
Jet Reconstruction Algorithms
in Deep Inelastic Scattering

Summer Student Report
at

H1 Collaboration at DESY

submitted by

Anton Tamtögl

H1 Collaboration,
DESY (Deutsches Elektronen Synchrotron)

Notkestraße 85
22607 Hamburg, Germany

14.09.2007

Advisor: Dr. Günter Grindhammer
Co-Advisor: Dipl.-Ing. Roman Kogler

Contents

1 Introduction: Jets 4

2 Jet-Finding-Algorithms 5
2.1 The kt-Jet Algorithm [1] . 5
2.2 The Cone Jet Algorithm . 6

3 The SiSCone jet algorithm 8
3.1 Infrared safety . 8
3.2 The SiSCone jet algorithm . 8

4 Application and Comparison 10
4.1 Hadron level . 10
4.2 Detector level . 14
4.3 Hadronization corrections . 16
4.4 Influence of R and f in the SiSCone algorithm 16
4.5 Computation time . 19

5 Jet Areas 20
5.1 Why Jet areas? . 20
5.2 Jet areas . 20

5.2.1 Application . 21
5.3 Determination of the background level 23
5.4 Correcting jets . 24

2

Aknowledgement

I would like to thank Günter, Roman, Juraj and the people at H1 for their support
and the pleasant and cooperative working atmosphere.

1. Introduction: Jets 4

1 Introduction: Jets

A jet is a narrow cone of hadrons and other particles produced by the formation of
a quark or gluon after high-energy collisions. When energetic partons from the hard
subprocess hadronize, the created hadrons remain collimated around the original
parton directions and the higher the energy the parton has the more collimated the
hadrons are. These bunches of hadrons are called jets. They can be interpreted as
immediate link to the partons and thus can provide a deeper view of the underlying
parton interactions.

Jets sketch a rather simple picture of what happened in an event without taking
particular into account the multiparticle dynamics. The reason for using the jets,
rahter than directly the observed hadrons, is that they can be construed as infrared-
safe observables. Therefore perturbative QCD may be used to make predictions of
jets and their sensitvity to non-perturbative phenomena (hadronisation, underlying
event and pileup effects) is rather small.

2 Jet-Finding-Algorithms

Jet analysis techniques involve jet reconstruction. To find jets which provide a
stable basis for theoretical predictions, several jet finding algorithms have been
developed. At present there are essentially two classes of jet algorithms in use.
These are cone-type algorithms and clustering algorithms.

• In cone-type algorithms jets are defined by maximizing the amount of energy
which can be covered by cones of fixed size. Thus a jet in this definition is
a set of particles whose momentum vectors lie within a certain angular cone.
Since this contribution is essentially determined by geometry it is relatively
easy to estimate.

• In clustering algorithms particles are assigned to jets iteratively by recur-
sively grouping sets of particles with "nearby"’ momenta, as defined by some
measure, into larger sets of particles.

In the case of hadron collisions the jet algorithm has to fulfill the requirements of
being infrared and collinear safe. In addition the algorithm should be subject to
small hadronization corrections and not strongly affected by contamination from
hadron remnants and the underlying soft event.
Infrared and collinear safety of the algorithm implies that the number of found
jets and their properties must not change when one of the objects radiates a very
soft object, or splits into two collinear objects. Furthermore the output of the jet
algorithm shall be invariant under a longitudinal Lorentz boost. Since the invariance
is not only longitudinal it should be taken care of that the jet reconstruction is
performed in an appropriate frame, e.g. the Breit frame in case of DIS.

