-fashioned topics, that were insteresting in the time when the instantons studies were young,
but nowadays the development of new approaches refutes them, having other new implications.
Shortly, these topics are: 1) The infrarred problem of large instantons. It was analysed that
in the Yang-Mills theory, the instantons can have any size (a Yang-Mills-like theory was used
to obtain the form of the exact instanton solution, see § 1.1, and notice that in principle ρ
can be any finite quantity). Consequently, as discussed before, an integration over this degree
of freedom must be taken into account, and what results is that this integral diverges. 2)
Instantons and confinement. A description of the θ-vacuum-expectation-value of a quatity
that accounts for the potential between two quarks, was made, for a 2-dimensional space-time,
using the dilute instanton-gas approximation. The result was a linear dependence between this
potential and the distance between the two quarks, which is a sign of confinement. However
the analysis doesn’t hold in a 4-dimensional space-time, the natural world of QCD, essentially
because in this case the topology is different, but also the dilute instanton-gas approximation
may be causing problems. 3) Suppresion of vacuum tunneling by massless fermions. Starting
from the result that in a massless matter field theory the chirality is conserved, the effect of
having an axial-vector-current anomaly is analyzed. When computing the transition amplitude
for tunneling, the grassmanian integration of the matter field together with the presence of this
anomaly leads to a null expression of the transition amplitude. This was a happy results since
the computation didn’t involve any dilute instanton approximation, but today it is know that
the process doesn’t work like that. 4) P,T violations in the Yang-Mills theory. The analysis of
P and T symmetries in the ∆Lθ term was made, giving as a result that for this theory these
symetries are violated, which we know from experiment that is not true. So in order to fix this
problem, a very small θ-parameter must be consider, up to the order of θ = 10−5. The way in
which the theory faces this, is supossing again the existence of massless quarks, and an anomaly
in the axial current that causes the action to be rectified by a certain amount, which is similar
to the Sθ term, up to a constant. So it appears to be that the condition of the fermions to
be massless change the value of θ to some amount, thanks to a chiral rotation. Then it would
means that the different θ-sectors are equivalent to each other, and we can always perform a
rotation to obtain a θ = 0-sector, restoring in that way the P and T symmetries.

2 Symmetries and Instantons

In order to study the symmetries that appears in the theory due to the instanton solution, some
illuminating exercises were proposed by the supervisor, which are described next:

2.1 Local gauge-invariance of the Euclidean action

The considered action is the following:
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SE =
1

2

∫

d4xTr(FµνFµν) (12)

(where we have considered g = 1 for simplicity) and the idea was to show that it is invariant
under a local gauge transformation of the SU(2) group. This can be done in more than one
way. Certainly, one way is to express the transformation law of the gauge field under the local
transformation: Aµ(x) → U−1(x)Aµ(x)U(x) + (i/g)U−1(x)∂µU(x), and then, substitute this
into the lagrangian of the theory, which eventually, after a bit of algebra, will manifest the
gauge-invariant character. Another way to achieve this is appealing to the modus operandi

followed when constructing a gauge theory. It is known that the construction of a gauge
invariant lagrangian begins by replacing the ordinary derivative, by a covariant derivative, which
introduces new fields in the original theory. For this reason we must add to the lagrangian a
gauge-invariant expression of the gauge fields themselves. This new term must be a “kinetic-
like” one only, because the inclusion of a “mass-like” term would again destroy our invariance.
The idea is then to construct an invariant from covariant forms. The kinetic condition of
this term suggests us to start considering the covariant derivative. It is straightforward to
demonstrate that the 2nd covariant derivative transforms also in a covariant way. Now as the
theory is constructed in such a way that the coefficients of the transformation belong to some
group, e.g. SU(2), then we want to have a Lie algebra that relates the coefficients of the
transformation through the structure constants, and this is done by a commutation relation.
So it is convenient to consider the commutator of the covariant derivatives, that eventually
will provide the desired algebra. Of course this commutator transforms also covariantly. When
computing the commutator, the result is some function that we can call Fµν ; especifically [5]:

[Dµ, Dν] = iFµν (13)

so in this case Fµν transforms covariantly, and, when doing the contraction FµνFµν , the
invariant character of it is checked directly. So it leads inmediatly to the invariance of the
action in (12).