2.1 The kt-Jet Algorithm [1]

A type of clustering algorithm that fulfills the above mentioned criteria is the so
called kt-jet algorithm which represents at the moment one of the most widely used
jet-finding algorithms at H1.
The jet algorithm starts with a list of objects (partons or hadrons depending on
which level the jet algorithm is applied) called protojets, which are characterized
by their transverse energy ET , rapidity η = − ln

[
tan

(
θ
2

)]
and the azimuthal angle

φ. These protojets are combined iteratively into jets, according to their distance in
the η-φ plane and their transverse energies, using the following steps:

5

2. Jet-Finding-Algorithms 6

1. For each protojet i the beam distance di and for each pair of protojets ij the
distance dij between those pair is calculated using:

di = E2
T,i, dij = min(E2

T,i, E
2
T,i)[(η1 − η2)

2 + (φ1 − φ2)
2]/R2 (2.1)

R is an adjustable parameter related to the opening angle of the jets. For the
usage of the kt-algorithm in my applications I was always using the theoreti-
cally preferred value R = 1.

2. The minimum dmin of all di and dij is found

3. If dmin is one of the dij’s, the corresponding protojets i and j are merged into
a new protojet. There are many possibilities of how their kinematic quantities
may be recombined. When using this algorithm I was always applying the
so-called pt-recombination scheme

4. If dmin is one of the di’s, the corresponding protojet i is considered as a final
jet and is removed from the list of protojets.

This procedure is repeated until there are no more protojets left. The algorithm
gives rise to a list containing typically many jets for each event.
However, only the jets with large values of pt are of particular physical interest.
Therefore a minimal cut of the pt of a jet, upon which the jet is rejected, could
be done. Except the cases where it is explicitly mentioned, I was always using a
pt,cut = 3GeV .

2.2 The Cone Jet Algorithm

As mentioned above the algorithm makes use of the jet definition of a set of particles
whose momentum vectors lie within a certain angular cone. The idea is to maximize
the amount of energy covered by cones of fixed size given by the cone-radius R which
is basically done in two steps:

1. First the algorithm tries to find all stable cones:

• Event particles are taken as seeds i.e. trial cone directions.

• For each seed a list of particles in the trial cone is established and the
sum of the four-momenta of the particles inside the cone is calculated.

• If this combined momentum of the cone-content is pointing in the same
direction as the cone itself, a stable cone has been found.

• If the cone axis does not coincide the combined momentum is now used
as a new trial cone direction.

This iteration is performed until the cone directions are no longer changing
and all stable cones have been found.

2. Jet-Finding-Algorithms 7

2. In the case that cones are overlapping a split-merge procedure is run:

• The sum of the transverse momentum pt,shared of all the shared particles
between the cones i and j is calculated:

pt,shared =
∑

k∈i&j

|pt,k| (2.2)

• If the transverse momentum of the overlap is large compared to that of
the jet that is

pt,shared > f · pt,j (2.3)

than the two protojets are merged into a single new protojet. These
procedure is determined by the split-merge parameter f which is usually
set to 0.5 (which means that the two jets are merged if their overlap
contains more than 50% of the transverse cone-momentum)

• In the latter case (if pt,shared < f · pt,j holds) each shared particle is
assigned to the cone to which it is closes. The protojets need than to be
calculated.

The split merge part of the cone-algorithm also provides the possibility of cuts to
the jet, that is to reject protojets with a pt smaller than a threshold parameter
ptmin.

The cone-algorithm provides a rather illustrative and geometrical image but suffered
from a few problems i.e. it was neither infrared nor collinear-safe.

3 The SiSCone jet algorithm

3.1 Infrared safety

For an infrared and collinear safe algorithm the number of found jets and their
properties should not change when one of the objects radiates a very soft object, or
splits into two collinear objects. But it can be shown that the found cones in case
of cone-type algorithms depend on the seeds, that is the trial cone directions which
are chosen, and the found cones change if a soft particle is added in a hard event.

Thus the infrared-unsafety of the cone-type algorithm is a problem of the seed and
may be eliminated by the usage of a a seedless cone-algorithm. This algorithm
does not make use of seeds in the event as trial cone directions but uses all possible
subsets of the event as trial cone directions. It guarantees that all stable cones are
found but the computing time is of the order of N · 2N (N = number of particles
in the event) which makes the algorithm not applicable.