2.2 Evaluation of the theory in the instanton solution

The lengthy (algebraically speaking) obtention of the instanton solution (4) can be used to
evaluate the lagrangian in a more direct way. Appealing to self-duality of the strength-energy
tensor, the substitution of the gauge field -the instanton (4)- into it is easier, giving the following
result:

Fµν =
ρ2

(x2 + ρ2)2
(τ̄µτ ν − τ̄ ντµ) (14)

Then, working with the properties of the Pauli matrices, the product FµνFµν can be com-
puted, and the result is then 6

L = 48

(

ρ

ρ2 + x2

)4

(15)

To obtain the action, an integration of (15) must be made over the whole 4-dimensional
space. This was performed by hand and checked using Mathematica. An interesting trick

6see Appendix A for some comments about the computation
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was performed, considering the spherical symmetry of the problem, to translate the volume
element d4x into a correspondient one-variable integration, which makes things easier, by far 7.
The result was, as expected, that the action is just a constant, independent of the size of the
instanton, and of course independent of any gauge transformation U(x) that could appear. In
order to check the behaviour of the action when changing the location of the instanton, from
x = 0 to some other value x = x0, which is expressed in the solution in the form:

(xατα)†

x2 + ρ2
τµ → (xατα)†

(x − x0)2 + ρ2
τµ, (16)

some problems were faced when doing the integration, so an alternative method was used,
and it was simply to look for the graphical solution of the action. The volume under the curve of
the integrand (which gives the action) was plotted for different values of the instanton location.
Then it was checked analytically that the percent of the maximum value of the integrand,
obtained for a given displacement (away from the center of the distribution), is independent of
the center itself, showing that the volume under the integrand, i.e. the action, is independent
of the location of the instanton. A Mathematica plot of a 2-dimensional integrand was made
(Figure 2), for different values of x0. Even when the perspective of this 3D plot doesn’t provide
a good sight of the traslation-invariance of the volume under the curve, this can be directly
checked looking at the expressions in the Mathematica worksheet (see Apendix A).
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Figure 2: The volumes under these 2-dimensional curves represent the action for different locations
of the instanton.

7see also Appendix A
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2.3 Computation of the winding number q

The expression (3) is the result of a more specific equation that comes from the asymptotic
behaviour of the strength-energy tensor. It comes naturally from the calculations that

∫

V

d4xTr[FµνF̃µν ] = −16π2

g2
q (17)

By definition, the winding number, expressed as a surface integral, has the form [6]

q = − 1

24π2
εµνρσ

∫

S3

d3SnµTr[(U−1∂νU)(U−1∂ρU)(U−1∂σU)] (18)

So, expressing (17) as a surface integral by means of the Gauss’s theorem, and comparing
with (18), it is easy to check that, for this case, q = 1. This means that the space-time
hypersphere S3 is wrapped one time around the group space of SU(2), or, said in fancy words,
this theory as a topological charge equals to unity.

2.4 Relation between regular and singular gauges

When studying instantons, there are two important ways of expressing the instanton solution.
One is called “the regular gauge”, and the other, “the singular gauge”. The former is just the
one expressed in (4). It is not difficult to check that (4) can be expressed also in the following
way:

Areg
µ (x) =

2

g

σµνxν

x2 + ρ2
(19)

On the other hand, the singular gauge as the form [7]

Asing
µ (x) =

2

g

σ̄µνxν

x2 + ρ2

ρ2

x2
(20)

The idea is to relate these two forms by some gauge transformation, which would provide
a desired equivalence between them. In order to achieve this, what one can do first is to think
about one transformation U(x) that eliminates the singularity present in the singular gauge.
As before,

A′
µ(x) = U−1(x)Asing

µ (x)U(x) + (i/g)U−1(x)∂µU(x) (21)

were the A′
µ(x) must not have the singularity (1/x2). Making a strong use of the properties

of the Pauli matrices, comparing what we want to have in the left hand side of (21) with what
we have in its right hand side, then we get the following form of the transformation 8:

U(x) =
σνxν√

x2
(22)

Then, having a transformation U that eliminates the singularity, it is expected that if
applying the inverse, i.e. U−1, a singularity must be generated. In order to see this, we checked
the following equality [8]:

Asing
µ (x) = U(x)Areg

µ (x)U−1(x) + (i/g)U(x)∂µU−1(x) (23)

8see Appendix B for some details
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that accounts for applying a transformation U−1 to the regular gauge. As expected, the
last equality holds, so the demonstration that the singular and regular gauges are equivalent is
complete.