A faster cone-type algorithm that solves the problem of the infrared and collinear-
unsafety is the SiS-Cone algorithm invented by Gavin P. Salam and Grégory Soyez
that is mathematically proven to be infrared-safe.

3.2 The SiSCone jet algorithm

The idea of the SiSCone algorithm is to identify not all possible cones but just all
cones with different contents and to test their stability. In fact, cones are just circles
in the η-φ-plane, so one has to find all distinct circular enclosures of a set of points.
To determine those, one may utilize the fact that any enclosure can be moved, until
a pair of points lies on its edge, which is shown in figure 3.1

8

3. The SiSCone jet algorithm 9

Figure 3.1:

The clue about it is, that one can always move the corresponding circle without
changing the enclosure contents into a position, where two points lie on its boundary:
First slide the circle until its point content changes. The circle edge hits now some
point in the plane. Now pivot the circle around the boundary point until the second
point touches the circle boundary.
Thus to find all distinct enclosures, one has to find all circles whose circumference
lies on a pair of points form the set and to consider permutations of edge points,
that is whether the edge points are included or not to the circle content. The
computation time for this procedure is of the order N ·ln(n) with N the number of
particles in the event and n the typical number of particles in a circle.

To reduce the computation time the algorithm first executes an ordering of the
boundary points: For each pair of particles i and j two circles can be found and
the angle ζ of the circle-centre relative to i is calculated according to the following
equation:

ζ = arctan
(

∆φi,C

∆ηi,C

)
(3.1)

When working through this ordering the circle content changes only by one particle
at a time, either by a particle entering or leaving the circle. Thus it is easy to
update the momentum of the circle content by adding or removing the momentum
of the particle that has entered or left the circle.
Another trick to reduce the computation time is to find the candidate cones first and
not to check stability explicitly, but examine whether the edge points that define
the cone affect the momentum axis. If they do, the cone is labeled as unstable, if
not as stable. The full stability test is then carried out later, using all the stable
candidate cones.

After all stable cones have been found a split merge porcedure according to equation
2.3 is run over the protojets and the list of final jets is established.

For more details about the implementation of the SiSCone algorithm see Appendix
A or [2]-[4].

4 Application and Comparison

The behavior of the SiSCone jet algorithm was studied by using Monte-Carlo Events
of H1 and running the algorithm to reconstruct the jets out of the MC-data. The
properties of the jets were extensively compared with the jet properties one achieves
when using the kt jet finding algorithm. For this purpose the parameters in the
SiSCone jet algorithm were always set to R = 0.7, f = 0.5 and ptmin = 3GeV

(corresponding to the pt,cut in the kt-algo) except the few cases where it is mentioned
explicitly.

4.1 Hadron level

The application of both algorithms on the hadron level of the event is shown in
figure 4.1. They have been used to compute 2 · 106 MC events of H1 including
initial and final state photon radiation. Several cuts on the jets where performed
including a cut on all jets with a pt < 7GeV in the Breit frame and accepting only
jets with −1 < η < 2.5.
Figure 4.1(a) shows the number of jets per event found whereas both algorithms
match fairly good. The number of particles per jet (figure 4.1(b)) is shifted to larger
values for the kt algorithm than for the SiSCone algorithm, which may be explained
by means that for the kt algorithm it is more likely to find again a particle that may
be combined to the jet, whereas this is somehow restricted in case of the SiSCone
algorithm by the cone-radius R. The jets with just one particle my be traced to
photons of initial or final state radiation. The high value of jets with just two or
three particles is caused by jets with a small pt, that are passing the cuts because
photons of initial and finial state radiation are accounted to the jet. Therefore the
jet gets a higher pt after the clustering than the real one.
The φ-distribution of the jets (figure 4.1(c)) is uniform in case of both algorithms
which one would except since there is no preferred direction in the x-y-plane. The
transverse momentum pt in the laboratory and Breit frame are shown in figure
4.1(d) and 4.1(e) respectively. There is a good coincidence of these properties for
the different algorithms. Plots of η (figure 4.1(f)) and θ (figure 4.1(g)) give rise to
the same conculsion.

10

4. Application and Comparison 11

(a) Number of jets per event (b) Number of particles per jet

(c) φ of the jets (d) pt of the jet in the laboratory frame

(e) pt of the jet in the Breit frame (f) rapidity η of the jets

(g) θ of the jets

Figure 4.1: Comparison of the kt jet finding algorithm (red) and the SiSCone
jet finding algorithm (blue) on hadron level.

4. Application and Comparison 12

(a) Number of jets per event (b) Number of particles per jet

(c) φ of the jets (d) pt of the jet in the laboratory frame

(e) pt of the jet in the Breit frame (f) rapidity η of the jets

(g) θ of the jets

Figure 4.2: Comparison of the kt jet finding algorithm (red) and the SiSCone
jet finding algorithm (blue) on hadron level without initial and final state
QED-radiation.

4. Application and Comparison 13

The same computations as described above were performed again, but now using
MC events excluding initial and final state photon radiation (see figure 4.2). This
fact gives rise to more events with two jets than with one jet (figure 4.2(a)) be-
cause no more photons are clustered together with the jet and therefore less jets are
passing the cuts. Thus this situation reflects the physics behind the process much
better. In addition no jets with just one particle are observed and the number of
jets with two or three particles is much smaller (figure 4.2(b)).
The other jet-properties (figure 4.2(c) - 4.2(g)) rarely show any significant changes
and the coincidence for both algorithms is again quite good.

To exclude any loss of information because of the jet cuts the computation of MC
events including initial and final state photon radiation was performed for both
algorithms again but now without cuts on pt and η. The results are shown in figure
4.3 and again, despite the already known fact that the number of particles per jet
is different, there is a good coincidence of the algorithms.
Although there are no cuts in pt, protojets with values of pt < 3GeV are still
rejected. It was also tried to switch off this parameter, which gives rise to a little
bit more jets with just one particle, but despite this fact the output did not change.

(a) Number of jets per event (b) Number of particles per jet

(c) pt of the jet in the Breit frame (d) rapidity η of the jets

Figure 4.3: Comparison of the kt jet finding algorithm (red) and the SiSCone
jet finding algorithm (blue) on hadron level without performing cuts in pt and
eta

4. Application and Comparison 14

4.2 Detector level

Again both algorithms were used to compute 2 · 106 MC events of H1 including
initial and final state photon radiation but now on the detector level. Cuts on the
jets were performed to accept only jets with pt > 7GeV in the Breit frame and
−1 < η < 2.5.
Less events with two jets are now observed (see figure 4.4(a)) which may be ex-
plained by the fact that not all particles are realized in the detector. Thus the jet
has a smaller pt since less particles are clustered together and less jets are passing
the cuts. Figure 4.4(b) shows that there are now less one-, two- and three- paricle-
jets than compared to the jets on hadron level.
The φ-distribution of the jets (figure 4.4(c)) is not perfectly uniform any more, there
are steps. This is caused by the geometry of the detector, that is the particles can
not be detected over the whole range of the angle φ. The transverse momentum pt

in the laboratory and Breit frame, shown in figure 4.4(d) and 4.4(e) respectively, as
well as the plots of η (figure 4.4(f)) and θ (figure 4.4(g)) match good.

4. Application and Comparison 15

(a) Number of jets per event (b) Number of particles per jet

(c) φ of the jets (d) pt of the jet in the laboratory frame

(e) pt of the jet in the Breit frame (f) rapidity η of the jets

(g) θ of the jets

Figure 4.4: Comparison of the kt jet finding algorithm (red) and the SiSCone
jet finding algorithm (blue) on detector level.

4. Application and Comparison 16

4.3 Hadronization corrections

Usually the outcome of jet-algorithms is different for the parton and hadron level.
This difference between measured observables on the parton and hadron level may
be corrected using so called hadronization correction factors. To determine these
factors, histograms of the observables with a fixed binning are plotted. For each
observable the definition of the correction factor is:

ccorr
had =

Npart
bin,i

Nhad
bin,i

(4.1)

Thus one has to determine the content of each bin of the histogram on the parton
level and to divide it with the content on the hadron level.