3 Introducing conformal symmetry in the game

The last part of the study up to now, deals with the basic notions of conformal symmetry and
its role played in the instantons description.

3.1 Basics of conformal invariance [9]

The study of conformal invariance will be an essential part of my work from now on, but up to
now what has been done is to absorb the basic notions of it.

3.1.1 The conformal group

The conformal transformation of the coordinates (x → x′) leaves the metric invariant, up to a
scale factor:

gµν(x) = σ(x)g′
µν(x

′) (24)

Taking an infinitesimal transformation xµ → x′µ = xµ + ǫµ(x), and the way the metric
change under it; also imposing the transformation to be conformal, characterised by a function
f(x), then a constraint relation is obtained for this function, related with the dimension of
space-time:

(d − 1)∂2f = 0 (25)

For d > 1 it implies that f must be linear in the coordinates:

f(x) = A + Bµx
µ (26)

From the relation of f(x) with ǫµ follows a quadratic expression for the latter. All this
yields to the following infinitesimal transformation law of xµ:

x′µ = xµ + 2(x · b)xµ − bµx2 (27)

which is called Special Conformal Transformation (SCT).
The finite transformations corresponding to (27) are translations, dilations, rotations and

SCT:

x′µ = xµ + aµ

x′µ = αxµ

x′µ = Mµ
ν xν

x′µ = xµ−bµ
x

2

1−2b·x+b2x2

which is called the Conformal Group of transformations. The generators of the correspon-
dient infinitesimal transformations can be expressed with the help of the generator’s definition,
and are:

10



Tµ = −i∂µ

D = −ixµ∂µ

Lµν = i(xµ∂ν − xν∂µ)
Kµ = −i(2xµxν∂ν − x2∂µ)

There are four generators accounting for translation, one for dilation, six for Lorentz rotation
and four for SCT, which makes a total of 15 generators for the entire conformal group. They
obey some commutation rules that actually define the conformal algebra.

It can be demonstrated that the inversion transformation (inversion on a circle 9), which
can be expressed covariantly in the form:

x′
µ =

b2

x2
xµ (28)

(being b the radius of inversion in this case), generates dilation and SCT in the following
way [12]:

Da2/b2 = Ia2Ib2 (29)

K = Ic2TaIb2 (30)

respectively, where Ta represents a translation. However, the inversion itself can not be
considered as part of the conformal group of transformations, since we can not express an
infinitesimal generator for it (the change x′ → x under inversion can never be infinitesimal).
Anyway, due to this relations (28)-(29), the inversion plus the Poincare group of transformations
can generate the whole conformal group.

Building conformal invariant functions can be achieved in the following way: Invariant under
Poincare transformations requires that these functions can depend only of terms of the form
|xi − xj |. Then, dilation invariance requires dependence of the form

|xi−xj |

|xk−xl|
. Finally, SCT-

invariance requires a less trivial but straightforward dependence, of the form
|xi−xj ||xk−xl|

|xi−xk||xj−xl|
. So

for constructing a conformal invariant we need at least 4 points.

3.1.2 Conformal invariance in Classical Field Theory

Being a conformal transformation parametrized by wg, a matrix representation Tg is the gen-
erator of that transformation if

φ′(x′) = (1 − iwgTg)φ(x) (31)

To find the form of the generators, we proceed in the following way: The subgroup (of the
conformal group) that leaves the origin x = 0 invariant is generated by rotations, dilations, and
SCT 10. So defining the values of the generators of this subgroup for the origin, the next step
is to translate this generators to a nonzero value of x 11. This is done for all the operators of
the subgroup, obtaining the action of them to the field φ(x)

9In the plane, the inverse of a point P in respect to a circle of center O and radius R is a point P ′ such that
P and P ′ are on the same ray going from O, and the following relation is obeyed: OP × OP ′ = R2