Figure 4.5 shows the correction factors for pt and Q2. For pt (figure 4.5(a)) the
correction for the SiSCone algorithm is up to 10% worse than for the kt algorithm.
For Q2 (figure 4.5(a)) it is up to 5% worse in case of the SiSCone algorithm.

(a) ccorr
had for pt

(b) ccorr
had for Q2

Figure 4.5: Hadronization correction factors ccorr
had for the kt jet finding algo-

rithm (red) and the SiSCone jet finding algorithm (blue).

4.4 Influence of R and f in the SiSCone algorithm

To determine the influence of the cone-radius R and the split merge parameter f

in the SiSCone algorithm on the jet parameters, 2 · 106 MC events including initial
and final state photon radiation were computed on the hadron level with different
values of the parameters.

4. Application and Comparison 17

Figure 4.6 shows the jet properties for different values of the cone-radius R. It
is quite obvious that the number of jets (figure 4.6(a)), as well as the number of
particles per jet (figure 4.6(b)), increases with increasing R, since more particles
may be assigned to a larger cone.
The transverse momentum of the jets (figure 4.6(c)) does not show any significant
changes when modifying the cone-radius, but in figure 4.6(d) and 4.6(e) it is ob-
served that the number of jets with a small θ increases with increasing cone radius.
This may be explained by means, that with increasing cone radius more particles
flying in backward direction are assigned to the jet and therefore the angle θ of the
jet becomes smaller.

(a) Number of jets per event (b) Number of particles per jet

(c) pt of the jet in the Breit frame (d) rapidity η of the jets

(e) θ of the jets

Figure 4.6: Jet reconstruction on hadron level using the SiS-cone algorithm
with different values of the cone radius R: R = 0.3(red), R = 0.7(green),
R = 1.0(blue), R = 1.5(magenta)

4. Application and Comparison 18

In Figure 4.7 the jet properties for different values f of the split merge procedure (see
equation 2.3) are shown. The greater f gets the greater the amount of momentum in
the overlap compared to the cone has to be, so that the cones are merged. Thus with
increasing f the chances that two cones are merged become smaller and smaller.
This gives rise to a decrease in the number of jets per event (figure 4.7(a)) and
a decrease of particles per jet (figure 4.7(b)). The transverse momentum (figure
4.7(c)) is hardly influence by this parameter.

(a) Number of jets per event (b) Number of particles per jet

(c) pt of the jet in the Breit frame (d) rapidity η of the jets

(e) θ of the jets

Figure 4.7: Jet reconstruction on hadron level using the SiS-cone algorithm
with different values of the split merge parameter f (see formula 2.3): f =
0.25(red), f = 0.5(green), f = 0.75(blue), f = 0.9(magenta)

4. Application and Comparison 19

4.5 Computation time

A comparison of the computation time for the two algorithms is shown in figure 4.8
whereas it is observed that the SiSCone algorithm is even a little bit faster. So to
say the computing time for the kt algorithm is of a factor of about 1.3 greater then
those of the SiSCone algorithm.

Figure 4.8: Computing time versus number of processed events of the kt(red)
and the SiSCone jet finding algorithm (blue).

5 Jet Areas

5.1 Why Jet areas?

Jets show a certain susceptibility to contamination from soft radiation e.g. a uniform
diffuse background ρ. This background may be originated from pileup by multiple
minimum bias collisions in high luminosity hadron colliders and non perturbative
QCD radiation. The amount of this diffuse background radiation that is clustered
together with the jet is proportional to the jet-area A. To perform jet corrections,
according to the background, one has to determine the jet area and the background
level ρ.

5.2 Jet areas

One can define the jet area as the surface in the η-φ-plane over which the particles,
clustered to one jet, are distributed.
Starting with the particles in an event, after the clustering the particles are assigned
to the jets in the event. To determine the area of these jets one can tile the plane,
count the cells of a jet and then sum the areas (see figure 5.1).

Figure 5.1: Determination of the jet area by tiling the η-φ-plane

But the problem is that it is not clear to which jet the particles in the tile between
two different jets belongs. In addition the tiles can not be made infinitesimally
small because then the area would approach zero.

A better concept, introduced by Matteo Cacciari and Gavin P.Salam ([5] and [6]), is
to add a large number of uniformly distributed and extremely soft particles, called
ghosts. This ghost particles form a grid in the η-φ-plane. If the jet-algorithm is

20

5. Jet Areas 21

infrared-safe the final set of hard jets will not change when a number of soft particles
is added to the event. If the jet algorithm is now running on the event including the
ghost grid, the ghost particles are clustered together with the real particles which
is illustrated in figure 5.2.

Figure 5.2: Determination of the jet area by adding a grid of soft particles

Now a given set of ghosts belongs to each jet and the area of the jet can be deter-
mined by counting the number of ghosts belonging to the jet and multiplying this
number with the average area of a single ghost.

The definition of jet areas in this context is as follows:
The active area of a jet is proportional to the number of uniformly distributed,
infinitely soft particles that get clustered in it.

5.2.1 Application

To illustrate the process of determining the jet area, a 3-dimensional histogram
of one single event was ploted (see figure 5.3) with η, φ and the energy E of the
particle to represent the third dimension. After running the jet algorithm on the
event, each particle is assigned to a jet which is shown in figure 5.3(b). Each jet was
given a different colour so that one can see to which jet the particle belongs. The
same histogram is plotted after adding the ghost particles to the hard event and
running the algorithm again (figure 5.3(b)). Thus it is quite easy now to imagine
the jet area. The purely ghosted jets, which are also included in the picture, are
executed later because of the cut in pt.

5. Jet Areas 22

(a) Event with hard particles (b) Event including the ghost particles

Figure 5.3: Energy of the particles in the η-φ-plane

But to run the algorithm over a reasonable size of events takes quite a long time.
Therefore a grid size of 30 corresponding to the addition of 900 ghost particles was
chosen to determine the jet area. In figure 5.4 the distributions of the jet area for
the SiSCone and the kt algorithm are shown. The distribution of the SiSCone jets
is quite sharp with the maximum at a value of 1.1, whereas the distribution of the
kt jet-areas is rather flat and the maximum is shifted to a higher value. Again this
may be explained by the fact that it is more likely for the kt algorithm to find a
particle, even within a larger distance, that may be combined to the jet, which is
in case of the SiSCone algorithm more restricted by the cone-radius R

Figure 5.4: Area of the jets of the kt (red) and SiSCone (blue) algorithm

It was also tried to determine the jet areas using a regular grid of ghost particles
and a random grid with uniformly distributed ghost particles but the distribution
of the jet area did not show any significant difference. However the computing
time for the random grid seems to be smaller than for the regular, which has to be
confirmed.

5. Jet Areas 23

Furthermore it is observed, that with increasing parameter f (equation 2.3) of the
split merge procedure, less jets with higher values of the area are occur (see figure
5.5). This can be explained by the fact that less jets get merged but again, further
investigation should be carried out.

Figure 5.5: Area of the jets of the SiSCone algorithm with f = 0.5 (red) and
f = 0.7 (blue)

5.3 Determination of the background level

In order to perform correction on the jets one has to determine the background level
ρ that is a typical pt of the background. Figure 5.6 shows the transverse momentum
of the jets over the jet area versus the rapidity η taken form simulated pp-collisions
at LHC.

Figure 5.6: pt,jet

Areajet
for simulated pp collisions

It indicates that for the background jets the variable pt,jet

Areajet
lies within a band

whereas for the hard jets this variable is far above the band.
One may exploit this different behavior of hard and background jets to determine

5. Jet Areas 24

the noise level by calculating the median:

ρ = median
[{

pt,i

Ai

}]
(5.1)

of all jets i that lie within the band.