10analysing this for SCT, one sees that, starting from x = 0, a 1st inversion would give x → ∞, then, after a
translation by a small amount, a 2nd inversion leads to practically the same point x = 0

11this is done with the help of the Haussdorf formula for two operators A and B. See ref
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Scale transformations are those were the field, in the presence of a coordinate transformation
of the form x′ = λx, transform in the form

φ′(λx) = λ−∆φ(x) (32)

where λ is the dilation factor and where ∆ is the scaling dimension of the field. Taking into
account that the Jacobian of the coordinate transformation is just λd, it can be demonstrated
that in order to have an scale-invariant action S =

∫

ddx∂µφ∂µφ, the scaling dimension must
obey the relation ∆ = d/2−1. That’s one of the reason of why the study of conformal invariance
for 2 dimensions is taken with special care. However, another requirement for having, not only
an scale-invariant, but a conformal-invariant action, involves the energy-momentum tensor,
which must be symmetric and traceless. The way in which we obtain a valid tensor with this
properties is the following: looking at the definition of the energy-momentum tensor by means of
the Noether’s theorem, we see that we have the freedom to add a divergence of an antisymmetric
quantity (a 3rd rank tensor). With this modification the energy-momentum tensor is called
the Belifante tensor, which is symmetric. Now, for having tracelessness, a 2nd quantity can
be added, which has to do with the virial of the field, and is a double divergence of a 4th
rank tensor. With this two modifications we can get a symmetric-traceless energy-momentum
tensor, and our theory is succesfully conformal invariant.

3.1.3 Conformal invariance in Quantum Field Theory

Under a conformal transformation, a spinless field transform as

φ(x) =

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

−∆/d

φ(x) (33)

If the field transforms like that it is called “quasi-primary field”. The 2-point correlation
function of 2 quasi-primary fields transforms, according to the conformal invariance of the
action, in the form:

< φ1(x1)φ2(x2) >=
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∣

∣

∣

∂x′

∂x
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∣

∣

∣

∆1/d

x=x1

∣

∣

∣

∣

∂x′

∂x

∣

∣

∣

∣

∆2/d

x=x2

< φ1(x
′
1)φ2(x

′
2) > (34)

The requirement of conformal invariance holds only if ∆1 = ∆2, which physically means
that 2 quasi-primary fields are correlated only if they have the same scaling dimension.

Another aspects, like the form of the Ward identity implied by the conformal invariance,
are been studying up to this point. So this topic is to be completed in the very-near future.

4 What is next?

The role of conformal symmetries will be appreciated next. When studying the instanton-size

distribution D(ρ) 12:

D(ρ) ≃ dn(I)

d4zdρ
(35)

12It defines the probability n(I) to find an instanton with size within the range [ρ; ρ + dρ] in the volume
element d4z

12



by means of the Instanton perturbation theory (I-pT), one encounters a divergence for this
quantity in the infrarred region (i.e. for large sizes of instantons). However, the computation
of (35) using lattice simulations gives rise to a very different result. The comparison between
the two computations is shown in Figure 3 13.

Figure 3: UKQCD lattice data [10] (solid symbols) for the (instanton+antiinstanton)-size distribu-
tion. It is displayed such as to suggest a virtually perfect inversion symmetry under ρ ⇒ ρ2

peak/ρ with
ρpeak ≈ 0.6fm (open and solid data symbols fit onto one universal, symmetric curve). The solid line
refers to the Instanton-perturbation theory plot. Figure taken from Ref.[11].

The first important thing to note from this result is the concordance between the I-pT and
lattice simulations until the size region of about 0.35 fm. Beyond that value, the former starts
to diverge quickly, but the latter shows a very interesting behaviour, definning a “characteristic
size” of instantons, around 0.5 fm; thus, the theory seems to protect instantons of being too large
or too short. The strong symmetric appearance of this plot motivated Schrempp [11, 12, 13] to
look further and a surprising aspect came out: the lattice plot appears to be invariant under
an inversion of the I-size, with respect to the characteristic size ρpeak, i.e.:

ρ ⇔ ρ′ =
ρ2

peak

ρ
. (36)

From this point, considering the importance of the inversion operation for the conformal
group of transformations, it is clear the necessity of studying the instanton-size distribution

13Within the frame of the UKQCD collaboration, a lattice data for the instanton-size distribution was ob-
tained, and analysed by Smith and Teper, and Schrempp and Ringwald [10]
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under the light of conformal symmetries. On the other hand, a beautiful issue comes into play,
which is that, for classical instantons, the instantons of size ρ in regular gauge change under a
conformal inversion of the coordinates (see (28), but with b replaced by ρpeak) to anti-instantons
of inverted size ρ′

peak in singular gauge:

A′(I)reg
µ (x, ρ) ⇔ A(Ī)sing

µ (x, ρ′) (37)

Note that the transformation leaves the instanton (or anti-instanton) in the same space-time
point x. This is exactly the result obtained by [11, 12, 13]. So the rising question that follows
from this, is if this same behaviour is still present for quantum instantons. A serious work
[12, 13] has been devoted mainly to this matter.

This is the present state of my studies. Additional comments will be added to this report
soon.

Thank you.
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Appendix A

Computation of the Lagrangian using the Instanton solution

As shown in Eq.(12), in order to compute the Lagrangian we must take the trace of the product
of strength-energy tensors, for which is useful to work with the expression (14). The square of
it, i.e.

FµνFµν =

(

ρ

ρ2 + x2

)4

(τ̄µτ ν − τ̄ ντµ)2 (38)

contains a product of matrices which can be managed by the following tools:

τµ = (−iσa, 12×2) (39)

where the σa are the Pauli matrices with a = 1, 2, 3 and the fourth component of τµ is just
the unitary 2 × 2-matrix. When doing the product τ̄µτ ν the following notation can be used:

τ̄µτ ν = σaσb + iσa12×2δ
0
b − iσb12×2δ

0
a (40)

where these “delta-functions” account for the fourth value that µ or ν can take. So if ν = 4
then δ0

b = 1 and if µ = 4 then δ0
a = 1 and the remaining terms are zero. It is of most importance

the known relation

σaσb = δab · 12×2 + iǫabcσc (41)

where ǫabc is the totally antisymmetric tensor. Doing a bit of algebra comes the result shown
in (15).

Computation of the Action using the Instanton solution

The integration of (12) can be implemented in a simple way if we consider the spherical sym-
metry of the integrand, which allows us to express the volume element as a function only of
the radius. The hyper-dimensional volume of the space in which a surface Sn−1 encloses the
n-dimensional sphere is given by the expression:

Vn =
πn/2Rn

Γ(n
2

+ 1)
(42)

that in our 4-dimensional case is reduced to V4 = 1
2
π2R4. Then the variable of integration

can be expressed as:

d4x = dV4 = 2π2R3dR (43)

With this ansatz the problem is reduced to the computation of an integral of the type

I =

∫ ∞

0

R3

(ρ2 + R2)4
dR (44)

which must be integrated by parts to times, resulting in the expected result:

S = 8π2 (45)

where the same consideration as in (12) was made, i.e g = 1.
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Appendix B

Equivalence between regular and singular gauges

Calling A to be the singular part of Asing
µ , we can say that the transformation we are looking

for acts in the following way:

A′ = 0 = U−1(x)AU(x) + (i/g)U−1(x)∂µU(x) (46)

in order for this expression to vanishes, we propose the following to be obeyed

A =
i

g
U(x)(∂µU−1(x)) (47)

because when plugging it into (46), and considering the useful trick

(∂µU−1)U = ∂µ(U−1U) − U−1(∂µU) = −U−1(∂µU) (48)

the vanishing of it is straightforward. Now, considering our interest in relate the singular
gauge with the regular one, an intuitive proposal can be made:

iU(∂µU−1) =
2σ̄µνxν

x2
(49)

Doing a bit of algebra one can re-express the σ̄µν to the form:

σ̄µν ≡ 1

4i
(σµσ̄ν − σν σ̄µ) = −iσµσ̄ν (50)

and when applying this form to xν as required, it is not so hard to identify

U(x) =
1√
x2

σνxν (51)

provided we check that this form of U(x) obeys all the requirements from above.
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