5.4 Correcting jets

The determined background level and jet area may now be used to perform cor-
rections on the jets. Since the amount of background radiation clustered together
with the jet is proportional to the jet-area A one might correct the transverse jet-
momentum according to equation 5.2.

p
(sub)
t = pt − ρ · A (5.2)

p
(sub)
t is then the corrected transverse jet momentum according to the background.

Of course the image drawn here is a quite simple one and if the jet-observable is
sensitive to the jet direction one has to correct the full 4-vector. The jet area is
then defined as the integral of a massless 4-vector over the surface of the jet.

Bibliography

[1] Stephen D. Ellis and Davison E. Soper, Phys. Rev. D 48 (Oct 1993) 7.

[2] Gavin P. Salam, arXiv:0705.2696v1 (May 2007).

[3] Gavin P. Salam and Grégory Soyez, JHEP 05(2007) 086

[4] http://projects.hepforge.org/siscone/

[5] Matteo Cacciari and Gavin P. Salam, arXiv:0707.1378v1 (Jul 2007)

[6] Matteo Cacciari, arXiv:0706.2728v1 (Jun 2007)

25

Appendix: A

Schemes of the main algorithm and the algorithm protocones.cpp that determins
the stable cones are shown in figure 5.7 and 5.8.

Figure 5.7: Sheme of the main algorithm

Parameters of the SiSCone jet algorithm

• R: The radius of the cone used to scan for stable cones in the member protocones.cpp
(default: R = 0.7)

• f : The overlap parameter according to equation 2.3 (default: f = 0.5)

• n_pass_max: Maximum number of passes. After running the algorithm it may
happen that some particles do not enter into a jet. The algorithm can therefore be
rerun with those particles only. The parameter n_pass_max controls the number
of these passes. (default: n_pass_max = 1, n_pass_max = 0 means infinity passes
(until all particles are associated with a jet))

• p_tmin: Minimal pt for the protojets in the split-merge process. At each step of the
split-merge process, jet candidates which have a pt < pt,min are removed. (default:
pt,min = 0.)

26

5. Jet Areas 27

• split_merge_scale: The kind of recombination scheme used in the split-merge pro-
cedure: (default: SM_pttilde)

– SM_pttilde: p-scheme pt according to equation 2.2

– SM_Et: transverse energy Et

– SM_mt: transverse mass mt

– SM_pt: transverse momentum pt

Figure 5.8: Sheme of the stable protojet determination (protocones.cpp)

5. Jet Areas 28

Calling the program, Input and Output
To calculate the jets from a given set of particles the algorithm is called through the fol-
lowing member:
int Csisscone::compute_jets(vector<Cmomentum> &particles, double R,
double f, int n_pass_max, double ptmin, split_merge_scale);
The returned integer value is the number of found jets.

The input of the algorithm is a list of particles stored in the form of a STL vector of
the type Cmomentum. A particle of momentum px, py, pz and energy E can be created
by calling: Cmomentum particle = Cmomentum(px, py, pz, E); To update the
particle list with all particles in the event one can just append one 4-momentum vector
after another using the STL-methode: particles.push_back(Cmomentum(px, py, pz, E));
There are several methods of Cmomentum to calculate properties of the 4-momentum
such as φ, η, ... (see momentum.h for details)

The result of calling compute_jets(...) or recompute_jets(...) is stored in the vector:
vector<Cjet> Csiscone::jets;
The elements of that vector contain all necessary information concerning the jets:

• Cjet::v: 4-momentum of the jet, again of the type Cmomentum

• Cjet::n: number of particles in the jet

• Cjet::contents: jet contents. It is stored as a vector<int> listing the indices of the
particles contained in the jet according to the input particles

The second member recompute_jets allows to rerun the split merge algorithm with
a different overlap parameter f with the following command:
int Csisscone::recompute_jets(double f, int n_pass_max, double ptmin,
split_merge_scale);

Thus the list of protocones is not recalculated, only the split merge procedure is
rerun which needs much less computation time.

